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a b s t r a c t 

Kleinberg introduced three natural clustering properties, or axioms, and showed they cannot be simulta- 

neously satisfied by any clustering algorithm. We present a new clustering property, Monotonic Consis- 

tency, which avoids the well-known problematic behaviour of Kleinberg’s Consistency axiom, and the im- 

possibility result. Namely, we describe a clustering algorithm, Morse Clustering, inspired by Morse Theory 

in Differential Topology, which satisfies Kleinberg’s original axioms with Consistency replaced by Mono- 

tonic Consistency. Morse clustering uncovers the underlying flow structure on a set or graph and returns 

a partition into trees representing basins of attraction of critical vertices. We also generalise Kleinberg’s 

axiomatic approach to sparse graphs, showing an impossibility result for Consistency, and a possibility 

result for Monotonic Consistency and Morse clustering. 

© 2022 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Given a set of objects and a pairwise similarity function, a clus- 

ering algorithm is a formal procedure that groups together objects 

hich are similar and separate the ones which are not [1] , mimick- 

ng the human ability to categorize and group together objects by 

imilarity. Methods and approaches to clustering algorithms have 

een growing for decades [1–5] , with clustering becoming a stan- 

ard data analytic technique [6] . This has been complemented by 

n interest in underlying principles and general desirable proper- 

ies (sometimes called axioms ) of clustering algorithms [7] , espe- 

ially as clustering is an infamously ill-defined problem in the ab- 

tract [6,8] . 

A more recent interest in the axiomatic approach was sparked 

y Kleinberg’s impossibility theorem [9] . In the spirit of Arrow’s 

mpossibility theorem in social science [10] , Kleinberg gives three 

atural properties a clustering algorithm should have, namely Scale 

nvariance, Richness, and Consistency, then proves that they cannot 

e simultaneously satisfied. Scale Invariance guarantees that the 

utput of the clustering algorithm remains the same if we multiply 

scale) all distances by a factor α > 0 , and similarly for Consistency, 

hen we decrease intra-cluster distances and increase inter-cluster 

istances. Finally, Richness is the property that guarantees that an 
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rbitrary partition of any set X can be achieved by the algorithm, 

or a suitably defined distance function on X (see Section 2.1 for 

ormal statements). 

Several authors have since criticised Kleinberg’s approach, par- 

icularly the Consistency axiom [11–13] , and proposed alternative 

rameworks that circumvent the impossibility result. For instance, 

y restricting clustering functions to k -partitions, for a fixed k , the 

xioms can coexist [14] ; if we allow arbitrary parameters, Klein- 

erg’s axioms are compatible when applied to a parametric family 

f a clustering algorithm, as discussed in [13] ; and, by replacing 

artitions by dendrograms as the output of a clustering function, 

he authors in [15] show a possibility and uniqueness result sat- 

sfied by single-linkage hierarchical clustering. In all these cases, 

leinberg’s impossibility is avoided by either restricting or extend- 

ng the definition of clustering function. Other authors shift the 

xiomatic focus to clustering quality measures [11,16–18] , or cost 

unctions [19,20] . 

In this article, we remain close to Kleinberg’s original setting 

nd directly address the problematic behaviour of the Consistency 

xiom instead. Namely, we replace Kleinberg’s Consistency by a 

eaker condition that we call Monotonic Consistency , where the 

ate of expansion, respectively contraction, of inter-, respectively 

ntra-, cluster distances is not arbitrary, but globally controlled by 

n expansive function η ( Section 2.2 ). In essence, η controls the 

nter-cluster expansion, while its inverse η−1 controls the intra- 

luster contraction. As η is a function on distances, not pairs of 

oints, the control is global, with points at similar distances expe- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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iencing the same expansion or contraction. Without such global 

ondition, we would recover Outer or Inner Consistency, each in- 

ompatible with Scale Invariance and Richness [12] . 

Monotonic Consistency avoids the problematic behaviour of 

onsistency (see Section 2.5 ), and, unlike Consistency, it is compat- 

ble with the other two axioms ( Corollary 16 ). As far as we know,

his is the only alternative in the literature to the Consistency ax- 

om that is compatible with Richness and Scale Invariance without 

odifying the definition of clustering function. 

Our possibility result relies on a clustering method that we call 

orse Clustering , inspired by Morse Theory in Differential Topol- 

gy. Although naturally a vertex-weighted clustering algorithm (in 

he sense of [21] ), an unweighted version (which we call agnostic 

orse Clustering) satisfies Kleinberg’s original axioms, with Con- 

istency replaced by Monotonic Consistency. 

We present three instances of Morse Clustering, corresponding 

o three choices of vertex and edge preorders, then show that each 

f them satisfy a pair of Kleinberg’s original axioms, and that all of 

hem satisfy Monotonic Consistency ( Section 3.4 ). In particular, one 

f them satisfy Monotonic Consistency, Scale Invariance and Rich- 

ess, which are therefore mutually compatible clustering axioms 

 Corollary 16 ). 

Our last contribution is a generalisation of Kleinberg’s impossi- 

ility result to graph clustering ( Section 4 ). A distance function d

n a set X can be represented by a complete graph G with vertex 

et X and edges weighted by d(u, v ) > 0 . In fact, many clustering

lgorithms (including Morse Clustering) work on this graph repre- 

entation. A classical example is Single Linkage, which, in fact, only 

epends on a minimum spanning tree of G [22] . A natural gener- 

lisation of Kleinberg’s setting is, therefore, the case when G is an 

rbitrary, rather than complete, graph. That is, we fix a graph G 

nd consider distances supported on the edge set (this is the nat- 

ral setting of graph clustering [23] ). In Section 4 , we justify this

pproach, consider Kleinberg’s axioms in this graph clustering set- 

ing, show that the impossibility result still holds, even when Rich- 

ess is relaxed naturally to Connected-Richness (partitions where 

very cluster is a connected subgraph), and give a possibility re- 

ult for Monotonic Consistency and the same instance of Morse 

lustering. Our result contains the original impossibility theorem 

9] as a particular case, and, we argue, provides the appropriate 

mpossibility result in the context of graph clustering. 

Related work. Kleinberg’s impossibility result applies to generic 

lustering algorithms encoded as arbitrary functions 

 : { d distance on X } −→ {P partition on X } , 
here X is a non-empty, finite set (see Section 2.1 ). All extensions 

f Kleinberg’s work either restrict or extend this definition of clus- 

ering function, and none addresses the problematic Consistency 

xiom without either modifying the definition of clustering algo- 

ithm, or the other two axioms. In [14] , the authors restrict the 

odomain of F to k -partitions, for fixed k , 

 : { d distance on X } −→ {P k-partition on X } . 
his solves the problematic behaviour of Consistency at the cost of 

xing the number of clusters a-priori , effectively substituting Klein- 

erg’s Richness axiom by k -Richness. This assumes that each clus- 

ering algorithm has a target number of clusters (which may not 

lways be the case), and separates clustering algorithms by target 

luster number. In [13] , the author proves several possibility re- 

ults for parametric clustering, that is, the domain of the clustering 

unctions is extended to include additional input parameters 

 : { d distance on X } × { parameters } −→ {P partition on X } . 
he approach in [15] goes somewhat in the opposite direction: it 

nly considers clustering algorithms that depend on the distance 

alone in a way that is called functorial . An immediate drawback 
2 
s that standard clustering algorithms such as k -means or spectral 

lustering are not functorial and thus excluded from their analy- 

is. Additionally, the authors change the codomain of a clustering 

lgorithm function from partitions to hierarchical arrangements of 

lusters (dendrograms), 

 : { d distance on X } −→ {P dendrogram on X } , 
and F functorial . 

ther line of related work [11,16,20] focuses on clustering quality 

easures instead, that is, functions that assign a score to a parti- 

ion of a data set. In this approach, the axioms refer to the clus- 

ering quality functions rather than to the clustering algorithms 

hemselves. 

In contrast to the above, our approach retains Kleinberg’s sim- 

licity, by keeping his original definition of clustering algorithm, 

nd changes the Consistency axiom only, in a way directly moti- 

ated by its problematic behaviour (see Fig. 1 and Section 2.5 ), into 

 compatible axiom. Indeed, several authors have criticised Klein- 

erg’s original Consistency axiom along these lines [11–13] . The 

uthors in [12] , for instance, argue that Consistency ‘may sound 

esirable and natural’, however it ‘may be viewed as the main 

eakness of Kleinbergs impossibility result’. 

Overview of results. We define a new clustering property (or 

xiom) called Monotonic Consistency ( Definition 5 ), and describe 

t in terms of expansive and contractive maps ( Section 2.2 ) and 

onotonic transformations ( Sections 2.3 and 2.4 ). We explicitly 

how how the problematic behaviour of Kleinberg’s Consistency 

xiom is avoided by Monotonic Consistency ( Section 2.5 ). We then 

how that Monotonic Consistency is compatible with the other two 

leinberg’s original axioms. Namely, we describe a family of clus- 

ering functions ( Sections 3.2 and 3.3 ), which we call Morse clus- 

ering , that satisfy, in three different instances, each pair or Klein- 

erg’s axioms, as well as the three axioms when Consistency is 

eplaced by Monotonic Consistency ( Section 3.4, Corollary 16 ). In 

ection 4 , we generalise our results to graph clustering. First, we 

eneralise Kleinberg’s original impossibility theorem to graph clus- 

ering ( Section 4.2, Theorem 20 ), then we prove a possibility theo- 

em for Monotonic Consistency and an instance of Morse Cluster- 

ng ( Section 4.2, Theorem 22 ). 

. Monotonic consistency 

In this section, we introduce a weakening of the Consistency 

xiom that we call Monotonic Consistency . We start with a review 

f Kleinberg’s original axioms and the problematic behaviour of 

onsistency. 

.1. A critique of Kleinberg’s axioms 

Given a set X of n objects that we want to compare, a dissimi- 

arity on X is a pairwise function 

 : X × X → R 

uch that d (i, j ) = d( j, i ) ≥ 0 , and d (i, j ) = 0 if and only if i = j, for

ll i, j ∈ X . We will adhere to the convention in the literature and

efer to d from now on as a distance , although it may not satisfy 

he triangle inequality. Following [9] , we define a clustering algo- 

ithm on X as a map 

 : { d distance on X } → {P partition of X } . (1) 

 partition of X is a disjoint union X = X 1 ∪ . . . ∪ X k , and we call

ach X i a cluster of the partition. If P = { X 1 , . . . , X n } is a partition

f X and x, y ∈ X , we use the notation x ∼P y if x and y belong to

he same cluster of P , and x �∼P y if not. 

Kleinberg [9] introduced three natural properties for a cluster- 

ng algorithm, then proved that they cannot be simultaneously sat- 

sfied by any clustering algorithm F . These properties are: 
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Fig. 1. Problematic behaviour of the Consistency axiom. We can arbitrarily emphasize any subcluster structure without affecting the output of the clustering algorithm. (Left) 

A point cloud representing the pairwise distances in a set and the output of some clustering algorithm F intro three clusters. (Right) New internal structure emphasizing 

a subdivision of the third cluster (top to bottom). If F satisfies the Consistency axiom, its output will be the same in both cases. This behaviour is explicitly avoided by 

Monotonic Consistency ( Section 2.5 ). 
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• Scale Invariance : Given a distance d on X and α > 0 , we 

have F (d) = F (α · d) ; 

• Richness : Given a partition P of X , there exists a distance d

on X such that F (d) = P; 

• Consistency : Given two distances d and d ′ on X with P = 

F (d) , if d ′ is a P-transformation of d, that is, 

{
d ′ (v , w ) ≤ d(v , w ) if v ∼P w, and 

d ′ (v , w ) ≥ d(v , w ) if v �∼P w, 
(2) 

then F (d) = F (d ′ ) . 

Kleinberg also showed that each pair of these properties can 

e simultaneously satisfied, in fact by three different versions of 

ingle Linkage. 

Our first contribution is a weakening of the Consistency prop- 

rty which is both very natural, and can coexist with Richness 

nd Scale-Invariance. To motivate our definition, we first discuss 

he problematic behaviour of Kleinberg’s Consistency in the pres- 

nce of Richness and Scale Invariance (see also [12–14] ). Given F a 

onsistent and scale-invariant clustering algorithm, and two differ- 

nt partitions F (d 1 ) � = F (d 2 ) , it can be shown [9, Theorem 3.1] that

ach partition is not the refinement of the other (a partition P is a 

efinement of Q if each cluster of P is contained in a cluster of Q ).

n particular, given a distance d and associated partition P = F (d) , 

e can never obtain a partition identical to P but with one, or 

ore, of its clusters further subdivided ( Fig. 1 ). On the other hand,

onsider any distance d ′ satisfying 

 

d ′ (v , w ) < d(v , w ) if v , w ∈ C 1 , 
d ′ (v , w ) < d(v , w ) if v , w ∈ C 2 , 
d ′ (v , w ) = d(v , w ) otherwise, 

here C is a cluster of P and C = C 1 ∪ C 2 is an arbitrary partition of

. Note that any such d ′ is a P-transformation of d. This means that

e can arbitrarily emphasize the subcluster structure, to the point 

hat it could be more natural to consider C 1 and C 2 as separate 

lusters ( Fig. 1 ), while Consistency implies F (d) = F (d ′ ) regardless.

We propose a more restrictive definition of Consistency which 

voids this type of behaviour. The idea is to globally fix the rate at 

hich we can increase (decrease) the intra-cluster (inter-cluster) 

istances. We do this restricting to P-transformations obtained 

hrough a particular class of functions, which we describe next. 
3 
.2. Expansive and contractive maps 

efinition 1. Let X and Y be subsets of R . We call a continuous 

ap η : X → Y expansive if 

 η(x ) − η(y ) | ≥ | x − y | for all x, y ∈ X. (3)

y reversing the inequality, we define a contractive map. 

Expansive maps can be defined more generally for maps be- 

ween metric spaces [24] as maps that do not decrease distances 

etween pairs of points, and we have added the continuity hy- 

othesis for convenience (see Remark 3 ). We will use expansive 

aps to expand and contract distances with respect to a partition, 

amely, d ′ (u, v ) = η(d(u, v )) if u and v belong to different clus-

ers, and d ′ (u, v ) = η−1 (d(u, v )) if they belong to the same cluster.

n particular, we take X = Y = [0 , ∞ ) in the definition above, and

ssume η(0) = 0 . The following lemma summarises some useful 

roperties. 

emma 2. Let η : [0 , ∞ ) → [0 , ∞ ) be a continuous expansive map

ith η(0) = 0 . Then: 

(i) η is strictly increasing, a bijection, and satisfies η(x ) ≥ x for all 

x ; 

(ii) η−1 is strictly increasing, a contractive map, and satisfies 

η−1 (x ) ≤ x for all x . 

roof. (i) By contradiction, if η is not strictly increasing, we can 

nd x > y with η(x ) ≤ η(y ) , so that η(0) = 0 ≤ η(x ) ≤ η(y ) and, by

he Intermediate Value Theorem, we can find z ∈ [0 , y ] such that

(z) = η(x ) , a contradiction. The growth condition is immediate 

rom the expansion property (3) for y = 0 , 

 η(x ) | = η(x ) ≥ | x | = x, 

or all x ∈ [0 , ∞ ) . Since η is strictly increasing, it is injective. It

s also surjective: The growth condition above gives η(x ) → ∞ as 

 → ∞ and, together with η(0) = 0 and continuity, we have that η
akes all values in [0 , ∞ ) . 

(ii) Since η is bijective, it has an inverse η−1 . The inverse of 

 (strictly) increasing function is also (strictly) increasing. To show 

his, and the two remaining properties, one can simply use the cor- 

esponding properties of η in (i) on x ′ = η(x ) and y ′ = η(y ) . �

xample 1. The following are examples of expansive functions η : 

0 , ∞ ) → [0 , ∞ ) with η(0) = 0 . 

1. (Linear) η(x ) = αx for α ≥ 1 ( Fig. 2 a). 
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Fig. 2. Examples of expansive functions and one counterexample (solid blue lines). At each point, the function growths at least as fast as the line y = x (dashed red line). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. (Piecewise linear) η = η(d i ) + αi (x − d i ) for x ∈ [ d i , d i +1 ] ,

where 0 = d 1 < d 2 < . . . < d n , η(0) = 0 , and αi ≥ 1 , for all i

( Fig. 2 b). 

3. (Differentiable) A differentiable function η : [0 , ∞ ) → [0 , ∞ ) 

with η(0) = 0 is expansive if and only if η′ (x ) ≥ 1 for all x

( Fig. 2 c). 

4. (Graphical criterion) A continuous function η : [0 , ∞ ) → 

[0 , ∞ ) is expansive if and only if the function η(x ) − x is in-

creasing (this follows from Remark 3 ). 

emark 3. If η is increasing, Eq. (3) is equivalent to 

(x ) − η(y ) ≥ x − y for all x ≥ y. (4) 

n fact, this equation alone implies η increasing and thus Eq. (3) . 

e could drop the continuity hypothesis in Definition 1 , and de- 

ne an expansive function simply by Eq. (4) . In practice, however, 

 monotonic transformation ( Definition 4 ) can always be realised 

y a continuous, piecewise linear function η ( Lemma 6 ). 

.3. Monotonic transformations 

In Kleinberg’s original Consistency axiom, arbitrary transfor- 

ations that increase inter-cluster distances and decrease intra- 

luster distances are allowed. To avoid an impossibility result, we 

estrict to transformations obtained via an expansive function η, 

s follows. Recall that we write x ∼P y if x and y are in the same

luster with respect to a partition P , and x �∼P y if not. 

efinition 4. Let d be a distance on a set X , and P a partition of

. A P-monotonic transformation of d is any distance d ′ on X such 
4 
hat 

d(x, y ) = η(d ′ (x, y )) if x ∼P y , and 

d(x, y ) = η−1 (d ′ (x, y )) if x �∼P y , 
(5) 

or some expansive map η : [0 , ∞ ) → [0 , ∞ ) , and all x, y ∈ X . (Note

hat such η necessarily satisfies η(0) = 0 .) 

efinition 5. A clustering algorithm F is Monotonic Consistent if 

 (d ′ ) = F (d ) whenever d ′ is a F (d ) -monotonic transformation of 

. 

Note that, given d and P , d ′ is uniquely determined by η. Since 

(x ) ≥ x and η−1 (x ) ≤ x for all x ( Lemma 2 ), the distance function

 

′ increases inter-cluster distances and decreases intra-cluster dis- 

ances (hence Consistency implies Monotonic Consistency). How- 

ver, our allowed transformations do so globally ( d ′ depends on 

istances between points, not the actual points) and monotonically 

the rates at which we expand or contract distances are the in- 

erse of one another). Finally, note that P-monotonic transforma- 

ions can be composed and this corresponds to the composition 

2 ◦ η1 of expansive maps. 

xample 2. The following are examples of P-monotonic transfor- 

ations. 

1. (Linear) Let η(x ) = αx , α ≥ 1 . The corresponding P- 

monotonic transformation multiplies inter-cluster distances 

by α, and intra-cluster distances by 1 /α. This is similar to 

Inner and Outer Consistency, introduced in [12] , except that 
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Fig. 3. Expansive map (left) and linear interpolation (right) through the points in the subset S (as in Lemma 6 ). Both maps determine the same P-monotonic transformation 

d ′ of a distance d. In the linear interpolation (right), the slope of each successive segment must be at least 1. 
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the expansion and contraction rates are not arbitrary, but 

the reciprocal of one another. 

2. (Linear step function) This is the function 

η(x ) = 

{ 

x 0 ≤ x ≤ d 1 , 
α(x − d 1 ) + d 1 d 1 ≤ x ≤ d 2 , 
(x − d 2 ) + αd 2 d 2 ≤ x, 

(6) 

for some 0 ≤ d 1 < d 2 and α > 1 . The associated P- 

monotonic transformation preserves (inter- or intra-cluster) 

distances below d 1 , scales distances between d 1 and d 2 as 

in Fig. 2 b, and (necessarily) translates distances above d 2 , 

adding η(d 2 ) = αd 2 to inter-cluster distances, and subtract- 

ing η(d 2 ) to intra-cluster distances. Note that d 2 can be 

equal to + ∞ and so the third line in Eq. (6) becomes ob-

solete. 

3. (Piecewise linear) This is generalises both (1) and (2): For 

the piecewise linear η as in Fig. 2 c, we have a rate of expan-

sion/contraction αi , and a translation by η(d i ) , for distances 

in the interval [ d i , d i +1 ] where η is linear. It can be shown

that each piecewise linear function is a composition of lin- 

ear step functions. 

Below, we show that every P-monotonic transformation is in- 

uced by a piecewise linear η, or, equivalently, by a finite compo- 

ition of linear step functions. 

.4. Characterisation of monotonic transformations 

Although d ′ is uniquely determined by η, this η is not unique, 

hat is, different choices of η may result in the same P-monotonic 

ransformation d ′ . Indeed, any expansive η interpolating the points 

d ′ (x, y ) , d(x, y )) with x ∼P y and (d(x, y ) , d ′ (x, y )) with x �∼P y
ecessarily gives the same P-monotonic transformation d ′ , by 

q. (5) . In particular, we can always assume η to be piecewise lin- 

ar in Definition 4 , and, in fact, we can determine whether such 

unction exists directly from d ′ , as the next result shows. 

emma 6. Let d and d ′ be distances on a finite set X and P a parti-

ion of X. Then d ′ is a P-monotonic transformation of d if and only if

 linear interpolation of the points 

 = 

{(
d(x, y ) , d ′ (x, y ) 

) | x ∼P y 
}

∪ 

{(
d ′ (x, y ) , d(x, y ) 

) | x �∼P y 
}

⊆ R 

2 

s a well-defined expansive map η : [0 , ∞ ) → [0 , ∞ ) . 

roof. Clearly, if there exists a linear interpolation η of the points 

n S such that it is a well-defined expansive map, then d ′ is a P-

onotonic transformation of d, by definition ( Fig. 3 ). 
5 
Now assume d ′ is a P-monotonic transformation of d. Then we 

an write 

 = { ( d(x, y ) , η(d(x, y )) ) | x ∼P y } 
∪ 

{(
d ′ (x, y ) , η(d ′ (x, y )) 

) | x �∼P y 
}
, 

here η : [0 , ∞ ) → [0 , ∞ ) is an expansive map. To define a linear

nterpolation of S we will assume that S is ordered lexicographi- 

ally 

 = { (x 0 , y 0 ) , (x 1 , y 1 ) , . . . , (x N , y N ) } , 
here y i = η(x i ) for 0 ≤ i ≤ N and x i < x i +1 . We can assume the

atter since η is injective: if x i = x i +1 then y i = y i +1 . Consider now

he linear interpolation of S consisting of segments between con- 

ecutive pairs of points (x i , y i ) and (x i +1 , y i +1 ) . As every point in S

s of the form (x, η(x )) , we have that the slope of each segment is

η(x i +1 ) − x i +1 

η(x i ) − x i 
≥ 1 , 

s η is expansive, Eq. (4) . From this we have that the linear inter- 

olation above, effectively a discretization of η, is in fact a well- 

efined expansive map. �

.5. Avoidance of problematic behaviour 

Recall that Kleinberg’s Consistency axiom allows us to arbi- 

rarily emphasize any subcluster structure within a cluster with- 

ut changing the output of the clustering algorithm ( Fig. 1 ). We 

ow show how this problematic behaviour is explicitly avoided by 

onotonic Consistency. Suppose that we have a set X and a parti- 

ion P = F (d) with respect to a clustering algorithm F and a dis-

ance d on X . Choose a cluster C and a partition C = C 1 ∪ C 2 that

e wish to emphasize on a new distance d ′ which (necessarily) 

ecreases the intra-cluster distances, but in a way that distances 

ithin each C 1 and C 2 decrease much faster than distances be- 

ween C 1 and C 2 , in order to achieve the behaviour depicted in 

ig. 1 . 

Let u, v ∈ C 1 distinct and w ∈ C 2 , and call x = d(u, v ) , x ′ =
 

′ (u, v ) , y = d(u, w ) and y ′ = d ′ (u, w ) . We impose x ′ ≤ x and y ′ ≤ y ,

nd, in addition, we want to make x − x ′ large while keeping y − y ′ 
mall ( Fig. 4 ). This is not possible if d ′ if a P-monotonic transfor-

ation of d, as follows. Let η be an expansive map realising d ′ . 
hen x = η(x ′ ) and y = η(y ′ ) . Assume first x ≤ y . Then Eq. (4) gives

(y ′ ) − y ′ ≥ η(x ′ ) − x ′ ⇐⇒ y − y ′ ≥ x − x ′ . (7) 

his implies that if we want to reduce the distances inside of 

 subcluster ( x − x ′ large), we need to reduce the distances be- 
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Fig. 4. Avoidance of the problematic behaviour by Monotonic Consistency. A P-monotonic transformation of d reduces the distance from u to v by x − x ′ , and the distance 

from u to w by y − y ′ (here shown with subscripts ‘b’ and ‘a’ indicating ‘before’ and ‘after’ the transformation). Then either x ′ ≥ y ′ ( Eq. (8) ), or y − y ′ ≥ x − x ′ ( Eq. (7) ). In 

either case, we cannot separate u and v from w within the same cluster. 
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ween the clusters ( y − y ′ ) by at least the same amount. The re-

aining case, x ≥ y , follows from η−1 being a decreasing function 

 Lemma 2 ), 

 ≥ y ⇒ x ′ = η−1 (x ) ≥ η−1 (y ) = y ′ , (8) 

o that we cannot decrease the intra-cluster distance x without 

lso decreasing the inter-cluster distance y . 

We finish Section 2 by exploring Monotonic Consistency for Sin- 

le Linkage, and for metrics. 

.6. Single linkage does not satisfy monotonic consistency 

We will show that Monotonic-Consistency, a weakening 

f Consistency, can be satisfied together with Richness and 

cale-Invariance by a particular instance of Morse clustering 

 Corollary 16 ). This is in contrast with Single Linkage, which, with 

ifferent stopping conditions, satisfies each pair of Kleinberg’s ax- 

oms [9] . The instance of Single-Linkage satisfying Richness and 

cale Invariance, namely Scale- α Single Linkage with 0 < α < 1 , 

oes not satisfy Monotonic Consistency, as we show next. This 

eans that no version of Single Linkage can be used to show 

ur possibility result for Monotonic Consistency. Recall that Scale- 

Single Linkage applied to (X, d) returns the connected com- 

onents of the graph with vertex X and edges (i, j) such that 

 (i, j ) < α · max s,t∈ X d(s, t) . 

emma 7. Let α ∈ (0 , 1) . Then Scale- α Single-Linkage does not sat- 

sfy Monotonic Consistency. 

roof. Let X be any set with at least three points, P any partition 

f X with at least two clusters, and x, y ∈ X such that x �∼P y . Define

on X as follows 

(u, v ) = 

⎧ ⎨ 

⎩ 

α

2 

, if u ∼P v , 

1 , if u = x, v = y, 
α, otherwise . 

et d max = max s,t∈ X d(s, t) = 1 . If we represent (X, d) by a com-

lete graph with vertex set X and edges (i, j) , i � = j, weighted
6 
y d (i, j ) > 0 , Scale- α Single-Linkage returns the connected com- 

onent of the graph obtained after removing all edges (i, j) 

ith value d (i, j ) ≥ α d max = α, in this case. Consequently, Scale- α
ingle-Linkage applied to d returns the original partition P . 

Let d ′ be the P-monotonic transformation of d given by 

(x ) = 

x 2 + x 

α
. 

Note that η(0) = 0 and η′ (x ) = 

2 x +1 
α > 1 for all x , so η is indeed

xpansive.) Then 

 

′ (u, v ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

η−1 
(

α
2 

)
= 

−1+ 
√ 

1+2 α2 

2 
, if u ∼P v , 

η(1) = 

2 
α , if u = x, v = y, 

η(α) = 1 + α, otherwise . 

e now have d ′ max = η(1) = 

2 
α and thus scale −α Single-Linkage 

emoves the edges (i, j) with d(i, j) ≥ αd ′ max = 2 . Since α < 1 , the

nly removed edge is d(x, y ) and, since X has at least three points,

he algorithm returns the trivial partition { X} , clearly not P . �

.7. Monotonic consistency for metrics 

A metric is a distance (in the sense of this article) which also 

atisfies the triangle inequality, d(u, w ) ≤ d(u, v ) + d(v , w ) for all

, v , w . Metrics arise naturally when X is embedded in a met- 

ic space such as R 

m , and, in fact, for many clustering algorithms 

for example k -means clustering), the distance function is always 

 metric. It is therefore natural to ask whether Monotonic Consis- 

ency is a useful property in this context, namely, whether a non- 

rivial (that is, η not the identity) P-monotonic transformation of 

 metric can be a metric. (If not, Monotonic Consistency would be- 

ome an empty clustering axiom for metrics.) Of course, not every 

-monotonic transformation of a metric will be a metric, but we 

how below that, given a metric d and an arbitrary partition P , 

e can always find P-monotonic transformations of d which are 

etrics. 

Given a distance d on a set X , we call a triple of points i, j, k ∈ X

ligned if they are distinct and d(i, k ) = d(i, j) + d( j, k ) . 
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heorem 8. Let X be a set, P a partition of X, and d a distance on

such that no triple of nodes is aligned. Then there exists a con- 

tant c(d, P) > 1 such that, for all s ∈ [1 , c(d, P )) , the P -monotonic

ransformation of d given by η(x ) = sx is a metric. Moreover, there 

s a universal constant c(d) independent of the partition, that is, 

 < c(d) ≤ c(d, P) for all partitions P of X. 

roof. Let d ′ be the P-monotonic transformation of d given by 

(x ) = sx for some s ≥ 1 . We will find conditions on s to guarantee

hat d ′ satisfies the triangle inequality. Let i, j, k ∈ X distinct (if not,

he triangle inequality is automatically satisfied). We want to show 

hat 

(i, k ) ≤ d(i, j) + d( j, k ) ⇒ d ′ (i, k ) ≤ d ′ (i, j) + d ′ ( j, k ) . 

ecall that 

 

′ (i, j) = 

{ 

s d (i, j ) if i ∼P j, 
d (i, j ) 

s 
otherwise. 

f i , j and k are in the same cluster then clearly 

d(i, k ) 

s 
≤ d (i, j ) 

s 
+ 

d( j, k ) 

s 
. 

f they are all in pairwise different clusters, then 

 d(i, k ) ≤ s d (i, j ) + sd( j, k ) . 

f i and k are in the same cluster but j is not, then (recall s ≥ 1 ) 

d(i, k ) 

s 
≤ d(i, k ) ≤ s d (i, j ) + s d( j, k ) . 

ince i and k are interchangeable in the triangle inequality above, 

he only remaining case is when i and j are in the same cluster, 

ut k is not. In this case, we want to show that 

 d(i, k ) ≤ d(i, j) 

s 
+ s d( j, k ) . (9) 

f d(i, k ) ≤ d( j, k ) then s d(i, k ) ≤ s d( j, k ) and Eq. (9) is automati-

ally satisfied. If d(i, k ) > d( j, k ) , Eq. (9) is satisfied if and only if

 

2 ( d(i, k ) − d( j, k ) ) ≤ d (i, j ) ⇐⇒ s ≤
√ 

d (i, j ) 

d(i, k ) − d( j, k ) 
. 

efine 

(d, P) = min 

i ∼P j,i �∼P k 
d (i,k ) >d ( j,k ) 

√ 

d (i, j ) 

d(i, k ) − d( j, k ) 
and 

c(d) = min 

d (i,k ) >d ( j,k ) 

√ 

d (i, j ) 

d(i, k ) − d( j, k ) 
. 

learly, c(d) ≤ c(d, P) for all partitions P . To finish the proof, note 

hat the triangle inequality for d guarantees c(d) ≥ 1 , and c(d) = 1 

f and only if there is an aligned triple of points. �

Defining the minimum of an empty set as infinity, we might 

ave c(d, P) = ∞ (or c(d) = ∞ ), meaning that the P-monotonic

ransformation of d given by η(x ) = sx is a metric for any s ≥ 1 ,

nd Theorem 8 still holds. Of course, this would only occur if for 

ll i , j, k with i ∼P j and i �∼P k , we have d(i, k ) = d( j, k ) . 

. Morse clustering 

In this section we consider the clustering algorithm Morse in 

he form of three variants: SiR-Morse , k - Morse and δ- Morse 
the last two are described in full detail in Appendix A ). Each of

hem satisfy one pair of the original Kleinberg axioms, and all 

f them satisfy Monotonic Consistency. In particular, one of them 

 SiR-Morse ) satisfies Scale Invariance and Richness, showing that 

ur three axioms can be simultaneously satisfied ( Corollary 16 ). 
7 
orse clustering is inspired by Topology and Differential Geome- 

ry, namely Morse theory [25] and its discretisation due to Forman 

26] . We start with a brief introduction to both continuous and dis- 

rete Morse theory and explain how they motivate our clustering 

lgorithm. 

.1. Morse theory 

Topology is the mathematical study of ‘shape’ [27] . It considers 

roperties of a space (such as a 2D surface, or 3D object) which are 

nvariant under continuous deformations such as stretching, bend- 

ng or collapsing. A topological invariant is a property, for example 

hether the space is disconnected, which is invariant under such 

eformations. A standard approach in Topology is to study a space 

ia functions defined on the space. Morse theory [25] considers 

otential-like functions called Morse functions and their associated 

ow on the space, defined by the unique direction of maximal de- 

cent at every point, except at a few critical points (see Fig. 5 ). 

Forman [26] introduced a discrete version of Morse Theory 

hich applies to discretisations of continuous spaces, such as a 

olygonal mesh of a continuous surface. Such discretisation de- 

omposes the space into vertices, edges, triangles, etc. called sim- 

lices. A discrete Morse function assigns a real number to each 

implex under certain combinatorial restrictions, and we have 

ssociated notions of critical simplex, and discrete Morse flow 

 Fig. 6 ). 

Discrete Morse theory can be applied to clustering by repre- 

enting a set X with distance d as an undirected weighted graph G 

ith vertex set X , and an edge between i and j if d (i, j ) > 0 , and

o such edge otherwise. (This is an all-to-all, or complete, graph.) 

 graph is a discretisation of a curve and hence discrete Morse 

heory applies. To obtain a partition of X using Morse theory, first 

e extend the edge weights given by the distances d (i, j ) > 0 to

 Morse function on the graph by assigning weights to the ver- 

ices as well. This Morse function determines a unique flow on the 

ertices which, in turn, gives a natural partition of the vertex set. 

he clusters are the connected components of the graph after re- 

oving the critical edges (edges not participating in the flow), and 

ach cluster becomes a tree rooted at a critical vertex (a sink of 

he flow), see Fig. 6 . We describe this in detail next. 

.2. Morse flow 

Let X be a finite set and d a distance (dissimilarity) on X . The 

orse clustering of (X, d) is obtained from the Morse flow on the 

raph representation of (X, d) , by removing the edges not partic- 

pating in the flow. In turn, the Morse flow is determined by the 

irection of maximal descent at every vertex together with the ini- 

ial and final vertex weights (to guarantee a descending path). In 

ts more general form, rather than weights, we only need a way of 

omparing vertices and edges locally. Formally, this consists on a 

hoice of vertex and edge preorders. 

A preorder on a set is a binary relation � that is reflexive ( a � a

or all a ) and transitive ( a � b and b � c implies a � c for all a, b, c).

e write a ≺ b if a � b and b �� a (that is, b � a does not hold). A

reorder is total if a � b or b � a for all a, b. Our main examples are

he total preorders induced by an edge or vertex weight function 

n a graph ( Example 3 ). By a graph G = (V, E) we mean a non-

mpty vertex set V and an edge set E ⊆ V × V so that (u, v ) ∈ E

epresents a directed edge from u to v . A graph is undirected if 

v , w ) ∈ E whenever (w, v ) ∈ E, for all v , w ∈ V , loopless if (v , v ) �∈ E

or all v ∈ V , and finite if V (and therefore E) is a finite set. 

xample 3. Let G = (V, E) be a graph. 

(1) (Edge weights) For any function w : E → R , the relation e � f

if w (e ) ≤ w ( f ) is a total preorder on E. 
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Fig. 5. Morse function (vertical height) on a torus, critical points (red), and associated flow (blue). The flow represents a unique maximal descent (or ascend, if we reverse 

time) path that a particle, such as a drop of water, would follow on the surface. It is defined everywhere except at four critical points, which can be thought of as a flow 

source ( A ), sink ( D ) or a combination of both ( B , C). The number and type of critical points, for any Morse function, is a topological invariant of the torus. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Morse flows on the same discrete space (here a small graph) associated to a discrete Morse function (left) and to arbitrary edge and vertex weight (right). Our 

algorithm ( Algorithm 1 ) generalises the standard construction [26] of the Morse flow associated to a discrete Morse function (left) to the Morse flow of an arbitrary edge 

and vertex weighted on a graph (right). In both cases, we show the associated discrete Morse flow as blue directed edges and critical simplices (vertices and edges) in red. 

A particle on a vertex has a unique direction of descent following the blue arrow, except at the two critical vertices shown in red, both sinks of the flow. After removing the 

critical edge, we have two connected components, each a tree rooted at a critical vertex ( Algorithm 2 ). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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(2) (Vertex weights) For any function w : V → R , the relation 

u � v if w (u ) ≤ w (v ) is a total preorder on V . 

A distance d on a set X is an edge weight function for the 

omplete graph with vertex set X , and hence induces a total edge 

reorder on the graph representation of X . Similarly, a labelling 

 = { x 1 , x 2 , . . . , x n } induces a vertex weight w (x i ) = i and hence a

otal preorder on the vertices V = X of such graph representation. 

emark 9. A preorder is an order if it is also anti-symmetric ( a � b

nd b � a implies a = b). Our examples above are not necessarily 

rders, as we may have w (a ) = w (b) with a � = b. If � is a total or-

er, a ≺ b is equivalent to a � b and a � = b. Note that any total pre-

rder on a set is induced by a weight function w : X → N . 
8

Morse clustering applies to an arbitrary finite graph G with a 

hoice of edge and vertex preorders �E and �V . First, it finds the 

ascending) Morse flow associated to (G, �E , �V ) ( Algorithm 1 ), 

hen the vertex partition associated to the Morse flow, that is, 

he connected components of the graph after removing the critical 

dges ( Algorithm 2 ); see also Fig. 6 . First, we need to introduce

ome notation and terminology. 

Given a node v , we define the set of edges at v as 

 v = { (v , w ) ∈ E } . 
 maximal edge at v is a maximum for E v with respect to the edge

reorder, that is, an edge e ∈ E v such that f � e for all f ∈ E v . Note

hat a maximal edge at v may not exist (e.g. if the preorder is not

otal), or it may not be unique (e.g. if w (e ) = w ( f ) for some edge
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Algorithm 1: Morse flow algorithm. 

Input : graph G = (V, E) , edge preorder �E , vertex preorder 

�V 

Output : Morse flow � : V → V 

foreach v ∈ V do 

if maximal edge e v = (v , w ) of E v exists and it is unique and 

v ≺V w then 

�(v ) = w 

else 

�(v ) = v 
end 

end 

Algorithm 2: Morse clustering algorithm. 

Input : graph G = (V, E) , edge preorder �E , vertex preorder 

�V 

Output : partition P of V 

n ← | V | 
initialise G Morse to an empty graph on n vertices 

� ← MorseFlow (G, �E , �V ) 

foreach v ∈ V do 

if �(v ) � = v then 

add edge (v , �(v )) to G Morse 
end 

end 

P ← connected components of G Morse 
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eights). An edge (v , w ) is ascending , or admissible , if v ≺V w . If an

dge is the unique maximal edge at v , and it is ascending, we call

t a non-critical or flow edge at v . 
We define the Morse flow of a graph G with a choice of pre- 

rders �E and �V as the map � : V → V given by 

(v ) = 

{ 

w if (v , w ) is the unique maximal edge at v , 
and it is ascending v ≺V w , 

v otherwise. 
. 

emark 10. There is a similar notion of descending edges and 

orse flow. For simplicity, we define Morse flow as ascending, and 

chieve descending flows simply by reversing the vertex preorder 

V . 

Graphically, we can represent a Morse flow as directed edges 

v , w ) whenever �(v ) = w (blue directed edges in Fig. 6 ). Edges

ot participating in the flow (red edges in Fig. 6 ) are called critical

dges , and fixed points of the flow, �(v ) = v , are called critical ver-

ices (red vertices in Fig. 6 ), and correspond to ‘sinks’ of the flow. 

The Morse flow of a graph can be computed using Algorithm 1 . 

his algorithm can be easily implemented so that each edge is vis- 

ted only once, and thus has linear time complexity O(m ) where 

 is the number of edges. 

An important observation is that we first use the edge preorder 

o extract the maximal edge at a vertex (if it exists and is unique),

nd then use it in the flow only if it is also ascending. In particular,

f the maximal edge does not exist, or it is not unique, or, crucially, 

t is not ascending, we define �(v ) = v , that is, the flow stops at

 . This design choice works well in practice [28] , produces a rich

amily of clustering algorithms ( Section 3.4 and Appendix A ) and, 

rucially, allows us to distinguish local maxima ( Fig. 7 ) without in- 

roducing additional scaling/threshold parameters. 

Note that the Morse flow algorithm work for both directed and 

ndirected networks. For undirected networks (the case we are 
9 
oncern with in this paper), each undirected edge { (v , w ) , (w, v ) }
s evaluated twice, once at v and once at w . Since at most one of

v , w ) or (w, v ) is admissible (ascending), at most one of them be-

ongs to the flow. The fact that the flow is (strictly) ascending, also 

eans that there cannot be any cycles in the flow. 

Recall that an edge is critical if it does not participate in the 

ow, and a vertex is critical if it is a fixed point, �(v ) = v , that is,

 ‘sink’ of the flow. Formally, we define 

 crit = { v ∈ V | �(v ) = v } and E crit = { (v , w ) ∈ E | �(v ) � = w } . 
We will see that, after removing the critical edges, what re- 

ains is a partition of the graph into a disjoint union of directed 

rees rooted at critical vertices (edge directions given by the flow). 

he cluster associated to a critical vertex v is 

 v = { w ∈ V | �N (w ) = v for some N ≥ 0 } . (10)

ere �N is the composition of � with itself N times (and �0 is 

he identity map), so that �N (w ) is the vertex at which we arrive 

rom w after following the flow N steps (across N edges). In the dy- 

amical system terminology, we can describe each T v as the ‘basin 

f attraction’ of v . 
Let us write T v for the subgraph with vertex set T v and edge set

ll non-critical edges between vertices in T v . Recall that the depth 

f a rooted tree is the maximal distance to its root. 

heorem 11. Let G = (V, E) be a finite graph with edge and vertex

reorders �E and �V , and associated Morse flow � : V → V . Then: 

(i) The Morse flow stabilises, that is, there is N ≥ 0 such that �N = 

�N+1 ; 

(ii) { T v | v ∈ V crit } is a partition of V ; 

(iii) T v is a directed (edge directions given by the flow) rooted tree 

with root v ; 
(iv) Within T v , the vertex v is the only critical vertex, and it is max-

imal with respect to the vertex preorder; 

(v) max { depth (T v ) | v ∈ V crit } = min { N ≥ 0 | �N = �N+1 } ; 
(vi) The graph (V, E \ E crit ) equals the disjoint union of the graphs 

T v for v ∈ V crit . 

roof. (i) Let v ∈ V . By the definition of the Morse flow, either

(v ) = v (a critical vertex), or �(v ) = w and v ≺V w (which im-

lies v � = w by reflexivity). Therefore, the sequence v = v 0 , v 1 , v 2 , . . .
here v i = �i (v ) , must contain a critical vertex before the first 

epetition: otherwise, we would have v i ≺V v i +1 ≺V . . . ≺V v k = v i 
nd thus v i ≺V v i by transitivity, a contradiction. Since the graph 

s finite, say | V | = n , there will be repetition in any subset of n + 1

ertices. Consequently, there is a critical vertex v k = �k (v ) in the 

equence above and, in fact, k ≤ n . All in all, the flow stabilises af-

er at most n = | V | steps. (The case N = 0 can occur if all vertices

re critical.) 

(ii) Let v ∈ V . By the argument in (i), the sequence v i = �i (v )
 i ≥ 0 ) stabilises, that is, there is k ≥ 0 such that { v i | 0 ≤ i ≤ k } are

istinct, non-critical, and v j = v k critical for all j ≥ k . In particular, 

 ∈ T v k , by Eq. (10) . This shows that every vertex belong to a set T v 
or v ∈ V crit , and that these sets must be disjoint. 

(iii) Since all edges in T v are non-critical, we have v ≺V w across 

ach edge and thus a cycle would imply u ≺V u for some vertex u ,

 contradiction. All edges are directed and point towards the root 

 , by the discussion above. 

(iv) For each critical vertex w , we have �(w ) = w hence w ∈
 w 

. Since, by (ii), they form a partition of the vertex set, v is the

nly critical vertex in T v . Every (directed) edge (u, w ) in T v is not

ritical, hence admissible, so that u ≺V w . As v is the root of the

ree T v , it must then be maximal with respect to �V . 

(v) It suffices to show that, for any v ∈ V crit , and any N ≥ 0 such

hat �N = �N+1 , we have depth (T v ) ≤ N. Let k = depth (T v ) . Then

here is w ∈ T v such that w i = �i (w ) , i ≥ 0 , stabilises after exactly

 steps. In particular, w 0 , . . . , w k −1 are all distinct and hence k ≤ N.
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Fig. 7. Morse clustering can separate nearby local maxima. Left: Toy graph with node weights shown by colour from low (dark blue) to high (red, critical vertex). Right: 

Output of the Morse flow and clustering algorithm (two clusters, shown by colour). The closest (highest weight) edge at each red vertex is a ‘downhill’ edge to a blue vertex. 

Hence both vertices, and the edge between them, are critical. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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(vi) Let G 1 = (V, E \ E crit ) and G 2 the disjoint union of the graphs

 v for v ∈ V crit . Since { T v | v ∈ V crit } is a partition of V , both G 1 and

 2 have the same vertex set. We show they also have the same 

dge set and hence they are equal. The edges in G 2 are non- 

ritical thus a subset of E \ E crit . Conversely, given a non-critical 

dge (v , w ) in G 1 , we have w = �(v ) and the sequence v , �(v ) =
, �2 (v ) , . . . shows that v and w belong to the same tree critical

ree, and thus this tree contains the edge (v , w ) . �

.3. Morse clustering algorithm 

The Morse partition of a graph G with a choice of vertex and 

dge preorders �V and �E is the partition of the vertex set given 

y the connected components of the graph G Morse = (V, E \ E crit ) .

y Theorem 11 , there is a cluster for each critical vertex, and, in

act, G Morse is a disjoint union of directed rooted trees with roots 

t the critical vertices. 

A complete algorithm that returns the Morse clustering of 

G, �V , �E ) is given below ( Algorithm 2 ). Its time complexity is

learly linear on the number of vertices and edges. Alternatively, 

he Morse flow and clustering can be computed simultaneously 

ne edge at a time, by keeping a list of critical edges and of the

aximal edge at each vertex. Therefore, the time complexity of 

any instance of) Morse clustering is O(m ) where m is the num- 

er of edges of the graph. 

We finish with a useful result, needed later, to determine when 

wo Morse partitions are equal. 

emma 12. Let � and �′ be Morse flows on X with associated Morse 

artitions P and P 

′ . If x ∼P �′ (x ) for all x ∈ X, then P 

′ is a refine-

ent of P . 

roof. Write P = { X 1 , . . . , X n } and P 

′ = { X ′ 
1 
, . . . , X ′ 

n ′ } . Write x i , re-

pectively x ′ 
j 
, for the critical vertex in X i , respectively X ′ 

j 
, for all

, j. Choose N ≥ 1 such that both � and �′ stabilise, that is, �N = 

N+1 and (�′ ) N = (�′ ) N+1 . We need to show that, for each j there 

s i such that X ′ 
j 
⊆ X i . 
10 
Let x ∈ X ′ 
j 

and consider the flow paths 

p(x ) = { x, �(x ) , . . . , �N (x ) = x i } and 

p ′ (x ) = { x, �′ (x ) , . . . , (�′ ) N (x ) = x ′ j } 
y definition of Morse partition, all points in p(x ) are in the same 

luster of P , namely X i , and all points in p ′ (x ) in the same cluster

f P 

′ , namely X ′ 
j 
. By hypothesis, (�′ ) n (x ) ∼P (�′ ) n +1 (x ) for all n ≥

 , so p ′ (x ) ⊆ X i . In particular x ′ 
j 
∼P x i . 

Given any other y ∈ X ′ 
j 
, 

p(y ) = { y, �(y ) , . . . , �N (y ) = x k } ⊆ X k and 

p ′ (y ) = { y, �′ (y ) , . . . , (�′ ) N (y ) = x ′ j } ⊆ X 

′ 
j , 

or a possibly different cluster X k . Again, by hypothesis, we have 

p ′ (y ) ⊆ X k and, in particular, x ′ 
j 
∼P x k . Then x ′ 

j 
∈ X i ∩ X k � = ∅ and

ence i = k , as distinct clusters are disjoint. Since y was arbitrary,

e conclude that X ′ 
j 
⊆ X i . �

Note that two partitions are equal if and only if each is the re- 

nement of the other, or if they have the same size (number of 

lusters) and one is the refinement of the other. 

.4. A possibility theorem for monotonic consistency 

Morse Clustering depends on a choice of edge and vertex pre- 

rders on a given graph. Different choices of edge and vertex 

reorders result in different instances of Morse Clustering. We 

ow show an instance of Morse Clustering that satisfies Scale- 

nvariance and Richness ( Theorem 14 ) as well as Monotonic Con- 

istency ( Theorem 15 ), proving that these three axioms are mutu- 

lly compatible. 

emark 13. One can in fact define two further instances of Morse 

lustering, that we call k -Morse and δ-Morse, which satisfy the 

ther two pairs of Kleinberg’s axioms, namely Consistency and 

cale-Invariance and Consistency and Richness, resp. k -Morse and 

-Morse. Furthermore, they both satisfy Monotonic Consistency 

see Table 1 and Appendix A ). 
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Table 1 

Clustering axioms and three instances of Morse clustering. 

Scale-Invariance Richness Consistency Monotonic-Consistency 

SiR-Morse � � ✗ � 

k -Morse � ✗ � � 

δ-Morse ✗ � � � 
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Let (X, d) be a set with a distance function, and consider the 

omplete graph with vertex set X . Let us fix, once and for all, a

abelling X = { x 1 , x 2 , . . . , x n } , which we will use to create the vertex

reorders (see the remarks at the end of this section on labelling). 

e also assume that X has at least three points. 

We now define an instance of Morse Clustering that we call 

iR-Morse ( S cale- i nvariant and R ich). It is given the following 

hoice of vertex and edge preorders. 

• v i �V v j if i ≤ j

• (v , w ) �E (v , t) if d(v , w ) ≥ d(v , t) 

Note that the vertex preorder is a total order, and the edge pre- 

rder is also locally total (at each vertex). The corresponding Morse 

ow chooses, at each vertex v , the edge with smallest distance, if 

t is unique and admissible. On the other hand, if more than one 

dge at v achieves the smallest distance, or if such edge is not ad- 

issible, then v is critical, that is, the Morse flow fixes v , �(v ) = v .

heorem 14. SiR-Morse is Scale-Invariant and Rich. 

roof. ( Scale-invariance ) Scale-Invariance does not affect the ver- 

ex or edge preorders, since �V is independent of d and, for �E , 

(v , w ) ≤ d(v , t) if and only if α d(v , w ) ≤ α d(v , t) for all α > 0 .

ence the output of SiR-Morse for (X, d) and for (X, αd) are the 

ame. 

( Richness ) Consider V = V 1 ∪ . . . ∪ V k an arbitrary partition of V .

et v i be the maximal vertex in V i ( �V is a total order) and define

 distance d as follows 

(v , w ) = 

{
1 , if v , w ∈ V i for some i , and either v = v i or w =
2 , otherwise , 

or all v � = w . If v ∈ V i , the edge to v i is always admissible and the

argest with respect to �E , so �(v ) = v i for the Morse flow, and we

ecover the partition V 1 ∪ . . . ∪ V k . �

Our main result is that this instance of Morse Clustering also 

atisfies Monotonic Consistency. 

heorem 15. SiR-Morse satisfies Monotonic Consistency. 

roof. Let d be a distance on X , P the output partition of 

iR-Morse on (X, d) , and d ′ a P-monotonic transformation of d. 

e want to show that SiR-Morse produces the same partition 

n (X, d ′ ) . We will prove that, in fact, the associated Morse flows

and �′ are identical. 

Let η be a monotonic transformation realising d ′ , that is, 

(u, v ) = η(d ′ (u, v )) if u ∼P v , and 

(u, v ) = η−1 (d ′ (u, v )) if u �∼P v . 

et v ∈ X and consider first the case w = �(v ) � = v . Then, by the

efinition of SiR-Morse preorders, 

(v , w ) < d(v , s ) for all s � = v , w. 

o prove that �′ (v ) = w , we need to show that d ′ (v , w ) < d ′ (v , s )
or all s � = v , w . We have two subcases. 

1. If s ∼P v , we have d ′ (v , w ) = η−1 (d(v , w )) and d ′ (v , s ) =
η−1 (d(v , s )) , so 

d(v , w ) < d(v , s ) implies d ′ (v , w ) < d ′ (v , s ) , 
as η−1 is increasing ( Lemma 2 ). 
11 
2. If s �∼P v , we have d ′ (v , w ) = η−1 (d(v , w )) and d ′ (v , s ) =
η(d(v , s )) , so 

d(v , w ) < d(v , s ) implies d ′ (v , w ) ≤ d(v , w ) < d(v , s ) ≤ d ′ (v , s ) ,
as η−1 (x ) ≤ x ≤ η(x ) for all x ( Lemma 2 ). 

In conclusion, we have d ′ (v , w ) < d ′ (v , s ) for all s � = v , w so
′ (v ) = w . 

The remaining case is �(v ) = v . Suppose, by contradiction, that 

 = �′ (v ) � = v . This implies v ≺V w and d ′ (v , w ) < d ′ (v , s ) for all

 � = v , w . Note that, since v is critical and therefore maximal within

ts cluster, we have v �∼P w . On the other hand, �(v ) = v means

hat either the unique maximal edge is not admissible, or it is ad- 

issible but the maximum is not unique. 

First we show that d(v , w ) is also a minimal distance at v (pos-

ibly not unique). Suppose, by contradiction, d(v , s ) < d(v , w ) for

ome s � = v , w . There are two subcases. 

1. If s ∼P v , then we have d ′ (v , s ) = η−1 (d(v , s )) and d ′ (v , w ) =
η(d(v , w )) , so 

d(v , s ) < d(v , w ) implies d ′ (v , s ) ≤ d(v , s ) < d(v , w ) ≤ d ′ (v , w ) ,

as η−1 (x ) ≤ x ≤ η(x ) ( Lemma 2 ). 

2. If s �∼P v , then we have d ′ (v , s ) = η(d(v , s )) and d ′ (v , w ) =
η(d(v , w )) , so 

d(v , s ) < d(v , w ) implies d ′ (v , s ) < d ′ (v , w ) , 

as η is increasing ( Lemma 2 ). 

In either case, we have d ′ (v , s ) < d ′ (v , w ) , a contradiction to the

inimality of d ′ (v , w ) . 

Since d(v , w ) is a minimal distance and v ≺V w , but �(v ) =
 � = w , the minimal distance (maximal edge) cannot be unique. Let 

(v , s ) = d(v , w ) for some s � = v , w . We have, again, two subcases. 

1. If s ∼P v , then we have d ′ (v , s ) = η−1 (d(v , s )) and d ′ (v , w ) =
η(d(v , w )) , so 

d(v , s ) = d(v , w ) implies d ′ (v , s ) ≤ d(v , s ) = d(v , w ) ≤ d ′ (v , w ) ,

as η−1 (x ) ≤ x ≤ η(x ) ( Lemma 2 ). 

2. If s �∼P v , then we have d ′ (v , s ) = η(d(v , s )) and d ′ (v , w ) =
η(d(v , w )) , so 

d(v , s ) = d(v , w ) implies d ′ (v , s ) = d ′ (v , w ) , 

as η is injective ( Lemma 2 ). 

This implies that d ′ (v , s ) ≤ d ′ (v , w ) , so d ′ (v , w ) cannot be the

nique minimal distance for d ′ at v , a contradiction. �

orollary 16. Scale Invariance, Richness and Monotonic Consistency 

re mutually compatible clustering axioms. 

. Axiomatic approach to graph clustering 

In this section, we consider the axiomatic approach in the con- 

ext of graph clustering, that is, of distances supported on a given 

raph G . Mathematically, we allow the distance function to take 

he value 0 ( Definition 17 ). Conceptually, there are two different 

pproaches depending on whether 0 is considered a numerical 

alue (minimum distance) or indicating that the distance is ‘not 

efined’. The first approach is essentially equivalent to that of [16] , 
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here a possibility theorem for Kleinberg’s axioms is shown. The 

econd approach, on the other hand, is closer to the usual inter- 

retation of graph clustering, or partitioning, in network and com- 

uter science [23,29] . In this case, we prove an impossibility result 

or Consistency ( Section 4.2 ), even when Richness is replaced by 

he more natural Connected-Richness axiom, and a possibility re- 

ult for Monotonic Consistency ( Section 4.3 ). First, we discuss the 

wo approaches. 

.1. Two approaches to graph clustering 

If we allow a distance function to take the value 0 between 

airs of distinct points, we obtain what we call a pseudo-distance. 

efinition 17. A pseudo-distance on a set X is a function d : X ×
 → R such that d (v , w ) = d (w, v ) ≥ 0 and d (v , v ) = 0 for all v , w ∈
(that is, we allow d(u, v ) = 0 for u � = v ). 

We can represent a pseudo-distance on X as a graph with ver- 

ex set X in the usual way: an edge between i and j if d (i, j ) > 0 ,

nd no such edge if d (i, j ) = 0 . Pseudo-distances occur naturally in

etwork clustering or community detection [30] to represent ab- 

ent edges, as well as in distance measures [31] that allow 0 val- 

es, such as the Pearson correlation distance or the cosine distance 

or unnormalised vectors. 

A direct generalisation of Kleinberg’s definition of clustering al- 

orithm, Eq. (1) , is 

 : { d pseudo-distance on X } → {P partition of X } . (11) 

leinberg’s original axioms make sense in this setting, however 

 possibility result now holds: the function that returns the con- 

ected components of the graph representation of d (as above), is 

learly scale-invariant, rich and consistent (cf. [16] ). 

The main issue with Eq. (11) is that the graph becomes irrel- 

vant: although Scale-Invariance does not change the underlying 

raph, the Consistency axiom can create and eliminate edges, by 

etting their values to zero, or not zero. Hence this approach fo- 

uses on the set X rather than on a fixed graph G . 

emark 18. In [16] the authors define a graph as a pair V vertex

et and E : V × V → R 

≥0 , with 0 effectively signifying the lack of

n edge. Their Consistence axiom (which they call Consistency Im- 

rovement), allows E ′ (i, j) ≥ E(i, j) whenever i ∼C j and E ′ (i, j) ≤
(i, j) whenever i �∼C j, for a clustering C of the same vertex set V .

n particular, we are allowed to create or eliminate edges by set- 

ing E ′ (i, j) > E(i, j) = 0 , respectively E ′ (i, j) = 0 < E(i, j) . 

Instead, we suggest a more natural approach when the focus is 

n the graph G = (V, E) : we allow arbitrary positive distances on

dges while keeping d(u, v ) = 0 whenever (u, v ) �∈ E. In clustering

roblems, we are normally interested in minimising the edge cut 

23] , and hence the absence of an edge is significant. In fact, the 

nderlying hypothesis in graph clustering is that the structure of 

he graph, or network, carries information. For this reason, we fix 

 graph G and restrict to distances supported on (the edges of) G ,

nd define distances, and clustering algorithms, accordingly. 

efinition 19. A pseudo-distance on a graph G = (V, E) is a pseudo-

istance d on the vertex set V that is supported on the edge set, 

hat is, d(v , w ) � = 0 if and only if (v , w ) ∈ E. (Equivalently, a positive

eight function on undirected edges.) 

Note that, for this definition to make sense, G must be loopless 

nd undirected (we will assume this from now on). Given a graph 

 = (V, E) , we define a graph clustering algorithm as any function 

 : { d pseudo-distance on G } → {P partition of V } . (12) 

learly, a distance on a set X is the same as a pseudo-distance 

n the complete graph with vertex set V = X . Hence this so-called 
12 
parse setting generalises Kleinberg’s setting from a complete to an 

rbitrary (but fixed) graph on X . 

.2. An impossibility theorem for graph clustering 

Kleinberg’s axioms can be stated in the graph clustering setting 

bove ( Eq. (12) ), as follows. 

• Scale-invariance : For any pseudo-distance d on G and α > 0 , 

we have F (d) = F (α · d) ; 

• Richness : Given a partition P , there exists a pseudo-distance 

d on G such that F (d) = P; 

• Consistency : Given pseudo-distances d and d ′ on G with 

P = F (d) , if d ′ is a P-transformation of d, that is, {
d ′ (v , w ) ≤ d(v , w ) if v ∼P w , and 

d ′ (v , w ) ≥ d(v , w ) if v �∼P w , 
(13) 

then F (d ′ ) = F (d) . 

(If G is a complete graph these axioms coincide with Kleinberg’s 

or the set X = V .) 

In the sparse setting it seems natural to restrict to connected 

artitions , that is, partitions where each cluster is a connected sub- 

raph of G . Otherwise, we would be grouping together objects 

hich are unknown to be similar or not, in apparent contradic- 

ion with the very principle of clustering. Therefore, we define a 

eaker Richness axiom: 

• Connected-Richness : Given a connected partition P , there 

exists a pseudo-distance d on G such that F (d) = P . 

Similarly, we will only consider connected graphs from now on 

it seems sensible to assume F (G ) = F (G 1 ) ∪ F (G 2 ) whenever G is

he disjoint union of graphs G 1 and G 2 ). 

Connected-Richness is clearly equivalent to Richness in the 

omplete case. In the sparse case, however, many graph clus- 

ering algorithms, such as Single Linkage, or Morse Clustering 

 Algorithms 1 and 2 ), always produce a connected partition (which 

eems very sensible in any case). Since clustering algorithms can- 

ot create new edges, such algorithms cannot satisfy Richness in 

ts general form. Since Richness implies Connected-Richness, our 

mpossibility result also holds for Scale-Invariance, Consistency and 

ichness. 

heorem 20 (An Impossibility Theorem for Graph Clustering) . Let 

 be a connected graph with at least three vertices, and F a graph

lustering algorithm on G . Then F cannot satisfy Scale-Invariance, 

onsistency and Connected-Richness. 

Before proving this theorem, we introduce some notation. Given 

 pseudo-distance d on G = (V, E) and a partition P of V , let

(P, d) = (x, y ) and h (P, d) = (p, q ) where 

x = max { d(u, v ) | (u, v ) ∈ E, u ∼P v } , 
p = min { d(u, v ) | (u, v ) ∈ E, u ∼P v } , 
y = min { d(u, v ) | (u, v ) ∈ E, u �∼P v } , 
q = max { d(u, v ) | (u, v ) ∈ E, u �∼P v } , 
he maximal (minimal) intra (inter) cluster distances, and, if P is 

he trivial partition, we set y = q = 0 . 

We observe that, if d and d ′ are pseudo-distances on G and P
s a partition of V , the condition h (P, d) = g(P, d ′ ) guarantees that

 

′ is a P-transformation of d. 

roof. Note that, in any connected graph, we can always remove 

 vertex so that the remaining graph is connected. For example, 

f T is a spanning tree of G , v any vertex, and s the vertex real-

sing the maximal (shortest path) distance from v in T , then the 

raph induced by V \ { s } must still be connected. Since | V | ≥ 3 ,
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e can repeat the argument on V \ { s } and find t � = s such that

 = {{ s } , X \ { s }} and P 

′ = {{ s } , { t } , X \ { s, t }} are connected parti-

ions. 

Since F satisfies Connected-Richness, there exist pseudo- 

istances d and d ′ on G such that F (d) = P and F (d ′ ) = P 

′ . Let

 (P, d) = (p, q ) and h (P 

′ , d ′ ) = (p ′ , q ′ ) . Since F satisfies Consis-

ency, we can assume p < q and p ′ < q ′ . Also, note that p, q and

 

′ cannot be zero. 

Let d ∗ be the pseudo-distance on G defined by d ∗(s, v ) = q if

 � = s , d ∗(t, v ) = p if v � = s, t , and d ∗(u, v ) = (pp ′ ) /q ′ if u, v � = s, t .

hen g(P, d ∗) = (p, q ) , since the only inter-cluster distance value is

 , and the only intra-cluster distance values are p and p(p ′ /q ′ ) < p.

herefore, g(P, d ∗) = h (P, d ) , hence d ∗ is a P-transformation of d,

y the observation before the proof, and, consequently, F (d ∗) = 

 (d) , by Consistency. 

On the other hand, g(P 

′ , αd ∗) = αg(P 

′ , d ∗) for any α posi-

ive constant. If we choose α = q ′ /p then we have g(P 

′ , αd ∗) =
((pp ′ ) /q ′ , p) = (p ′ , q ′ ) = h (P 

′ , d ′ ) so, by the same argument as

bove, αd ∗ is a P 

′ -transformation of d ′ and thus F (αd ∗) = F (d ′ ) =
 

′ , by Consistency. Since F satisfies Scale-Invariance, this im- 

lies F (αd ∗) = F (d ∗) = F (d) = P and, therefore, P = P 

′ , clearly a

ontradiction. �

.3. Monotonic consistency for graph clustering 

Next we consider Monotonic Consistency and Morse Cluster- 

ng in the sparse setting. We can extend Monotonic-Consistency 

o connected graphs by considering monotonic transformations 

 Definition 4 ) of pseudo-distances on a given graph. 

• Monotonic-Consistency : Given pseudo-distances d and d ′ 
on G with P = F (d) , if d ′ is a P-monotonic transformation

of d, then F (d ′ ) = F (d) . 

The input of the Morse Clustering algorithm ( Algorithm 2 ) is an 

rbitrary graph, and the output flow always induces a connected 

artition ( Theorem 11 ). Therefore, we can consider Morse Cluster- 

ng, and hence any of its instances, as graph clustering algorithms. 

The three instances of Morse Clustering discussed in 

ection 3.4 (and Appendix A ) satisfy the analogous axioms as 

n the complete case except that we need to allow the vertex 

abelling (arbitrary but prefixed in the complete case) to be part 

f the algorithm to satisfy Connected-Richness. This is a necessary 

ondition: once a vertex labelling (or preorder) is fixed, only 

uphill’ edges are admissible, preventing certain configurations to 

ccur (for example, u and v cannot be in the same cluster if all

aths from u to v contain a vertex lower than both). This is not an

ntrinsic limitation of Morse Clustering but reflects the fact that it 

s fundamentally a vertex-weighted clustering algorithm, that is, 

oth distance and vertex preorder are part of the input data. 

We can either allow the (so far arbitrary and prefixed) vertex 

abelling to be part of the algorithm, or to restrict to partitions 

ompatible with such a choice of vertex labelling. Formally, given 

 vertex preorder �V on V , we say that a partition P = { V 1 , . . . , V k }
f V is compatible with �V if there is a rooted spanning tree T i of

the subgraph induced by) V i rooted at a vertex v i such that every 

irected edge in T i (edges directed towards the root) is admissible 

ith respect to �V . Note that v i is necessarily the maximal ver- 

ex in T i with respect to the preorder, and that P is necessarily a 

onnected partition. 

emark 21. One can show that P is compatible with �V if and 

nly if for every u ∼P v there exists a path from u to v such that

o vertex in the path is strictly less than both u and v . 

Clearly, for every partition there is a choice of compatible pre- 

rder �V . This is also true for the SiR and δ- Morse vertex 

reorders: given a partition, there is a choice of labelling V = 
13 
 v 1 , . . . , v n } such that the preorder is compatible with the partition

 Section 3.4, Appendix A ). 

Formally, we define Morse-Richness for a Morse clustering al- 

orithm F on a graph G = (V, E) with a choice of vertex preorder

V as follows. 

• Morse-Richness : Given a partition P of V compatible with 

�V , there exists a pseudo-distance d on G and a vertex pre- 

order such that F (d) = P . 

(Morse-Richness is thus equivalent to Connected-Richness if we 

ccept the vertex labelling as an input of the algorithm.) 

Now we can show that the three instances of Morse Cluster- 

ng satisfy the analogous axioms as in Section 3 (see Table 1 ), 

ncluding a possibility theorem for Monotonic-Consistency and 

iR-Morse . 

heorem 22. Let G = (V, E) be a graph, and consider SiR-Morse , 
 -Morse and δ-Morse as graph clustering algorithms on G , for some 

xed labelling V = { v 1 , . . . , v n } . Then: 

(i) SiR-Morse satisfies Scale-Invariance, Morse-Richness and Mono- 

tonic Consistency. 

(ii) k -Morse satisfies Scale-Invariance and Consistency. 

(iii) δ-Morse satisfies Morse-Richness and Consistency. 

roof. i The proofs of Scale Invariance and Monotonic Con- 

istency are identical (they do not use the fact that G is a com-

lete graph) as those in Theorem 14 . For Morse-Richness, consider 

 = V 1 ∪ . . . ∪ V k an arbitrary connected partition of V . For each V i ,

hoose a spanning tree T i and a root v i such that each edge in T i is

dmissible. 

Define a pseudo-distance d on G as follows. If (s, t) is an edge 

n T i , then d(s, t) is the maximum of the distance from s to v i in T i 
nd the distance from t to v i in T i (by distance in a tree we simply

ean the ‘hop’ distance). If (s, t) is an edge not in any spanning

ree, then d(s, t) = | V | . 
With this choice, v i is critical and, if v ∈ V i , then the maximal

dge at v is the one connecting it to a vertex in T i closer to v i , and

t is admissible. All in all, the associated tree T v i = T i and the Morse

ow recovers the original partition. 

ii The proof of Scale Invariance is identical to that in 

heorem 23 . For Consistency, let d be a pseudo-distance on G , P
he partition given by k -Morse, and d ′ a P-transformation of d, that 

s, 

d(v , w ) ≥ d ′ (v , w ) , if v ∼P w, 

d(v , w ) ≤ d ′ (v , w ) , otherwise . 

et � respectively �′ be the Morse flow corresponding to d re- 

pectively d ′ . As in the proof of Theorem 23 , for all i > n − k we

ave that �(v i ) = v i = �′ (v i ) , critical. 

Suppose now �(v i ) = v i for some i ≤ n − k . Let J = { v j |
v i , v j ) ∈ E, v i ≺V v j } , the admissible edges from v i . By the defini-

ion of the edge preorder, if there are admissible edges ( J � = ∅ ) then

he maximal admissible edge exists and it is unique. Since v i is 

ritical, we must have J = ∅ . Since there are no admissible edges

t v i , we also have �′ (v i ) = v i . All in all, � and �′ have the same

umber of critical points and therefore P and P 

′ have the same 

umber of clusters (possibly more than k ). The rest of the proof 

oes as in the proof of Theorem 24 . 

iii The proof of Consistency is identical to that in 

heorem 25 . For Morse-Richness, consider V = V 1 ∪ . . . ∪ V k an ar-

itrary connected partition of V , and choose a spanning tree T i and 

 root v i such that each edge in T i is admissible. 

Define a pseudo-distance d on G as follows. If (s, t) is an edge in

ome T i , then d(s, t) = δ/ 2 , and if (s, t) is not an edge in any T i then

(s, t) = δ. By the definition of edge preorder, v is critical and the
i 
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aximal edge at v ∈ V i \ { v i } is the only edge in T i connecting v to
 vertex closer to v i in T i . All in all, the tree associated to v i by the

orse flow is T i and hence we recover the original partition. �

. Conclusions 

In this article, we presented a novel weakening of Kleinberg’s 

onsistency axiom, called Monotonic Consistency, which avoids 

ts well-known problematic behaviour and is compatible with the 

ther two axioms without replacing Kleinbergs original definition 

f clustering algorithm. As far as we know, this is the only pos- 

ibility theorem which only modifies the Consistency axiom while 

eeping Kleinberg’s original set-up. Monotonic Consistency explic- 

tly avoids Kleinberg’s Consistency problematic behaviour by re- 

tricting the rate of expansion and contraction of the inter- and 

ntra-cluster distances. 

In the process of proving our possibility theorem, we intro- 

uced a family of clustering algorithms inspired by Morse Theory 

n Differential Topology that uncovers the underlying flow struc- 

ure in the natural graph representation of a data set with a simi- 

arity function. Three different instances of these algorithms satisfy 

ach pair of Kleinberg’s axioms, and one instance, SiR Morse , 
hows the possibility result for Monotonic Consistency. Although 

orse clustering is, in full generality, a vertex-weighted algorithm 

32] , here it is used in an ‘agnostic way for axiomatic purposes 

nly: the vertex weights are an arbitrary, but fixed, labelling of the 

ertices. 

Lastly, we generalised Kleinbergs axiomatic setting to graph 

lustering, including the impossibility result, and a possibility re- 

ult for Monotonic Consistency and Morse clustering. These re- 

ults generalise the previous ones in our paper from distances to 

seudo-distances, where we allow zero values between distinct 

oints. This is a more natural setting for graph clustering and com- 

unity detection in networks, where a weight of value 0 simply 

eans the absence of an edge, that is, the distance is ‘not defined’, 

ather than the actual 0 numerical value. 

Although introduced in our work for axiomatic purposes only, 

t would be interesting to study Morse Clustering on its own, as 

 family of clustering algorithms for vertex-annotated data [32] . 

oreover, we would like to know whether there are other clus- 

ering algorithms that satisfy our possibility result (the usual can- 

idate, single-linkage clustering, does not) and whether there are 

ny uniqueness results that characterise Morse clustering. 
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ppendix A. Two further instances of Morse clustering 

In this appendix, we define and study the two further instances 

f Morse clustering mentioned in the Main Text ( Section 3.4 ), 

amely k - Morse and δ- Morse . They illustrate the versatility of 

orse clustering and show that, for suitable choices of vertex and 

dge preorders, Morse clustering can satisfy each pair of Klein- 

erg’s axioms, in analogy to the three instances of Single-Linkage 
14 
lustering with the same property in [9] . We keep the notation and 

erminology from Section 3.4 . 

Let k ≥ 1 be an integer. First, we present a Morse algorithm that 

uarantees a partition with k clusters ( Theorem 23 ), and thus it 

annot be rich. However, it satisfies Consistency and Scale Invari- 

nce ( Theorem 24 ). We call it k - Morse , and it corresponds to the

ollowing choice of preorder. 

• v i �V v j if i = j or i + k < j

• (v , w ) �E (v , t) if 

w �V v �V t , or 

d(v , w ) > d(v , t) and v �V t , or 

d(v , w ) = d(v , t) and w �V t . 

For this choice of vertex preorder, there are exactly k crit- 

cal vertices, v n , v n −1 , . . . , v n −k +1 , and hence k clusters (see

heorem 23 below). The edge preorder is defined such that ad- 

issible edges are always greater than non-admissible ones, and 

dmissible ones are compared using distances, with the vertex pre- 

rder used as tie-breaking procedure. In particular, if there are ad- 

issible edges at v , the maximal admissible edge at v exists and it

s unique. 

heorem 23. k-Morse always produces a partition with k clusters. 

roof. If v i ∈ X with i > n − k then there are no vertices greater

han v i with respect to �V hence no admissible edges at v and 

hus �(v i ) = v i critical. On the other hand, v i with i ≤ n − k cannot

e critical, as there are admissible edges (v i , v j ) ∈ E v i for all j >

 + k , so the maximum exists and it is unique. All in all, there are

xactly k critical vertices v n , v n −1 , . . . , v n −k +1 and therefore exactly 

 clusters. �

heorem 24. k-Morse is Consistent and Scale-Invariant. 

roof. ( Scale-invariance ) A distance transformation d ′ = α · d for 

> 0 does not affect the k - Morse vertex or edge preorder, hence 

e obtain the same partition. 

( Consistency ) Let d be a distance in X , P the partition given by 

 -Morse on (X, d) , and d ′ a P-transformation of d, that is, 

(v , w ) ≥ d ′ (v , w ) , if v ∼P w, (A.1) 

(v , w ) ≤ d ′ (v , w ) , otherwise . (A.2) 

et � respectively �′ be the Morse flow corresponding to d re- 

pectively d ′ . The critical points depend on the vertex preorder 

lone, hence, as in the proof of Theorem 23 , we have �(v i ) = v i =′ (v i ) for all i > n − k and thus P and P 

′ have the same number of

lusters. Therefore, it suffices to show that x ∼P �′ (x ) for all x ∈ X ,

y Lemma 12 . 

Let x ∈ X . If x is critical, �(x ) = �′ (x ) as they have the same

ritical points, so clearly x ∼P �(x ) = �′ (x ) . If x is not critical,

et w = �(x ) and t = �′ (x ) . The maximality and the definition of

E implies d(x, w ) ≤ d(x, t) and d ′ (x, t) ≤ d ′ (x, w ) . Since �(x ) = w ,

hey are in the same cluster, x ∼P w , and thus d ′ (x, w ) ≤ d(x, w ) ,

y Eq. (A.1) above. All in all, 

 

′ (x, t) ≤ d ′ (x, w ) ≤ d(x, w ) ≤ d(x, t) . (A.3) 

ow, if d ′ (x, t) < d(x, t) , they are necessarily in the same cluster,

 ∼P t , by Eqs. (A.1) and (A.2) above. The remaining case d ′ (x, t) =
(x, t) implies equalities in Eq. (A.3) , and, by the definition of the 

dge preorders and the maximality of (x, w ) with respect to d, we

ave w = t . In both cases, x ∼P t = �′ (x ) . �

Let δ > 0 . The final instance of Morse clustering, called δ- 

orse , satisfies Consistency and Richness, and is given by the fol- 

owing choices of preorders. 
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• v i �V v j if i ≤ j

• (v , w ) �E (v , t) if 

w = t , or 

d(v , t) < min { d(v , w ) , δ} and v �V t , or 

d(v , w ) = d(v , t) < δ and v �V w �V t . 

With this preorder, only admissible edges with distance less 

han the threshold parameter δ are considered for the flow. Among 

hose edges, we choose the one with minimal distance, using the 

ertex preorder to resolve ties. Note that, if there are admissible 

dges at distance less than δ, the maximum admissible edge exists 

nd it is unique. 

heorem 25. δ−Morse satisfies Consistency and Richness. 

roof. ( Richness ) Consider an arbitrary partition X = X 1 ∪ . . . ∪ X k 
nd define the distance function 

(v , w ) = 

{
δ
2 
, if v , w are in the same cluster, and 

δ, otherwise, 

or v � = w . Let x i be the largest vertex in X i with respect to �V and

 ∈ X i arbitrary. By the definition of d and the edge preorder, we 

ave that (v , x i ) is the maximum admissible edge at v . Also, x i is

ritical: the maximum edge at x i is of the form (x i , w ) for w ∈ X i ,

ence not admissible or, if | X i | = 1 , any edge in E x i is maximal,

ence unique (since | X| ≥ 3 ). Therefore, δ−Morse reproduces the 

artition X 1 ∪ . . . ∪ X k (in fact, each cluster is a directed star with

oot x i ). 

( Consistency ) Let d be a distance in X , P the partition given by 

-Morse on (X, d) , and d ′ a P-transformation of d, that is, 

(v , w ) ≥ d ′ (v , w ) , if v ∼P w, (A.4) 

(v , w ) ≤ d ′ (v , w ) , otherwise . (A.5) 

et � respectively �′ be the Morse flow corresponding to d re- 

pectively d ′ . Let s ∈ X arbitrary, v = �(s ) and w = �′ (s ) with

 , w � = s . As in the proof of Theorem 24 , we have d ′ (s, w ) ≤
 

′ (s, v ) ≤ d(s, v ) ≤ d (s, w ) . Then either d ′ (s, w ) < d(s, w ) , and so

 ∼P w by Eq. (A.4) , or d ′ (s, w ) = d(s, w ) , which implies, by the

efinition of edge preorder, v = w , and thus s ∼P w = �′ (s ) too.

s s was arbitrary, we conclude that P 

′ is a refinement of P , by

emma 12 . To prove that they are equal, it suffices to show that 

hey have the same critical points (i.e. the same number of clus- 

ers), that is, �(v ) = v if and only if �′ (v ) = v . 
Suppose that �(v i ) = v i and �′ (v i ) = v j , i � = j. Since the vertex

reorder is strictly increasing along the flow, v i ≺V v j , that is, i <

j. By the definition of Morse clustering, v i ∼P ′ v j hence v i ∼P v j , 
ince P 

′ is a refinement. However, this contradicts v i being maxi- 

al in its P cluster as i < j. 

Now suppose �′ (v i ) = v i and �(v i ) = v j , i � = j. The edge from

 i to v j is in the flow �, so d(v i , v j ) < δ, however it is not in the

ow �′ so d ′ (v i , v j ) ≥ δ. However, as d ′ (v i , v j ) ≤ d(v i , v j ) < δ, we

ave that v i has at least one admissible edge. By the definition of 

E , v i cannot be critical for �, that is, a unique maximal edge that

s admissible must exist. 

Finally, since v i ∼P v j and d ′ is a P-transformation, we have 

 

′ (v i , v j ) ≤ d(v i , v j ) , and we arrive to a contradiction. �

eferences 

[1] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., 1988 . 
15 
[2] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv. 
31 (3) (1999) 264–323 . 

[3] C.C. Aggarwal, C.K. Reddy, Data Clustering: Algorithms and Applications, CRC 
press, 2013 . 

[4] M. Zhang, Weighted clustering ensemble: a review, Pattern Recognit. 124 
(2022) 108428, doi: 10.1016/j.patcog.2021.108428 . 

[5] A.N. Tarekegn, M. Giacobini, K. Michalak, A review of methods for imbalanced 
multi-label classification, Pattern Recognit. 118 (2021) 107965, doi: 10.1016/j. 

patcog.2021.107965 . 

[6] A.K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognit. Lett. 31 
(8) (2010) 651–666 . 

[7] L. Fisher, J.W.V. Ness, Admissible clustering procedures, Biometrika 58 (1) 
(1971) 91–104 . 

[8] U. von Luxburg, R.C. Williamson, I. Guyon, Clustering: Science or art? in: Pro- 
ceedings of ICML Workshop on Unsupervised and Transfer Learning, in: Pro- 

ceedings of Machine Learning Research, vol. 27, PMLR, 2012, pp. 65–79 . 

[9] J. Kleinberg, An Impossibility Theorem for Clustering, MIT Press, 2003 . 
[10] K. Arrow, A difficulty in the concept of social welfare, J. Polit. Economy 58 (4)

(1950) 328–346 . 
[11] S. Ben-David, M. Ackerman, Measures of clustering quality: a working set of 

axioms for clustering, in: D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.), 
Advances in Neural Information Processing Systems 21, Curran Associates, Inc., 

2009, pp. 121–128 . 

12] M. Ackerman, S. Ben-David, D. Loker, Towards property-based classification 
of clustering paradigms, in: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, 

R.S. Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Sys- 
tems 23, Curran Associates, Inc., 2010, pp. 10–18 . 

[13] J. Correa-Morris, An indication of unification for different clustering ap- 
proaches, Pattern Recognit. 46 (9) (2013) 2548–2561 . 

[14] R. Zadeh, S. Ben-David, A uniqueness theorem for clustering, CoRR (2012) abs/ 

1205.2600 . 
[15] G. Carlsson, F. Memoli, Characterization, stability and convergence of hierarchi- 

cal clustering methods, J. Mach. Learn. Res. 11 (2010) 1425–1470 . 
[16] T.V. Laarhoven, E. Marchiori, Axioms for graph clustering quality functions, J. 

Mach. Learn. Res. 15 (2014) 193–215 . 
[17] J. Yu, Z. Xu, Categorization axioms for clustering results, arXiv preprint arXiv: 

1403.2065 (2014). 

[18] M.D. Noronha, R. Henriques, S.C. Madeira, L.E. Zrate, Impact of metrics on 
biclustering solution and quality: a review, Pattern Recognit. (2022) 108612, 

doi: 10.1016/j.patcog.2022.108612 . 
[19] N.B. Karayiannis, An axiomatic approach to soft learning vector quantization 

and clustering, IEEE Trans. Neural Netw. 10 (5) (1999) 1153–1165 . 
20] J. Puzicha, T. Hofmann, J.M. Buhmann, A theory of proximity based clustering: 

structure detection by optimization, Pattern Recognit. 33 (4) (20 0 0) 617–634 . 

21] M. Ackerman, S. Ben-David, A characterization of linkage-based hierarchical 
clustering, J. Mach. Learn. Res. 17 (232) (2016) 1–17 . 

22] J.C. Gower, G.J.S. Ross, Minimum spanning trees and single linkage cluster 
analysis, Appl Stat (1969) 54–64 . 

23] S.E. Schaeffer, Graph clustering, Comput. Sci. Rev. 1 (1) (2007) 27–64 . 
24] W.H. Gottschalk, G.A. Hedlund, Topological Dynamics, vol. 36, American Math- 

ematical Soc., 1955 . 
25] J. Milnor, Morse Theory, Princeton University Press, 1963 . 

26] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90–145 . 

27] V. Prasolov, Intuitive Topology, vol. 4, American Mathematical Soc., 1995 . 
28] J.P.R. Schofield, et al., A Topological data analysis network model of asthma 

based on blood gene expression profiles, bioRxiv preprint 10.1101/516328 
(2019). 

29] M.E.J. Newman, Networks, Oxford University Press, 2018 . 
30] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3–5) (2010) 

75–174 . 

31] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci. 
2 (2) (2015) 165–193 . 

32] F. Strazzeri, R.J. Sanchez-Garcia, A Morse-theoretic clustering algorithm (2018) 
(in preparation). 

abio Strazzeri obtained his PhD at the University of Southampton where he devel- 

ped a novel clustering algorithm, Morse. He applied it for patient stratification and 
dentification of disease sub-phenotypes. He is currently a Postdoctoral Researcher 

t the IRI (CSIC-UPC) in Barcelona, for the project CLOTHILDE Cloth manipulation 
earning from demonstrations. 

uben Sanchez-Garcia is Associate Professor in Pure and Applied Mathematics at 
he University of Southampton working in the interface between pure and applied 

athematics, particularly network modelling and applied topology, and is well- 

nown for his pioneering work on real-world network symmetry. He is a Fellow 

f the Alan Turing Institute. 

http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0003
https://doi.org/10.1016/j.patcog.2021.108428
https://doi.org/10.1016/j.patcog.2021.107965
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0013
http://arxiv.org/abs/1205.2600
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0016
http://arxiv.org/abs/1403.2065
https://doi.org/10.1016/j.patcog.2022.108612
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0027
https://doi.org/10.1101/516328
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00168-6/sbref0031

	Possibility results for graph clustering: A novel consistency axiom
	1 Introduction
	2 Monotonic consistency
	2.1 A critique of Kleinberg’s axioms
	2.2 Expansive and contractive maps
	2.3 Monotonic transformations
	2.4 Characterisation of monotonic transformations
	2.5 Avoidance of problematic behaviour
	2.6 Single linkage does not satisfy monotonic consistency
	2.7 Monotonic consistency for metrics

	3 Morse clustering
	3.1 Morse theory
	3.2 Morse flow
	3.3 Morse clustering algorithm
	3.4 A possibility theorem for monotonic consistency

	4 Axiomatic approach to graph clustering
	4.1 Two approaches to graph clustering
	4.2 An impossibility theorem for graph clustering
	4.3 Monotonic consistency for graph clustering

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Two further instances of Morse clustering
	References


