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A B S T R A C T

The present work deals with the multi-leak diagnosis problem in a branched pipeline configu-
ration as in water distribution systems. Here, it is assumed that the flow rate and pressure head
measurements are available upstream and at all delivering points of the network. The proposed
Leak Detection and Isolation (LDI) scheme basically involves two essential steps: leak region
identification based on flow-rate residuals with a related 𝑘-Nearest Neighbors (k-NN) classifier,
and then leak parameter identification (magnitude and position) via the use of the so-called
Extended Kalman Filters (EKFs) for each leak based on a simple generic model and fed with
pressure head estimations provided by an initial EKF. For the sake of illustration, successful
experimental results of a two sequential leak scenario are provided using databases generated
by a test bed plant with two branchings built at the Tuxtla Gutiérrez Institute of Technology.

1. Introduction

Pipeline systems are commonly used to transport fluids such as wastewater, drinkable water, and oil derivatives, among others,
nd they aim to satisfy human needs. A safe operation in the transporting process is always desired, however, abnormal behaviors
uch as leaks may occur and cause economic and environmental disasters. Leaks appear because of the natural aging of the pipe,
arthquakes, external maintenance processes, or even illegal intrusion (gasoline pipelines).

Since the end of the last century, the leak diagnosis problem has been widely studied and several (LDI) strategies have been
proposed for the single leak case in straight pipelines. In [1], a leak isolation methodology using a fitting loss coefficient calibration is
proposed considering two stages: (a) the calculation of Equivalent Straight Length (ESL) by using an Extended Kalman Filter EKF as a
state observer; (b) the implementation of an algebraic observer fed with the ESL estimated in the first stage. The estimation of the ESL
provides the leak position in real coordinates, which is crucial in practice [2,3]. Experimental results demonstrate the effectiveness
of this approach. Authors in [4] present a new LDI technique for pressurized pipelines based on an extension of a Differential
volution (DE) algorithm. The leak localization problem is formulated as an optimization task using the classical dynamical model
escribing the fluid transient response inside a pipeline. The core of this approach is finding reasonable estimations related to the leak
arameters while a cost function is minimized. Experimental findings of a pipeline prototype illustrated accurate results that were
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then compared with estimations obtained from an EKF, which in turn, is widely used in this field. Following this direction, in [5] a
parameter calibration process based on the DE algorithm is proposed and applied to the leak diagnosis problem. Experimental results
show a good performance of the leak location task, including mapping of the calibration parameters that facilitate the searching
process. Also, [6,7] describe how to estimate the roughness coefficient and the minor losses due to accessories, which is required
to parameterize a model for leak diagnosis purposes either in single pipelines and pipeline networks. Based on heuristic methods,
in [8] a bank of observers is proposed. Here, a pair of leak coefficients (magnitude and position) is taken from a search space and
assigned to an observer. A Genetic Algorithm (GA) is exploited to minimize the integration of the square observation error such
that the minimum integral observation error will be reached by the observer where the estimated leak parameters match the real
values. Experimental results show a good performance of this algorithm. Finally, real-life problems have been successfully solved by
applying leak diagnosis techniques as reported in [2]; here, authors highlight the arising difficulties in practice and they describe
in detail the implementation of an EKF for locating a leak in an aqueduct situated in Guadalajara México.

The multi-leak problem has also been studied in the literature. In [9], both transient and static behavior of the fluid in leak
condition are used to identify the parameters associated to the leaks without requirements of valve perturbation. The key of the
method is the automatic selection of the specific family of models to be identified using the steady state conditions produced by the
leaks. In [10], a multi-leak diagnosis strategy is proposed based on EKFs. The leaks are detected and identified as they appear. For
the current leak, previous leak parameters are considered as constant variables. This experimental approach is applied successfully.
Recently in [11], a scheme for detecting and locating multiple sequential leaks is proposed. This approach is based on using an
adaptive observer to identify the hydraulic gradient in real-time and a leak location observer to estimate the leak position and its
outflow. Experimental results of a pilot pipeline showed a good estimation despite operation changes and leaks.

On the other hand, in a water transportation network, the interconnection of pipelines results in complex configurations that can
adopt the shape of branching pipeline systems. They can be used to carry water, possibly from natural water sources to treatment
plants before being distributed to final consumers in cities or even in rural areas. In this paper, such branching pipeline configurations
are considered the core of our proposal since they are quite common in water transportation networks. In some recent studies, this
type of systems have been already studied. For example, in [12,13] a strategy based on a set of observers together with a logic
detection function for isolating a leak in a pipeline is proposed. Here, it is assumed that the outflow in a branch junction is known
from sensor measurements at the main pipeline ends. However, this method is limited to leaks occurring in the main pipe, while
leaks occurring in the branch pipelines are not considered.

On the other hand, following this direction, frequency-based methods have also been reported. In [14], the leakage localization
problem in tree-structured pipe networks using transient waves is studied on the basis of a frequency domain wave propagation
model for a general tree-structured pipe network where the leak parameters (location and size) are factorized. The leak localization
procedure is performed on the basis of the Matched-Field Processing (MFP) principle. This approach is evaluated via simulation and
also by using a test-bed plant. Multiple leaks can be identified as long as the distance between them is larger than half the minimum
wavelength of probing transient wave. More recently in [15], a frequency domain inverse transient analysis method for simultaneous
identification of visco-elastic parameters and leaks in visco-elastic pipelines based on transfer matrix method is proposed. Such a
method is applied to branched pipeline systems. Experimental results clearly demonstrate that visco-elasticity of the pipe wall is
important for leak detection in visco-elastic pipes using the transient wave. Moreover, extensions to the multi-leak case have also
been proposed; in [16] a procedure to detect multiple leaks for a specific element in pipe network systems through a detailed
analysis of transient pressure signals based on an impedance matrix approach is presented. This approach considers a scenario of
sequential leaks in which a decomposition scheme allows the multiple leak signal from the transient pressure response. However,
the results presented are reported using a hypothetical heterogeneous pipe network system. It should be noted that in many real
scenarios, the generation of pressure waves cannot be easily performed due to the lack of devices. Moreover, in case those pressure
waves are somehow generated, they will produce water hammers that in turn could cause more leaks as discussed in [2], which is
counterproductive.

Since the extension from a single pipeline to multiple pipes in a complex configuration brings new scientific challenges, the
main objective of the present work is to address the multi-LDI problem in a branched pipeline system. This work can be seen as an
extension of previous studies for single pipelines, mainly from our last work in [17], in which results via simulation were provided
for the single leak case.

In this paper, the approach proposed combines EKFs with flow error residual analysis in a two-step method for multi-leak
detection and identification in a branched pipeline. As a first step, the leak region is identified based on flow-rate residuals with a
related k-NN classifier. Secondly, a first EKF provides estimations of pressure heads at all internal nodes, which are entered into
a couple of EKFs in generic form that provide estimates of the leak parameters for each leak case: magnitude and position. This
approach is fairly tractable in practice (because only two low-order EKFs are needed) and reliable because of some ‘‘unicity’’ of the
family of leak signature patterns (guaranteed by an observability property of the system [18]). An important advantage of using a
model-based approach as the proposed, is that any leak occurring throughout the system can be identified, and this methodology
is not limited to specific locations, unlike other approaches based on steady-state simulations where leaks are typically assumed to
occur in the nodes.

The proposed LDI approach is presented as a general leak diagnosis strategy for branching pipelines and for the sake of
llustration, experimental results are presented by using a pilot plant system composed of a main pipe with two branches, which
as built at the Tuxtla Gutiérrez Institute of Technology.

This work is organized as follows: Section 2 presents the modeling tools, including fluid dynamics in a pipeline, leak effect,

and the related special boundary conditions needed for analysis in a branching configuration. The leak region identification on the
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basis of a k-NN classifier is presented in Section 3. Section 4 presents the leak diagnosis strategy and EKF designs. In Section 5, the
experimental results with databases from the prototype of the Tuxtla Gutiérrez Institute of Technology are presented, and, finally,
some conclusions and perspectives are given in Section 6.

2. Modeling of pipeline dynamics in a branched configuration

Let us consider a branching pipeline system just as shown in Fig. 1, where 𝑛𝑗 with 𝑗 ∈ {0,… , 𝜅 +1} stands for the 𝑗-th node and
𝑝𝑘 with 𝑘 ∈ {1,… , 𝜅 + 1} stands for the 𝑘-th pipeline section linking two consecutive nodes in the main pipeline. Nodes 𝑛0 and 𝑛𝜅+1
stand for the boundary conditions at upstream and downstream in the main pipeline, respectively. 𝐵𝑚 with 𝑚 ∈ {1,… , 𝜅} denotes
the 𝑚-th branching which joins nodes 𝑁𝑚 and 𝑛𝑚, accordingly.1 In addition, in order to facilitate the overall dynamical modeling,

Fig. 1. Scheme of a 𝜅-branched pipeline system.
ach branching 𝐵𝑚 will be redefined as a pipe section 𝑝𝜅+1+𝑚 in the modeling section:

𝐵𝑚 ⟷ 𝑝𝜅+1+𝑚. (1)

For a 𝜅 branched pipeline system there are thus 2𝜅 + 1 pipe sections.
The transient flow in a closed conduit is usually described by conservation mass and momentum equations referred to as Water

Hammer Equations (WHEs), which are a pair of quasilinear hyperbolic Partial Differential Equations (PDEs). These PDEs are derived
under the following assumptions: (i) the pipeline is considered to be straight, without fittings; (ii) the fluid is slightly compressible;
(iii) the duct wall is slightly deformable; (iv) the convective velocity changes are negligible; (v) the cross-section and the fluid
density are constant.

Thus, to analyze the dynamics in a branching configuration, let us firstly consider pipeline section 𝑝𝜅 linking nodes 𝑛𝑘−1 and 𝑛𝑘;
see Fig. 1. For this particular section, the nonlinear hyperbolic PDEs governing the fluid transient response can be written as [19]:
omentum Equation

𝜕𝑄(𝑧𝑘, 𝑡)
𝜕𝑡

+ 𝑔𝐴𝑘
𝜕𝐻(𝑧𝑘, 𝑡)
𝜕𝑧𝑘

+ 𝜇𝑘𝑄(𝑧𝑘, 𝑡) ||𝑄(𝑧𝑘, 𝑡)|| + 𝑔 𝑠𝑖𝑛 𝛼𝑘 = 0 (2)

Continuity Equation

𝜕𝐻(𝑧𝑘, 𝑡)
𝜕𝑡

+
𝑏2𝑘
𝑔𝐴𝑘

𝜕𝑄(𝑧𝑘, 𝑡)
𝜕𝑧𝑘

= 0 (3)

In these equations, distance 𝑧𝑘 [m] and time 𝑡 [s] are two independent variables, and pressure 𝐻(𝑧𝑘, 𝑡) [m] and flow rate 𝑄(𝑧𝑘, 𝑡)
[m3/s] are two dependent variables. In addition, 𝑔 is the gravity acceleration [m/s2], and 𝜇𝑘 = 𝑓 (𝑄𝑘)∕(2𝐷𝑘𝐴𝑘) is the friction
coefficient [20] depending on time and on parameters of the system 𝑓 , 𝑏, 𝐴, and 𝐷, which may depend on space, 𝛼𝑘 is the elevation
angle of the section 𝑝𝑘. Here 𝑧𝑘 ∈

[

0, 𝐿𝑘
]

denotes the position along the pipe 𝑝𝑘, and 𝐿𝑘 is the equivalent straight length between
nodes 𝑛𝑘−1 and 𝑛𝑘, [21].

For this single pipeline analysis, boundary conditions for PDEs (2) and (3) are here considered to be

𝐻(𝑧𝑘0 , 𝑡) = 𝐻in(𝑡)

𝐻(𝑧𝑘𝐿𝑘 , 𝑡) = 𝐻out(𝑡)
(4)

for external functions 𝐻in(𝑡) and 𝐻out(𝑡), where 𝑧𝑘0 , 𝑧𝑘𝐿𝑘 refer to position 0 and 𝐿𝑘, respectively, along pipe section 𝑝𝑘. Hereinafter,
the analysis being given for this section 𝑝𝑘, subscript 𝑘 will be omitted for simplicity.

2.1. Leak model

A leak can appear arbitrarily at position 𝑧𝑙 ∈ (0, 𝐿), and it can be considered as a new boundary condition in PDEs (2), and (3)
with outflow 𝑄𝑙(𝑧𝑙 , 𝑡) = 𝐶𝑑𝐴𝑙

√

2𝑔
√

𝐻𝑙(𝑧𝑙 , 𝑡), in which 𝐶𝑑 is the discharge coefficient and 𝐴𝑙 is the leak cross-section area. Now by
defining 𝜆 ≡ 𝐶𝑑𝐴𝑙

√

2𝑔, 𝑄𝑙(𝑧𝑙 , 𝑡) can be expressed as [22]

𝑄𝑙(𝑧𝑙 , 𝑡) = 𝜆𝑡𝑙 (𝑡)
√

𝐻𝑙(𝑧𝑙 , 𝑡) (5)

1 It should be noticed that the proposed method cannot deal with the pipe systems with loop structures and the cases that more branches connected to

1 ,… , 𝑁𝑘.
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in which 𝑄𝑙(𝑧𝑙 , 𝑡) is the leak flow rate [m3/s], 𝐻𝑙(𝑧𝑙 , 𝑡) is the pressure head [m] at the leak point, 𝜆 is the leak coefficient [m5∕2/s],
and 𝑡𝑙 (𝑡) is the Heaviside step function associated with the leak occurrence at time 𝑡𝑙.

2.2. Spatial-discretization of the governing equations

On the other hand, to obtain a more tractable model for simulation and estimation purposes, a finite-dimensional description of
PDEs (2) and (3) is considered. Here, the finite-difference method is used and the finite-dimensional approximation is as follows [19]:

𝜕𝐻(𝑧𝑖, 𝑡)
𝜕𝑧

⋍
𝐻𝑖+1 −𝐻𝑖

𝛥𝑧𝑖
∀𝑖 = 1,… , 𝑛 (6)

𝜕𝑄(𝑧𝑖−1, 𝑡)
𝜕𝑧

⋍
𝑄𝑖 −𝑄𝑖−1
𝛥𝑧𝑖−1

∀𝑖 = 2,… , 𝑛 (7)

Therefore, by using those finite difference approximations (6) and (7), the original PDEs (2) and (3) can be approximated by a pair of
onlinear ordinary differential equations keeping time as a continuous variable. Moreover, by considering boundary conditions (4)
nd also that a leak described by (5) may occur at the end of each pipe section, the pipeline length can be divided into 𝑛 sections

of sizes 𝛥𝑧𝑖 ∀𝑖 = 1,… , 𝑛, with ∑𝑛
𝑖=1 𝛥𝑧𝑖 = 𝐿, to represent 𝑛 − 1 possible leaks. Thus, a finite-dimensional model for any number of

sections can be obtained as follows [19] as in Fig. 2:

𝑄̇𝑖 =
−𝑔𝐴
𝛥𝑧𝑖

(

𝐻𝑖+1 −𝐻𝑖
)

− 𝜇𝑖𝑄𝑖|𝑄𝑖| ∀𝑖 = 1,… , 𝑛 (8)

𝐻̇𝑖+1 =
−𝑏2
𝑔𝐴𝛥𝑧𝑖

(

𝑄𝑖+1 −𝑄𝑖 +𝑡𝑙𝑖
𝜆𝑖
√

𝐻𝑖+1

)

∀𝑖 = 1,… , 𝑛 − 1 (9)

where 𝐻1, 𝐻𝑛+1 correspond to the boundary conditions 𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡 according to (4). Here 𝑧0 = 0, 𝑧𝑛 = 𝐿, and 𝑧𝑖 for 𝑖 ≠ (0, 𝑛)

Fig. 2. Spatial discretization of the pipeline section 𝑝𝑘.
corresponds to an interior discretization node.

To extend the representation of the governing equations from a single pipeline system (8) and (9) to a more complex configuration
like a branching pipeline system (made of interconnected single elements), special boundary conditions are in fact needed, which
are described in the next subsection.

2.3. Special boundary conditions

2.3.1. Series junction
A series junction is given when two consecutive pipeline sections 𝑝𝑘 and 𝑝𝑘+1 are joined at node 𝑛𝑘, see Fig. 1. Such pipelines

an have different diameters or represent a change of diameter in a pipeline at position 𝑧𝑖, see Fig. 3. This situation can also be
onsidered when the wall thicknesses, wall materials, and/or friction factors are different.

Fig. 3. Series junction in the pipeline section 𝑝𝑘 at position 𝑧𝑖.
Note that if the head loss at the junction is neglected, then from the energy equation [19]: 𝐻(𝑧𝑖− , 𝑡) = 𝐻(𝑧𝑖+ , 𝑡). The continuity

equation at both sides of the junction is 𝑄(𝛥𝑧 , 𝑡) = 𝑄(𝛥𝑧 , 𝑡).
𝑖 𝑖+1
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Fig. 4. Branched junction at node 𝑛𝑘.

2.3.2. Branch junction
For a branch junction at node 𝑛𝑘, see Fig. 4, the continuity equation is used, and it must be satisfied. In other words, there is

no storage capacity at the branch junction. In addition, a common head is assumed when minor effects are neglected [23].
The flow balance at the node satisfies

𝑄𝑝𝑘 (𝑡) = 𝑄𝑝𝑘+1 (𝑡) +𝑄𝐵𝑘 (𝑡) (10)

with 𝐻𝑛𝑘 (𝑡) a common pressure head at node 𝑛𝑘, as in [19,23], and with diameters possibly being different.

Remark 1. Since complex pipeline systems consist of series and branch connections, no new boundary condition is needed to handle
complicated pipeline configurations [23].

2.4. Modeling for a branching pipeline system

Let us consider the case of a branching pipeline system with a constant head level upstream and at all delivery points
(downstream), respectively. This scenario can represent a water transport system of primary elements, such as aqueducts that deliver
a fluid to secondary locations like a potable water treatment plant; see Fig. 1. Corresponding boundary conditions are summarized
in Table 1.

Let us also consider that a leak can occur between two consecutive nodes: 𝑛𝑘 and 𝑛𝑘+1 for a branching pipeline system with 𝜅
number of branches, just as shown in Fig. 1. For the main pipeline, a low order model can be obtained by connecting Eqs. (8) and
9) with 𝑛 = 2 for each section 𝑝𝑘, and using Eqs. (5) for leaks or (10) for each branching accordingly, of the following form:

𝑄̇𝑖 =
−𝑔𝐴
𝛥𝑧𝑖

(

𝐻𝑖+1 −𝐻𝑖
)

− 𝜇𝑖𝑄𝑖|𝑄𝑖| ∀𝑖 = 1,… , 2𝜅 + 2 (11)

𝐻̇𝑖+1 =
−𝑏2
𝑔𝐴𝛥𝑧𝑖

(

𝑄𝑖+1 −𝑄𝑖 +𝑄𝑜𝑢𝑡𝑖
)

∀𝑖 = 1,… , 2𝜅 + 1 (12)

here 𝜅 is the number of branchings, where

𝑄𝑜𝑢𝑡𝑖 = 𝑡𝑖𝜆𝑖
√

𝐻𝑖+1 𝑖𝑓 𝑖 = 1, 3, 5,… , 2𝜅 + 1 (13)

or

𝑄𝑜𝑢𝑡𝑖 = 𝑄𝜂+𝑖−1 𝑖𝑓 𝑖 = 2, 4, 6,… , 2𝜅 (14)

with 𝜂 ∶= 2𝜅 + 2. In the same way, for the 𝑚th branching, the following equations are obtained, for 𝑚 = 1, 2,… , 𝜅:

𝑄̇𝜂+2𝑚−1 =
−𝑔𝐴

𝛥𝑧𝜂+2𝑚−1

(

𝐻𝜂+2𝑚 −𝐻2𝑚+1
)

− 𝜇𝜂+2𝑚−1𝑄𝜂+2𝑚−1|𝑄𝜂+2𝑚−1| (15)

𝐻̇𝜂+2𝑚 = −𝑏2
𝑔𝐴𝛥𝑧𝜂+2𝑚−1

(

𝑄𝜂+2𝑚 −𝑄𝜂+2𝑚−1 +𝑄𝑜𝑢𝑡𝜂+𝑚−1
)

(16)

𝑄̇𝜂+2𝑚 =
−𝑔𝐴
𝛥𝑧𝜂+2𝑚

(

𝐻𝜂+2𝑚+1 −𝐻𝜂+2𝑚
)

− 𝜇𝜂+2𝑚𝑄𝜂+2𝑚|𝑄𝜂+2𝑚| (17)

with 𝑄𝑜𝑢𝑡𝜂+𝑚−1 = 𝐻𝑡𝑙2𝑚
𝜆2𝑚

√

𝐻𝜂+2𝑚. Fig. 5 shows the schematic diagram of such variable description that can be used for any 𝜅
branching pipeline system with a leak in each pipe section.

The model previously described can represent the occurrence of a leak in each pipeline section as they appear separately in time.
The proposed leak diagnosis strategy considers two basic stages: leak region identification and leak parameter estimation. In the
following subsection, the identification of the leaky pipe section is described in detail.
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Fig. 5. Schematic diagram of a 𝜅-branched pipeline system with leaks.

Table 1
Boundary conditions of the branching pipeline system.

Node Variable Availability

𝑛0 𝐻1 Via sensor
𝑛1 ,… 𝑛𝜅 𝐻3 ,𝐻5 ,… ,𝐻2𝜅+1 Immeasurable

𝐻2 ,𝐻4 ,… ,𝐻2𝜅+2 Immeasurable
𝑛𝜅+1 𝐻𝜂+1 Via sensor
𝑁1 ,… , 𝑁𝜅 𝐻𝜂+3 ,𝐻𝜂+5 ,… ,𝐻𝜂+2𝜅+1 Via sensor

3. Leak region identification by using a 𝒌-NN classifier

Solving the multi leak problem in a branching pipeline system can be an easy task if the region where each leak occurs is first
identified: this makes the observer problem for leak parameter estimation of the lowest order. Thus, in a first step, we propose
to identify the leak region based on directional residuals assuming that each new leak occurs in a different pipeline section. Such
a region identification problem can be formulated as a multi-class classification problem, which can be solved using a machine
learning technique like the 𝑘-Nearest Neighbors (k-NN).

To do that, one can consider a branching pipeline system as shown in Fig. 1, that is, with 𝜅+1 sections in the main pipeline and
𝜅 branching. Each section/branching can be named as a class 𝑆1, 𝑆2,… , 𝑆2𝜅+1. Thus, leaks occurring in the 𝑖-section are classified
in the 𝑆𝑖 class, and so on, see Fig. 6.

Fig. 6. Leak classification in a branched pipeline, with 𝜂 as in Fig. 5.
On the other hand, flow rate measurements are available at upstream and downstream of the main pipeline 𝑄mp = [𝑄1 𝑄2𝜅+2] ∈

2 but also at all delivering points (downstream of each branching) 𝑄br = [𝑄𝜂+2 𝑄𝜂+4 … 𝑄𝜂+2𝜅 ] ∈ R𝜅 and they are used as
lassification variables. The difference between flows from a faulty and a nominal system (leak-free) is known as residual. Those
esiduals are used as classifier inputs. A residual vector is built as:

𝐫 = 𝐐 −𝐐(0), (18)

here 𝐐 = [𝑄mp 𝑄br]𝑇 ∈ R𝜅+2 represents the flow rate measurements (with leakage) and 𝐐(0) represents the nominal flow rates
(without leakage).

For different leaks of the same class 𝑆𝜅 and under their magnitude variations, the characteristic direction in the (𝜅+2)-dimensional
space does not deviate and thus leak classes 𝑆𝑖 can be distinguished.

In practice, the measured variables are corrupted by some noise. In the case of the 𝑆𝑖 class, the residuals’ directions are not
the same, but they tend to cluster within a roughly conical shaped region. The region’s exact geometry is difficult to determine
analytically because it depends, among other things, on the noise level and the pipeline topology (the number of branching and
the physical parameters). This makes challenging the identification of the section where each leak occurs only by comparing the
residual vector direction with predefined limits. For this reason, the use of a 𝑘-NN classifier is proposed that considers supervised

learning and correctly classifies all leaks according to their corresponding class by viewing the directional proximity between leaks
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in the same class. Moreover, if a new leak occurs while a previous one is active (with parameters identified), the 𝑘-NN classifier
till works well.

In the proposed 𝑘-NN classifier, the similarity between residual vectors is not measured with the classical definition of Euclidean
istance, but the so-called cosine distance. This method depends on the direction of the vectors rather than their magnitudes. For
ny two vectors, 𝐫 and 𝐫′, the cosine distance is defined by:

𝑑cos(𝐫, 𝐫′) = 1 − 𝐫 ⋅ 𝐫′
‖𝐫‖ ‖𝐫′‖

= 1 −
∑𝜅+2
𝑘=1 𝑟𝑘𝑟

′
𝑘

√

∑𝜅+2
𝑘=1 𝑟

2
𝑘

√

∑𝜅+2
𝑘=1 (𝑟

′
𝑘)

2
(19)

The 𝑘-NN classifier’s objective is to find among different groups of known leaks which class is more consistent with the direction
of a given new residual (new leak), assuming that a smaller cosine distance between residuals indicates a considerable similarity.
The classification has two stages: training and prediction.

1. The training of the 𝑘-NN classifier is an offline process. In this process, a set of residual samples corresponding to leaks of
available classes and their labels (𝑆1, 𝑆2,… , 𝑆2𝜅+1) is stored. The dataset to train the classifier is obtained by simulating leaks
at different positions in each pipeline section 𝑆𝑖. For example, the training dataset can be built by simulating leaks at 10
evenly distributed positions in each section, giving a total of 10 × (2𝜅 + 1) different leaks.

2. Leak class prediction is an online process. Here, a continuous comparison of the most recent residual with the labeled residuals
from the training dataset is performed. If the leak class is denoted by 𝑆, and Pr

(

𝑆 = 𝑆𝑖|𝐫
)

is the probability that the leak
corresponds to the 𝑆𝑖 class given the residual 𝐫, the 𝑘-NN classifier assumes that

Pr
(

𝑆 = 𝑆𝑖|𝐫
)

=
𝑘𝑖
𝑘
, (20)

where 𝑘𝑖 is the number of residuals in the 𝑖th class among the 𝑘 nearest neighbors to the residual 𝐫. The cosine distance
expressed in (19) is used as a metric to quantify the nearness between residuals. The class with the highest probability is
chosen as the output of the classifier:

𝑆 = argmax
𝑖

Pr
(

𝑆 = 𝑆𝑖|𝐫
)

(21)

The effectiveness of the 𝑘-NN classifier is evaluated by using a test data set by calculating the fraction of correctly classified leaks.
The number of nearest neighbors to use, 𝑘, is determined by cross-validation, maximizing the classifier’s accuracy on the test data.

Remark 2. Several distance metrics were evaluated: cosine, Euclidean, Chebyshev, Manhattan, Minkowski and Mahalanobis.
However the performance of the 𝑘-NN classifier using the cosine distance as a metric of similarity showed a significant improvement
in comparison with the others. In particular, the Euclidean distance produced in average 13% misclassifications whereas poor results
were obtained by using the other distance metrics: Chebyshev, Manhattan, Minkowski and Mahalanobis.

4. Leak diagnosis strategy

4.1. Leak detection

Since we are trying to solve the non-concurrent leak problem in a branching pipeline system, it is assumed that several leaks
appear sufficiently separate in time. It is considered that each new leak occurs in a different branching (pipe section). The outflow
of the first leak can be estimated as follows, see Fig. 6:

𝑄𝑙𝑒𝑎𝑘1 (𝑡) =

(

𝑄1(𝑡) −

(

𝑄2𝜅+2(𝑡) +
𝜅
∑

𝑖=1
𝑄𝜂+2𝑖(𝑡)

))

(22)

when the right-hand side is larger than some threshold 𝛿1 chosen to indicate the leak presence considering the noise variance
of measurements, its value should be chosen to avoid false alarms. If 𝑄𝑙𝑒𝑎𝑘1 (𝑡) < 𝛿1 it is considered that there is no leak (𝛿1 is
approximated by inspection as explained later on). The flow of the subsequent leaks can be computed as

𝑄𝑙𝑒𝑎𝑘𝑗 (𝑡) =

(

𝑄1(𝑡) −

(

𝑄2𝜅+2(𝑡) +
𝜅
∑

𝑖=1
𝑄𝜂+2𝑖(𝑡) +

𝑗−1
∑

𝑖=1
𝑄̃𝑖

))

𝑗 = 2,… , 𝑝 (23)

where 𝑄̃𝑖 is the mean outflow of each previous leak and computed in a time window between the time occurrence of leak 𝑗 and
leak 𝑗 + 1. With this strategy, it is possible to know the flow of each leak, which helps to reduce the complexity of observer design
for leak parameter identification.

4.2. Leak parameter identification

In order to estimate the parameters of each leak, we use the information previously obtained in the leak region and leak flow

rate 𝑄𝑙𝑒𝑎𝑘𝑗 (𝑡).
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Firstly, unmeasured pressure heads at the inner nodes of main pipeline, that is, at nodes 𝑛1,… , 𝑛𝜅 (see Table 1), are estimated.
his is done on the basis of model (11)–(12), with known inputs 𝐻1, 𝐻2𝜅+3, measured outputs 𝑄1, 𝑄2𝜅+2 and estimated flow rates
𝑄𝑜𝑢𝑡𝑖 , from 𝑄𝑙𝑒𝑎𝑘𝑗 , Eqs. (13)–(14) and Eq. (16) in a steady state.

Notice that the case when leaks only appear in branchings is more specific to the configuration under study here, and for this
reason, let us present it in more detail: in that case, 𝑄2𝑖 = 𝑄2𝑖−1 for 𝑖 = 1 to 𝜅 + 1 in main pipeline, and model (11)–(12) reduces to
equations for 𝑄2𝑖+1, 𝑖 = 0 to 𝜅, and 𝐻2𝑖+1, 𝑖 = 0 to 𝜅, that is:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄̇1
𝐻̇3
⋮

𝑄̇2𝑖+1
𝐻̇2𝑖+3
⋮

𝑄̇2𝜅+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑔𝐴
𝛥𝑧1+𝛥𝑧2

(

𝐻3 −𝐻1
)

− 𝜇1𝑄1|𝑄1|

−𝑏2
𝑔𝐴(𝛥𝑧1+𝛥𝑧2)

(

𝑄3 −𝑄1 +𝑄𝑜𝑢𝑡2
)

⋮
−𝑔𝐴

𝛥𝑧2𝑖+1+𝛥𝑧2𝑖+2

(

𝐻2𝑖+3 −𝐻2𝑖+1
)

− 𝜇2𝑖+1𝑄2𝑖+1|𝑄2𝑖+1|

−𝑏2
𝑔𝐴(𝛥𝑧2𝑖+1+𝛥𝑧2𝑖+2)

(

𝑄2𝑖+3 −𝑄2𝑖+1 +𝑄𝑜𝑢𝑡2𝑖
)

⋮
−𝑔𝐴

𝛥𝑧2𝜅+1+𝛥𝑧2𝜅+2

(

𝐻2𝜅+3 −𝐻2𝜅+1
)

− 𝜇2𝜅+1𝑄2𝜅+1|𝑄2𝜅+1|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (24)

here the positions of branchings along the main pipeline are considered to be known a priori, and [𝐻1 𝐻2𝜅+3]𝑇 and [𝑄1 𝑄2𝜅+1]𝑇

re the measured input and output, respectively. Such a model can be used for estimation of pressure heads 𝐻2𝑖+1 (see next section).
Then, we can move to estimate the leak parameters: assuming for instance the occurrence of a leak event in branching 𝑚, i.e. in

egion 𝑆𝜅+1+𝑚, see Fig. 6, we can now refer to model (15)–(17). For the purpose of estimating leak position 𝛥𝑧𝜂+2𝑚−1 and leak
agnitude 𝜆2𝑚, this model can be rewritten in an extended form as:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑄̇𝜂+2𝑚−1
𝐻̇𝜂+2𝑚
𝑄̇𝜂+2𝑚
𝛥𝑧𝜂+2𝑚−1
𝜆̇2𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑔𝐴
𝛥𝑧𝜂+2𝑚−1

(

𝐻𝜂+2𝑚 −𝐻2𝑚+1
)

− 𝜇𝜂+2𝑚−1𝑄𝜂+2𝑚−1|𝑄𝜂+2𝑚−1|
−𝑏2

𝑔𝐴𝛥𝑧𝜂+2𝑚−1

(

𝑄𝜂+2𝑚 −𝑄𝜂+2𝑚−1 + 𝜆2𝑚
√

𝐻𝜂+2𝑚
)

−𝑔𝐴
𝐿𝑚−𝛥𝑧𝜂+2𝑚−1

(

𝐻𝜂+2𝑚+1 −𝐻𝜂+2𝑚
)

− 𝜇𝜂+2𝑚𝑄𝜂+2𝑚|𝑄𝜂+2𝑚|

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(25)

where 𝐿𝑚 is the length of branching 𝑚, 𝑢 = [𝐻2𝑚+1 𝐻𝜂+2𝑚+1] is used as input, and 𝑦 = [𝑄𝜂+2𝑚−1 𝑄𝜂+2𝑚] is used as output. In practice,
𝐻2𝑚+1 is replaced by an estimate 𝐻̂2𝑚+1 obtained in the previous estimation step, and 𝑄𝜂+2𝑚−1 is obtained by steady state estimation:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄1
𝑄3
𝑄5
⋮

𝑄2𝑖+1
⋮

𝑄2𝜅−1
𝑄2𝜅+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄𝑖𝑛
𝑄1 −𝑄𝑜𝑢𝑡2
𝑄3 −𝑄𝑜𝑢𝑡4

⋮
𝑄2𝑖−1 −𝑄𝑜𝑢𝑡2𝑖

⋮
𝑄2𝜅−3 −𝑄𝑜𝑢𝑡2𝜅−2
𝑄2𝜅−1 −𝑄𝑜𝑢𝑡2𝜅

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

Both structures (24) and (25) with considered measurements can be represented in a compact form as:

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢

𝑦 = 𝐻𝑥 (27)

for some nonlinear functions 𝑓 , 𝑔 and matrix 𝐻 , with 𝑢 corresponding to driving pressure heads, and 𝑦 measured flows. Notice that
both models (24) and (25) satisfy an observability condition so that one can expect possible state reconstruction from available
measurements (see Appendix A).

4.2.1. Kalman filter design
Let us present here an actual solution for state estimation of the models (24), and (25) based on the Kalman filter [24]. Since the

mplementation in practice implies using sampled variables provided by the data acquisition system, here a discrete-time Kalman
ilter as a state observer is used. Both systems, (24) and (25), under form (27) are discretized in time, by using Heun’s method because

of its good trade-off between simplicity and accuracy [10]. The discrete-time version of (27) can be rewritten in the following form:

𝑥𝑘+1 = 𝜉𝑑 (𝑥𝑘, 𝑢𝑘, 𝑢𝑘+1)

𝑦𝑘 = 𝐻𝑥𝑘 (28)

where 𝑘 is the index of discrete time.
A first EKF is then designed for system (24) expressed in the form (28). A second EKF is designed for system (25) also expressed

in the form (28). For both discretized systems, state 𝑥, output 𝑦 and input 𝑢 are summarized in Table 2:



Table 2
State variables: inputs and outputs for Kalman designs.

State 𝑥 Output 𝑦 Input 𝑢

EKF 1 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥2𝜅 𝑥2𝜅+1]𝑇 = 𝑦 = [𝑦1 𝑦2]𝑇 = 𝑢 = [𝑢1 𝑢2]𝑇 =
[𝑄1 𝐻3 , ⋯ 𝐻2𝜅+1 𝑄2𝜅+1]𝑇 [𝑄1 𝑄2𝜅+1]𝑇 [𝐻1 𝐻2𝜅+3]𝑇

EKF 2 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]𝑇 = 𝑦 = [𝑦1 𝑦2]𝑇 = 𝑢 = [𝑢1 𝑢2]𝑇 =
[𝑄𝜂+2𝑚−1 𝐻𝜂+2𝑚 𝑄𝜂+2𝑚 𝛥𝑧𝜂+2𝑚−1 𝜆2𝑚]𝑇

[

𝑄̂𝜂+2𝑚−1 𝑄𝜂+2𝑚
]𝑇 [

𝐻̂2𝑚+1 𝐻𝜂+2𝑚+1
]𝑇

Table 3
Kalman filter equations.
𝑥̂𝑘− is the a priori estimate of 𝑥𝑘: 𝑃 𝑘− is the a priori covariance matrix:
𝑥̂𝑘− = 𝜉𝑑 (𝑥̂𝑘−1 , 𝑢𝑘−1) 𝑃 𝑘− = 𝐹 𝑘𝑃 𝑘−1(𝐹 𝑘)𝑇 +

𝐾𝑘 is the Kalman gain: 𝑃 𝑘 is the a posteriori covariance matrix:
𝐾𝑘 = 𝑃 𝑘−𝐻𝑇 (𝐻𝑃 𝑘−𝐻𝑇 +)−1 𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃 𝑘−

𝐹 𝑘 is the Jacobian matrix:  and  are the covariance matrices of measurement and process noises
𝐹 𝑘 = 𝜕𝜉𝑑 (𝑥,𝑢)

𝜕𝑥
|𝑥=𝑥̂𝑘  = 𝑇 > 0, and  = 𝑇 > 0 𝑃 0− = (𝑃 0− )𝑇 > 0

Table 4
Prototype pipeline sensors-devices: 𝐹𝑇 and 𝑃𝑇 stand for Flow Transducer and Pressure Transducer,
respectively.

Sensor/Device Trademark Specifications

(𝐹𝑇 ), 𝑃𝑟𝑜𝑚𝑎𝑔 𝑃 𝑟𝑜𝑙𝑖𝑛𝑒 10 𝑃 𝐸𝑛𝑑𝑟𝑒𝑠𝑠 𝐻𝑎𝑢𝑠𝑒𝑟™ 4 − 20 [mA]
(𝑃𝑇 ), 𝑃𝑀𝑃 41 𝐸𝑛𝑑𝑟𝑒𝑠𝑠 𝐻𝑎𝑢𝑠𝑒𝑟™ 4 − 20 [mA]
(𝑃𝑇𝐿1 and 𝑃𝑇𝐿3 ) 𝑊 𝑖𝑛𝑡𝑒𝑟𝑠™ 4 − 20 [mA]
Pump 1, 7502𝑀𝐸𝐴𝑈 𝑆𝑖𝑒𝑚𝑒𝑛𝑠™ 5 [HP]
Pump 2, 3𝐻𝑀𝐸100 𝐸𝑣𝑎𝑛𝑠™ 1 [HP]

Table 5
Pipeline parameters.

Parameter Symbol Value

Pipeline diameter 𝐷 0.0486 [m]
Pipeline length main pipeline 𝐿 84.58 [m]
Pipeline length branching 1 𝐿𝐵1

30.6 [m]
Pipeline length branching 2 𝐿𝐵2

30.6 [m]
Relative roughness 𝜀 3.47 × 10−4

Fluid kinematic viscosity 𝜈 8.03 × 10−7 [m2∕s]
Fluid density 𝜌 996.59 [kg∕m3]
Acceleration due to gravity 𝑔 9.79 [m∕s2]
Pressure wave speed 𝑏 422.75 [m∕s]

The state of EKF is given by [24]

𝑥̂𝑘 = 𝑥̂𝑘
−
+𝐾𝑘(𝑦𝑘 −𝐻𝑥̂𝑘

−
), (29)

where 𝐾 is the correction gain. Full equations are given in Table 3.
The implementation of both kind of Kalman observers are fully described in Appendix B.

5. Experimental results

5.1. Experimental setup

The effectiveness of the algorithm previously described was verified experimentally in a pipeline prototype built at the hydraulics
laboratory of the National Technological Institute of Mexico (TecNM) in Tuxtla Gutiérrez, see Fig. 7. The system parameters are
shown in Table 5. The pipeline prototype is manufactured with a 2-inch inner diameter PVC pipe. Through it, drinkable water
is transported under pressure driven by a 5 [HP] centrifugal pump, although a variable frequency device can regulate the driving
power. The pipeline is designed to operate as a looped pipeline, but an open/close valve configuration can modify it to adopt the
structure of the main pipeline with two branches (as in our case study). The main pipe is assembled in a serpentine shape at a lower
level, while the branches are also serpentine-shaped but at an upper-level, 1 [m] above the main pipeline.

In the databases, flow rate and pressure head measurements are saved from sensors (sensor-device information can be seen in
Table 4) placed at the ends of the system, through the data acquisition card DAQ modular Yokogawa GM10 and at a sampling rate

of 100 [Hz]. Finally, the discrete-time extended Kalman filter is tested offline in a MATLAB™ environment.
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The simplified Process and Instrumentation diagram (P&I) of the system, which is configured to operate in a branched pipeline
ode, is shown in Fig. 8. Pressure and flow rate sensors/transmitters are available upstream and at all delivery points. Also, pressure

ensors are also available near the branch junctions (namely, PT05 and PT06). However, it should be noted that these measurements
re not used as inputs for the proposed algorithm, but they are used to validate the results. To compensate the elevation effect, 1
m] of pressure head is added to all values of the PT04 and PT03 measurements.

Fig. 7. Prototype pipeline at TecNM in Tuxtla Gutiérrez, Mexico.

Fig. 8. P&I diagram of the prototype pipeline.
The valves labeled Leak 1, Leak 2, and Leak 3 can be used to cause leaks in the main pipeline, whereas the valves labeled Leak

and Leak 5 can be used to cause leaks in each branching, respectively. With 𝜅 = 2, a dynamical description can be obtained using
Eqs. (11) up to (17), and the distribution of variables is shown in Fig. 9:

Fig. 9. Variable description of a two-branched pipeline system.
Notice that 𝑄𝑜𝑢𝑡1 , 𝑄𝑜𝑢𝑡3 and 𝑄𝑜𝑢𝑡5 will be different from zero if valves 𝐿𝑒𝑎𝑘 1, 𝐿𝑒𝑎𝑘 2 and 𝐿𝑒𝑎𝑘 3 are opened, but since we focus

here on leaks in branchings, they will be closed.
For an experimental validation of the proposed method, a case of two non-concurrent leaks (corresponding to valves 𝐿𝑒𝑎𝑘 4 and

𝐿𝑒𝑎𝑘 5, 𝑄𝑜𝑢𝑡6 and 𝑄𝑜𝑢𝑡7 , respectively) is considered and evaluated in the test bed previously described, considering two different
situations:
• (i) the first leak occurs in branching 2 (Leak 5: 𝑄𝑜𝑢𝑡7 ) and the second in branching 1 (Leak 4: 𝑄𝑜𝑢𝑡6 );
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• (ii) the first leak occurs in branching 1 (Leak 4: 𝑄𝑜𝑢𝑡6 ) and the second one in branching 2 (Leak 5: 𝑄𝑜𝑢𝑡7 ).

o do that, a database is created with the data acquisition card DAQ modular Yokogawa GM10 at a sampling rate of 100 [Hz], and
ensors installed in the pilot plant. The experiment design is as follows:

1. The experiment starts in a nominal condition (without leak). At time 𝑡 = 𝑡1 ≫ 0, the valve labeled Leak 5 (𝑄𝑜𝑢𝑡7 ) is opened.
2. At time 𝑡2 ≫ 𝑡1, a second leak is caused by opening valve Leak 4 (𝑄𝑜𝑢𝑡6 ). Both leaks are maintained until the end of the

experiment.
3. The second experiment is performed in the same way as the first one but the valve Leak 4 is firstly opened.
4. A database is generated and saved in leak-free condition under the same sampling rate and duration as in the faulty ones.

.2. Leak detection and region identification

The occurrence of each leak can be easily detected using (22) and (23). Figs. 12 and 13 show the total outflow of each experiment.
owever, from these graphics, it is not possible to identify the region where each leak is occurring. Thus, the identification of the

equence of leak events is first performed on the basis of the k-NN classifier described in Section 3. For the first experiment, the
equence of events is as follows: a leak in class 𝑆5 at time 𝑡1 and a leak in class 𝑆4 at time 𝑡2, see Fig. 10.

Fig. 10. Identification of the leak class 𝑆5 at time 𝑡1 and 𝑆4 at time 𝑡2, 𝑡2 > 𝑡1.
For the second experiment, the sequence of events is as follows: a leak in class 𝑆4 at time 𝑡1 and a leak in class 𝑆5 at time 𝑡2,

see Fig. 11.
Now, by knowing the sequence of events from graphics shown in Figs. 12 and 13, the values of threshold 𝛿 and the time of the

leaky event 𝑡𝑖 can be approximated: (a) From the first experiment (see Fig. 12) 𝑡1 ≈ 120 [s], 𝑡2 ≈ 240 [s], 𝛿1 = 1.41 × 10−5 [m3/s]
and 𝛿2 = 4.19 × 10−4 [m3/s]. (b) From the second experiment (see Fig. 13) 𝑡1 ≈ 82 [s], 𝑡2 ≈ 170 [s], 𝛿1 = 1.4 × 10−5 [m3/s] and
𝛿2 = 3.986 × 10−4 [m3/s].

Since the values of 𝛿′𝑠 and the time of the leaky events have been identified, the flow of each leak can be easily computed by
means of Eqs. (22) and (23), Figs. 14 and 15 depict such a leak flow separation.

Remark 3. The leak region identification (pre-localization) stage is performed in steady state. In our case study, the 𝑘-NN classifier
accurately determined the region of the network where the leak is occurring almost instantaneously, since the duration of the flow
transients is short due to the small length of the pipes. However, for real distribution networks (larger and more complex pipeline
systems), the flow transients will be longer and consequently, there will be a delay in the leak region identification stage, i.e., until
a new steady state is reached. On the other hand, to obtain enough data of all possible leak scenarios to correctly train the 𝑘-NN
classifier, a well-calibrated hydraulic model is required. However, in practice, obtaining such a calibrated hydraulic model is not

easily achieved.
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Fig. 11. Identification of the leak class 𝑆4 at time 𝑡1 and 𝑆5 at time 𝑡2, 𝑡2 > 𝑡1.

Fig. 12. Total outflow of sequential leaky events of experiment 1: 𝑆5 (valve: Leak 5) at 𝑡1 and 𝑆4 (valve: Leak 4) at 𝑡2, 𝑡2 > 𝑡1.

.3. Leak parameter identification

.3.1. Estimation of pressure head and flow rate in the main pipeline
By using the steady state relations shown in (26), the following equations are obtained:

⎡

⎢

⎢

⎣

𝑄1
𝑄3
𝑄5

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑄𝑖𝑛
𝑄1 −𝑄𝑜𝑢𝑡2
𝑄3 −𝑄𝑜𝑢𝑡4

⎤

⎥

⎥

⎦

. (30)

here 𝑄𝑜𝑢𝑡2 and 𝑄𝑜𝑢𝑡4 are obtained as follows: (a) for the first experiment:

𝑄𝑜𝑢𝑡2 = 𝑄7 = 𝑄8 +𝑄𝑙𝑒𝑎𝑘2
𝑄𝑜𝑢𝑡4 = 𝑄9 = 𝑄10 +𝑄𝑙𝑒𝑎𝑘1 (31)

(b) for the second experiment:

𝑄𝑜𝑢𝑡2 = 𝑄7 = 𝑄8 +𝑄𝑙𝑒𝑎𝑘1
𝑄𝑜𝑢𝑡4 = 𝑄9 = 𝑄10 +𝑄𝑙𝑒𝑎𝑘2 (32)
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Fig. 13. Total outflow of sequential leaky events of experiment 2: 𝑆4 (valve: Leak 4) at 𝑡1 and 𝑆5 (valve: Leak 5) at 𝑡2, 𝑡2 > 𝑡1.

Fig. 14. Separation of total outflow, experiment 1.

Fig. 15. Separation of total outflow, experiment 2.

otice that 𝑄𝑙𝑒𝑎𝑘1 and 𝑄𝑙𝑒𝑎𝑘2 were identified in the previous procedure. To estimate the pressure heads 𝐻3 and 𝐻5 (interior nodes),
for each experiment an EKF is designed for system (33) which is derived directly from (24)

⎡

⎢

⎢

⎢

⎢

𝑄̇1
𝐻̇3
𝑄̇3
𝐻̇5

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

−𝑔𝐴
𝛥𝑧1+𝛥𝑧2

(

𝐻3 −𝐻1
)

− 𝜇1𝑄1|𝑄1|

−𝑏2
𝑔𝐴(𝛥𝑧1+𝛥𝑧2)

(

𝑄3 −𝑄1 +𝑄𝑜𝑢𝑡2
)

−𝑔𝐴
𝛥𝑧3+𝛥𝑧4

(

𝐻5 −𝐻3
)

− 𝜇3𝑄3|𝑄3|

−𝑏2
( )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

, (33)
⎢

⎣
𝑄̇5

⎥

⎦

⎢

⎢

⎢

⎣

𝑔𝐴(𝛥𝑧3+𝛥𝑧4)
𝑄5 −𝑄3 +𝑄𝑜𝑢𝑡4

−𝑔𝐴
𝛥𝑧5+𝛥𝑧6

(

𝐻7 −𝐻5
)

− 𝜇5𝑄5|𝑄5|

⎥

⎥

⎥

⎦
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Table 6
EKF initialization, main pipeline, experiment 1 and 2.

Variable Value/case 1 Value/case 2 Units

𝑄̂0
1 0.0042 0.0042 [m3/s]

𝐻̂0
3 2.98 2.95 [m]

𝑄̂0
3 0.0022 0.0032 [m3/s]

𝐻̂0
5 1.86 1.83 [m]

𝑄̂0
5 0.0011 0.0012 [m3/s]

where 𝑄𝑜𝑢𝑡2 and 𝑄𝑜𝑢𝑡4 are obtained by using (31) (resp. (32)). For both experiments, the initialization of the state is given in Table 6.

The covariance matrices of measurement and process noises for the EKF used for both experiments are respectively chosen as

 = diag
(

[1 × 10−8, 1 × 10−1, 1 × 10−8, 1 × 10−1, 1 × 10−8]
)

(34)

 = diag
(

[1 × 10−8, 1 × 10−8]
)

. (35)

ereinafter, the results obtained from the two experiments are presented. In Fig. 16(a) (resp. 16(b)), the estimation of the flow rate
n the main pipeline (for system (33)) is depicted showing a good fitting. In the same way, in Figs. 17(a) and 17(b) (resp. 18(a)
nd 18(b)), a comparison between the estimated pressure head and those coming from measurements is shown. In Fig. 17(b) (resp.
8(b)), a detailed view is presented, and it can be observed that the estimations are not equal to the measurements because the
ensors are not exactly in the branch position (where they are estimated). This means that the observer estimates the pressure head
orrectly as expected.

At this point, it is possible to identify the leak parameters since all boundary conditions in the branchings are known,
.e., [𝐻9 𝐻11] via sensor measurement and [𝐻̂3 𝐻̂5] via estimation.

Fig. 16. Flow rate in the main pipeline.

Fig. 17. Pressure head in the main pipeline, experiment 1.
With those estimations given by the first EKF observer, it is possible to identify the parameters of both leaks for each experiment.



Fig. 18. Pressure head in the main pipeline, experiment 2.

Table 7
EKF initialization, second branch.

Variable Value Units

𝑄̂0
9 1.08 × 10−3 [m3/s]

𝐻̂0
10 1.31 [m]

𝑄̂0
10 1.08 × 10−3 [m3/s]

𝛥𝑧0𝑝2 19.12 [m]

𝜆̂02 0 [m5∕2/s]

5.4. Leak parameter estimation: experiment 1

5.4.1. Identification of parameters of leak 1 in second branching
The boundary conditions at the ends of 𝑝5 are depicted in Fig. 19(b), and the flow rates are shown in Fig. 19(a). Furthermore,

𝑄9 is estimated as in (31) and 𝐻̂5 is provided via estimation by the EKF 1 (for system (24)).

Fig. 19. Flow rate and pressure head in the second branch, experiment 1.
A second and generic EKF is then applied for identifying the leak parameters (with the same structure as system (25) but with

𝛥𝑧𝑝2 and magnitude 𝜆2, respectively). The initialization state is shown in Table 7.
Similarly, the covariance matrices of measurement and process noises for the generic EKF are chosen as

 = diag
(

[1 × 10−5, 1 × 10−3, 1 × 10−5, 1 × 106, 1 × 10−7]
)

(36)

 = diag
(

[1 × 10−5, 1 × 10−5]
)

. (37)
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Table 8
EKF initialization, first branch.

Variable Value Units

𝑄̂0
7 1.99 × 10−3 [m3/s]

𝐻̂0
8 2.58 [m]

𝑄̂0
8 1.99 × 10−3 [m3/s]

𝛥𝑧0𝑝1 6.32 [m]

𝜆̂01 0 [m5∕2/s]

To obtain moving average values of the leak position, the estimation generated by the EKF was filtered with the equation:

𝛥𝑧𝐹 (𝑘) =
1

2𝑁 + 1
(𝛥𝑧𝐹 (𝑘 +𝑁) + 𝛥𝑧𝐹 (𝑘 +𝑁 − 1) +⋯ + 𝛥𝑧𝐹 (𝑘 −𝑁)) (38)

here 𝛥𝑧𝐹 (𝑘) is the smoothed value for the variable at time 𝑘, 𝑁 is the number of neighboring data taken on either side of 𝛥𝑧𝐹 (𝑘),
nd 2𝑁 + 1 is the span dimension. A span equal to 101 was used for the position parameter.

The leak parameters: position and magnitude are depicted in Figs. 20(a) and 20(b), respectively.

Fig. 20. Leak parameters in the second branch, experiment 1.

.4.2. Parameter identification of leak 2 in first branching
A third and generic EKF (similar to the previous case) is applied for identifying the leak parameters of the second leak. Here 𝑄7

is computed as in (32), and 𝐻̂3 is provided by the EKF 1. This third EKF is initialized using the states presented in Table 8, where
𝛥𝑧𝑝1 and 𝜆1 refer to the leak position and magnitude, respectively.

Similarly, the covariance matrices of measurement and process noises for this generic EKF are chosen as

 = diag
(

[1 × 10−5, 1 × 10−3, 1 × 10−5, 5 × 103, 1 × 10−8]
)

(39)

and  equal to (37). The pressure head and flow rate at the ends of the first branch are shown in Fig. 21(b), and 21(a), respectively.
The parameters of the leak are depicted in Figs. 22(a) and 22(b). In the same way as before, accurate results can be observed.

5.5. Leak parameter estimation: experiment 2

5.5.1. Parameter identification of leak 1 in first branching
In the same way as before, the boundary conditions at the ends of 𝑝4 are depicted in Fig. 23(b), and the flow rates are shown

in Fig. 23(a). Furthermore, 𝑄7 is estimated as in (32) and 𝐻̂3 is also provided via estimation by the EKF 1.
The second EKF is then again used for identifying the leak parameters on the basis of system (25) but with 𝛥𝑧𝑝1 and 𝜆1,

respectively. The initialization state is shown in Table 9.
The covariance matrices of measurement and process noises are the same as (36) and (37). The parameters of the leak are
depicted in Figs. 24(a) and 24(b).



Fig. 21. Flow rate and pressure head in the first branch, experiment 1.

Fig. 22. Leak parameters in the first branch, experiment 1.

Fig. 23. Flow rate and pressure head in the first branch, experiment 2.
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Fig. 24. Leak parameters in the first branch, experiment 2.

Table 9
EKF initialization, first branch.

Variable Value Units

𝑄̂0
7 2.11 × 10−3 [m3/s]

𝐻̂0
8 2.6 [m]

𝑄̂0
8 2.11 × 10−3 [m3/s]

𝛥𝑧0𝑝1 4.35 [m]

𝜆̂01 0 [m5∕2/s]

Table 10
EKF initialization, second branch.

Variable Value Units

𝑄̂0
9 1.13 × 10−3 [m3/s]

𝐻̂0
10 1.07 [m]

𝑄̂0
10 1.13 × 10−3 [m3/s]

𝛥𝑧0𝑝2 17.25 [m]

𝜆̂02 0 [m5∕2/s]

5.5.2. Parameter identification of leak 2 in second branching
By following the same observer design as before, the EKF is initialized here using the states presented in Table 10.
Similarly, the covariance matrices of measurement and process noises for this generic EKF are chosen as (37) and (39),

espectively. The pressure head and flow rate at the ends of the second branch are shown in Fig. 25(b) and Fig. 25(a), respectively.
The parameters of the leak are depicted in Figs. 26(a) and 26(b). Once again, accurate results can be observed.

5.6. Discussion of the results

5.6.1. Experiment 1
Figs. 20(a), 22(a) show the leak position estimation for the first leak appearing in branching 2 and for the second leak appearing

in branching 1, respectively. In Table 11, a quantitative index is presented to show the performance of both cases on the basis of
the error norm criteria, which is computed as follows:

‖𝑒𝑧‖ =

√

√

√

√

√

𝛶−1
∑

𝑗=1
(𝑒𝑧(𝑗))2 (40)

where 𝑒𝑧 = 𝛥𝑧 − 𝛥𝑧 and 𝛶 is the length of the vector.
On the other hand, estimations of the leak magnitude are also depicted in Figs. 20(b) and 22(b), respectively. Several experiments

ere performed and in Table 12, the computational time spent by each EKF is depicted in statistical terms of mean value and

tandard deviation.



Fig. 25. Flow rate and pressure head in the first branch, experiment 2.

Fig. 26. Leak parameters in the second branch, experiment 2.

Table 11
Error norm for each case, experiment 1.

Case Branching ‖𝑒𝑧‖ [m]

First leak 2 0.0721 × 102

Second leak 1 0.1873 × 102

Table 12
Performance of the EKFs in computational-execution terms, experiment 1.
EKFs Mean Standard deviation

EKF 1, main pipeline 5.01 [s] 0.455 [s]
EKF 2, first leak 4.20 [s] 0.168 [s]
EKF 2, second leak 3.62 [s] 0.147 [s]

5.6.2. Experiment 2

In the same way, Figs. 24(a), 26(a) show the leak position estimation for the first leak appearing in branching 1 and for the
second leak appearing in branching 2, respectively. In the same way as before, in Table 13, a quantitative index is presented to
show the performance of both cases on the basis of the error norm criteria.
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Table 13
Error norm for each case, experiment 2.

Case Branching ‖𝑒𝑧‖ [m]

First leak 1 0.0545 × 102

Second leak 2 0.1645 × 102

Table 14
Performance of the EKFs in computational-execution terms, experiment 2.
EKFs Mean Standard deviation

EKF 1, main pipeline 4.95 [s] 0.376 [s]
EKF 2, first leak 4.35 [s] 0.153 [s]
EKF 2, second leak 3.23 [s] 0.162 [s]

Similarly, estimations of the leak magnitude are also depicted in Figs. 24(b) and 26(b), respectively. In Table 14, the
omputational time spent by each EKF is summarized.

. Conclusions

A methodology to detect and locate sequential leaks in a branched pipeline system has been proposed with successful
xperimental results. The approach is based on observer techniques (extended Kalman filters) but in a two-step procedure that
ignificantly reduces the size of the observer problem. First, an error pattern analysis is used to identify the leak region, and then
nly two reduced-order observers are designed. The methodology is quite general and can address more complex branched pipeline
onfigurations than the one considered in the paper, remaining easy to implement in practice. Its reliability has been experimentally
alidated on various scenarios, and further validation with real applications will be part of future developments.
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ppendix A. Observability analysis

Let us consider systems (24) and (25) separately.
For system (24), a necessary condition for designing an observer is that such a system satisfies an appropriate observability

ondition [18], which can be checked to hold here independently of the inputs. Assuming that each 𝑄𝑜𝑢𝑡𝑖 is known, it can be
hecked that system (A.1) made of state variables 𝑥, up to 𝑥2𝜅+1 (𝜅 + 1 is the number of pipe sections) satisfies the structure of
niform observability [18,25].

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥̇1
𝑥̇2
𝑥̇3
𝑥̇4
⋮
𝑥̇2𝜅
𝑥̇2𝜅+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑔𝐴
𝛥𝑧1

(

𝑥2 − 𝑢1
)

− 𝜇1𝑥1|𝑥1|

−𝑏2
𝑔𝐴𝛥𝑧1

(

𝑥3 − 𝑥1 +𝑄𝑜𝑢𝑡1
)

−𝑔𝐴
𝛥𝑧2

(

𝑥4 − 𝑥2
)

− 𝜇2𝑥3|𝑥3|

−𝑏2
𝑔𝐴𝛥𝑧2

(

𝑥5 − 𝑥3 +𝑄𝑜𝑢𝑡2
)

⋮
−𝑏2

𝑔𝐴𝛥𝑧2𝜅

(

𝑥2𝜅+1 − 𝑥2𝜅−1 +𝑄𝑜𝑢𝑡2𝜅
)

−𝑔𝐴
𝛥𝑧2𝜅+1

(

𝑢2 − 𝑥2𝜅+1
)

− 𝜇2𝜅+1𝑥2𝜅+1|𝑥2𝜅+1|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.1)

ystem (A.1) with measurement 𝑥1 can be rewritten under form

𝑥̇ = 𝑓0(𝑥) + 𝑢1𝑓1(𝑥) + 𝑢2𝑓2(𝑥)
𝑦 = 𝑥1

(A.2)

ith state 𝑥(𝑡) ∈ R2𝜅+1, input 𝑢(𝑡) = [𝑢1 𝑢2]𝑇 = [𝐻𝑖𝑛(𝑡) 𝐻𝑜𝑢𝑡(𝑡)]𝑇 ∈ R2, and output 𝑦(𝑡) = 𝑥1 = 𝑄𝑖𝑛(𝑡) ∈ R, for appropriate functions
′
𝑖 𝑠. Such a system in turn can be transformed into the following canonical uniformly observable structure

𝑧̇ = 𝐴𝑧 + 𝜓0(𝑧) + 𝜓1(𝑧)𝑢1 + 𝜓2(𝑧)𝑢2 (A.3)

𝑦 = 𝐶𝑧



b

w

𝐴 =

⎡
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⎢

⎢

⎢

⎣

0 1 0
⋮ ⋱

1
0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜓0(𝑧) =
⎡

⎢

⎢

⎣

0
⋮

𝜓2𝜅−1(𝑧)

⎤

⎥

⎥

⎦

,

𝜓𝑘(𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜓𝑘1 (𝑧1)
⋮

𝜓𝑘𝑗 (𝑧1,… , 𝑧𝑗 )
⋮

𝜓𝑘2𝜅−1 (𝑧)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐶 =
⎡

⎢

⎢

⎣

1
⋮
0

⎤

⎥

⎥

⎦

𝑇

(A.4)

y means a diffeomorphism given by:

𝛷(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝛷1(𝑥)
𝛷2(𝑥)
⋮

𝛷2𝜅−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

. (A.5)

here:

𝛷𝑘(𝑥) = 𝐿𝑘−1𝑓0
(ℎ)(𝑥) 𝑓𝑜𝑟 𝑘 = 1,… , 2𝜅 − 1. (A.6)

Similarly, for system (25) it was shown in [26] that observability is also satisfied in this case. By combining both properties, the
overall system is observable.

Remark 4. The observability property can be guaranteed as long as the state estimation between two consecutive leaks is solved
fast enough so that the leak is identified before the second leak appears [10].

Appendix B. Extended Kalman Filter implementation

Algorithm 1: Extended Kalman Filter 1
Input: 𝑄𝑙𝑒𝑎𝑘1 , … , 𝑄𝑙𝑒𝑎𝑘𝑝 ; 𝐻1, 𝐻2𝜅+3; 𝑄1 and 𝑄2𝜅+1.
Output: 𝑥̂ = [𝑥̂1 𝑥̂2, … , 𝑥̂2𝜅+1]𝑇 = [𝑄̂1 𝐻̂3 𝑄̂3, … , 𝐻̂2𝜅+1 𝑄̂2𝜅+1]𝑇 .
initialization: 𝑥̂0 = 𝐸(𝑥0), 𝑃 0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇 ]
𝑘 is the discrete time index; 𝑇 𝑠 = 100 [Hz] sampling time and 𝑇𝑓 is the experiment duration.
while 𝑘𝑇𝑠 <= 𝑇𝑓 do

a) Compute the following partial derivative matrices

𝐹 𝑘 =
𝜕𝜉𝑑 (𝑥, 𝑢)
𝜕𝑥

|𝑥=𝑥̂𝑘 (B.1)

b) Perform the time update of the state estimate and estimation-error covariance as follows

𝑃 𝑘
−
= 𝐹 𝑘𝑃 𝑘−1(𝐹 𝑘)𝑇 + (B.2)

𝑥̂𝑘
−
= 𝜉𝑑 (𝑥̂𝑘−1, 𝑢𝑘−1) (B.3)

c) Compute the following partial derivatives

𝐻𝑘 =
𝜕𝐻𝑑
𝜕𝑥

|𝑥=𝑥̂𝑘− (B.4)

d) Perform the measurement update of the state estimate and estimation error covariance as follows

𝐾𝑘 = 𝑃 𝑘
−
𝐻𝑇 (𝐻𝑃 𝑘

−
𝐻𝑇 +)−1

𝑥̂𝑘 = 𝑥̂𝑘
−
+𝐾𝑘[(𝑦𝑘 −𝐻𝑥̂𝑘

−
)]

𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃 𝑘
− (B.5)

𝑘 = 𝑘 + 1
end



Algorithm 2: Extended Kalman Filter 2
Input: 𝑦 = [𝑄̂𝜂+2𝑚−1 𝑄𝜂+2𝑚]𝑇 ; 𝑢 = [𝐻̂2𝑚+1 𝐻𝜂+2𝑚+1]𝑇 ; 𝛿𝑖.
Output: 𝑥̂ = [𝑥̂1 𝑥̂2 𝑥̂3 𝑥̂4 𝑥̂5]𝑇 = [𝑄̂𝜂+2𝑚−1 𝐻̂𝜂+2𝑚 𝑄̂𝜂+2𝑚 𝛥𝑧𝜂+2𝑚−1 𝜆2𝑚]𝑇 .
initialization: 𝑥̂0 = 𝐸(𝑥0), 𝑃 0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇 ]
𝑘 is the discrete time index; 𝑇 𝑠 = 100 [Hz] sampling time and 𝑇𝑓 is the experiment duration.
while 𝑘𝑇𝑠 <= 𝑇𝑓 do

if 𝑄𝑙𝑒𝑎𝑘𝑖 > 𝛿𝑖 then
a) Compute the following partial derivative matrices

𝐹 𝑘 =
𝜕𝜉𝑑 (𝑥, 𝑢)
𝜕𝑥

|𝑥=𝑥̂𝑘 (B.7)

b) Perform the time update of the state estimate and estimation-error covariance as follows

𝑃 𝑘
−
= 𝐹 𝑘𝑃 𝑘−1(𝐹 𝑘)𝑇 + (B.8)

𝑥̂𝑘
−
= 𝜉𝑑 (𝑥̂𝑘−1, 𝑢𝑘−1) (B.9)

c) Compute the following partial derivatives

𝐻𝑘 =
𝜕𝐻𝑑
𝜕𝑥

|𝑥=𝑥̂𝑘− (B.10)

d) Perform the measurement update of the state estimate and estimation error covariance as follows

𝐾𝑘 = 𝑃 𝑘
−
𝐻𝑇 (𝐻𝑃 𝑘

−
𝐻𝑇 +)−1

𝑥̂𝑘 = 𝑥̂𝑘
−
+𝐾𝑘[(𝑦𝑘 −𝐻𝑥̂𝑘

−
)]

𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃 𝑘
− (B.11)

𝑘 = 𝑘 + 1
else

𝑥̂ = 𝑥̂0;
end

end
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