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A B S T R A C T

Wind turbine power generation is becoming one of the most critical renewable energy sources. As wind
power grows, there is a need for better monitoring and diagnostic strategies to maximize energy production
and increase its security. In this paper, a fault diagnosis approach based on a data-driven technique, which
represents the system behavior employing a Takagi–Sugeno (TS) model, is developed. An adaptive neuro-fuzzy
inference system (ANFIS) method is used to obtain a set of polytopic-based linear representations and a set
of membership functions to interpolate the linear models of the convex TS model. Then, considering the TS
model, a fault diagnosis strategy based on convex state observers generate residuals to detect and isolate
sensor faults. Unlike other methods, this proposal only needs to be trained with fault-free data. The proposed
methodology is tested under different fault scenarios on a well-known wind turbine benchmark built upon
fatigue, aerodynamics, structures, and turbulence (FAST). The results demonstrate the method’s effectiveness
in detecting and isolating different sensor faults.
1. Introduction

With the growing demand for energy and concern about envi-
ronmental problems, sustainable solutions have attracted enormous
attention, among which wind energy has demonstrated outstanding
characteristics such as availability and low-cost (Arshad & O’Kelly,
2019). Wind turbines have complex and nonlinear dynamics and oper-
ate under stochastic wind disturbances, centrifugal, gravitational, and
gyroscopic loads (Rommel et al., 2020). Relying on various rotating and
on-rotating components and sensors, as well as working in harsh envi-
onments, makes them prone to severe faults and breakdowns, leading
o poor reliability. To avoid unforeseen faults, maintenance schedules
re planned, which not only increase cost but also reduce power
eneration due to the required downtime (Ntalampiras, 2021). These

challenges have motivated numerous investigations in wind turbines,
from nominal control to fault diagnosis, and fault-tolerant control.

Several fault diagnosis (FD) schemes have been proposed to in-
crease safety, reliability and reduce maintenance costs. In general,
architectures for FD employ sensor data for detecting, isolating, and
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identifying faults in components that can be used to implement fault-
tolerant control and condition-based maintenance (Yu et al., 2021).
Due to the lack of available data, many articles are based on syn-
thetic data from a benchmark described in Odgaard et al. (2013). This
benchmark represents a 5 MW wind turbine, which is commonly used
to validate different FD approaches such as a model-based Kalman
filter (Honarbari et al., 2021), an observer-based approach (Chouiref
et al., 2017), a support vector machine method (Noshirvani et al.,
2018), a multi-integral proportional observer (Fadali et al., 2019),
adaptive observers (Li et al., 2020), a reduced-order sliding mode
observer (Sedigh Ziyabari et al., 2021), among others. Most of well-
established FD approaches are based on accurate mathematical models
that can be affected by uncertainty and disturbances. However, obtain-
ing an accurate wind turbine model is a difficult task in practice, which
still limits the application of model-based approaches (Li et al., 2021).
Recently, data-driven methods are currently receiving considerable
attention (Simani et al., 2021). Unlike model-based approaches that
require dynamic equations, data-driven methods rely on data from
measured process variables.
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Robust FD strategies can also be grounded in data-driven solutions.
or example, in Rezamand et al. (2019), principal component analysis
PCA) was used to detect gearbox faults. Diagnosis and classification
chemes based on artificial neural networks (ANN) have also been
mplemented (Dybkowski & Klimkowski, 2019; Zare & Ayati, 2021).

In Márquez-Vera et al. (2021), fault detection schemes based on fuzzy
logic were proposed, a hybrid scheme for FD was reported in Wen and
Xu (2021), where a ReliefF-PCA and deep neural networks (DNN) were
combined. However, these methods require data under different fault
conditions and sufficient data for training. Nevertheless, in practice,
not all possible faults types are known or are not available; thus, it is
difficult to access all the fault characteristics in a large and complex
wind turbine system. For this reason, appropriate methods for the
available measurement data in the systems are required.

This paper proposes an adaptive neuro-fuzzy inference system (AN-
FIS) to identify a set of analytical redundancy relations (ARRs) for the
wind turbine obtained from structural analysis. As a result a set of
convex Takagi–Sugeno (TS) models (López-Estrada et al., 2019) are
obtained for the different ARRs. The modeling uncertainty of each
TS model is also obtained and represented in parametric form. The
training data are obtained from the measurable variables in a complete
fault-free scenario. Using the TS model of each ARR, a set of convex
interval observers is designed to detect and isolate faults. Different fault
scenarios on a wind turbine benchmark are considered to illustrate the
effectiveness of the method. Therefore, the main contributions of this
paper are

• A hybrid strategy of ANFIS and convex TS interval observers for
the fault diagnosis in wind turbines.

• The proposed ANFIS-TS hybrid scheme identifies a set of ARRs
for the wind turbine obtained from the structural analysis. A set
of convex TS models for the ARRs is obtained.

• Modeling uncertainty of each convex TS model is included and
is represented parametrically. The training data is obtained from
the available variables in fault-free conditions.

• Convex interval observers are designed using the convex TS
model for each ARR for fault diagnosis using an LMI approach.

• To illustrate the method’s effectiveness, different fault scenarios
are considered in a wind turbine benchmark.

The remaining of this document is organized as follows: Section 2
presents the structural analysis for the considered wind turbine system
that is used for deriving a set of ARRs. Section 3 describes the convex
Takagi–Sugeno model obtained from each ARR using non-faulty data
and ANFIS. Section 4 presents the fault diagnosis scheme based on
nterval observers. Finally, Section 5 presents the conclusions.

2. Structural analysis for wind turbine model

This work considers the wind turbine benchmark proposed in
Odgaard et al. (2013). The benchmark replicates a three-bladed hor-
izontal axis wind turbine that considers turbulent wind speed as the
system input. Each subsystem is coupled through inputs and outputs
that interact to structure a complex and realistic electromechanical
system. The benchmark is based on an offshore horizontal variable
speed wind turbine with a full converter coupling and a rated power
of 5 MW built upon fatigue, aerodynamics, structures, and turbulence
(FAST) aeroelastic simulator. This simulator was developed by the
National Renewable Energy Laboratory (NREL) and was certified by
Germanischer Lloyd in 2005, as announced by the NREL, which means
that it can be used worldwide for turbine certification. Various FD
schemes have been proposed for this wind turbine benchmark, being
this reason why it is the most used to simulate and validate different
schemes (Fadali et al., 2019).

The FD scheme of this work uses structural analysis, which describes
the interactions between the signals and the wind turbine components.
Table 1
Components of wind turbine with respective ARRs and variables.

ARR Related variables Component

1 𝑃𝑔 = 𝜔𝑔𝜏𝑔 Generator/converter
2 𝜏𝑔,𝑟 = 𝜏𝑔 + 𝜏𝑔 Generator/converter
3 𝛽𝑟,1 = 𝛽1 + 𝛽1 Pitch system
4 𝛽𝑟,2 = 𝛽2 + 𝛽2 Pitch system
5 𝛽𝑟,3 = 𝛽3 + 𝛽3 Pitch system
6 (𝜔̂𝑟 , 𝜔𝑟 , 𝜏𝑟 , 𝜏𝑔 ) = 0 Drivetrain
7 (𝜔̂𝑔 , 𝜔𝑔 , 𝜏𝑟 , 𝜏𝑔 ) = 0 Drivetrain
8 𝜔𝑟 = 𝜙̇𝑟 Drivetrain
9 (𝛯𝑒 , 𝜔𝑦,𝑟) = 0 Yaw system
10 𝑀𝐵,1 = 𝑥̈𝑥 Tower
11 𝑀𝐵,2 = 𝑥̈𝑥 Tower
12 𝑀𝐵,3 = 𝑥̈𝑥 Tower

The dynamic model is interpreted as a set of constraints and a set of
variables, which leads to a bipartite graph representing the system’s
structure. The structural analysis proposes a description of the nomi-
nal behavior of the system (fault-free) utilizing a description of each
component and the connection they have among the known variables
(measurements). Using this concept, it is possible to diagnose whether
a violation of the nominal behavior has occurred.

In the case of a wind turbine, it is enough to know the relation-
ships between variables and components. Fig. 1, shows the interaction
between components and system variables; for each of these variables,
there is an associated sensor. The components and measured variables
are associated as follows. The wind speed 𝑣𝑤 is the kinetic energy that
drives the system. The rotor blades move due to the wind impulse and
the pitch system regulates the angle of the blades 𝛽𝑙. The drivetrain
connects a low-speed shaft to the rotor 𝜔𝑟, the gears increase the
rotation speed to the high-speed shaft 𝜔𝑔 and decrease the torque 𝜏𝑔
that drives the generator, coupled to a converter, to produce electrical
power 𝑃𝑔 . The tower contains the nacelle, which is deflected by loads
and flexibility, causing the nacelle movement characterized by the
acceleration in 𝑋 and 𝑌 directions

[

𝑥̈𝑋 𝑥̈𝑌
]𝑇 . Additionally, there are

complementary sensors in the system, an azimuth angle sensor 𝜙𝑚
is available for the low-speed shaft that connects the rotor to the
drivetrain. A sensor for each of the three-blade root moment 𝑀𝐵,𝑙 and a
sensor to measure the yaw error 𝛯𝑒. The controlled inputs of the system
are the generator reference torque 𝜏𝑔,𝑟, the reference angle of the blades
𝛽𝑟 and yaw reference angular velocity 𝜔𝑦,𝑟. The aerodynamic torque of
the rotor 𝜏𝑟 is estimated from the wind speed 𝑣𝑤.

Consequently, there are enough sensors to measure the variables
linking the components. Fig. 2 shows the structure graph of the compo-
ents and measured variables. From the information in this graph, the
RRs can be generated. ARRs are available when matching components
nd measured variables (Blanke et al., 2006). Table 1 contains the

components of the wind turbine and the ARRs that are generated from
the relationships with the measured variables.

The purpose of the ARRs is to generate residuals for fault diagnosis.
These residuals are used to check if the behavior of the system is
within the nominal operating limits. Violation of the allowed limits is
considered a fault. Residuals are computed as the difference between
the measured and predicted behavior. The ARRs can be static, such as
ARR1, ARR8 and ARR9 in Table 1, while the nine remaining ARRs are
dynamic. The residual computation of the static ARRs is simple since
they are derived from mathematical expressions. The dynamic ARRs
are generated by comparing measured and observer-based estimation
signals. The expression of each dynamic ARR model is calibrated in
regressive form, as shown in Table 2.

ARRs in regressive form have the purpose of incorporating the
dynamic behavior of the system. Each dynamic expression of ARR in
regressive form from Table 2 is converted into an ANFIS model to

structure a convex TS system and design the respective TS observer.



T
u
i
t
a
m
t

Fig. 1. Interaction of components and variables of the wind turbine model.
Fig. 2. Structure graph of the components and variables of the wind turbine.
Table 2
Expressions in regressive form for each dynamic ARR.

Variable Regressive form

𝜏𝑔 (𝑘)
(

𝜏𝑔 (𝑘), 𝜏𝑔 (𝑘 − 1), 𝜏𝑔𝑟(𝑘), 𝜏𝑔𝑟(𝑘 − 1)
)

𝛽1(𝑘) (𝛽1(𝑘), 𝛽1(𝑘 − 1), 𝛽1(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

𝛽2(𝑘) (𝛽2(𝑘), 𝛽2(𝑘 − 1), 𝛽2(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

𝛽3(𝑘) (𝛽3(𝑘), 𝛽3(𝑘 − 1), 𝛽3(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

𝜔̂𝑟(𝑘)
(

𝜔𝑟(𝑘), 𝜔𝑟(𝑘 − 1), 𝜔𝑟(𝑘 − 2), 𝜏𝑔 (𝑘), 𝜏𝑟(𝑘)
)

𝜔̂𝑔 (𝑘)
(

𝜔𝑔 (𝑘), 𝜔𝑔 (𝑘 − 1), 𝜔𝑔 (𝑘 − 2), 𝜏𝑔 (𝑘), 𝜏𝑟(𝑘)
)

𝑀̂𝐵,1(𝑘) (𝑀𝐵,1(𝑘),𝑀𝐵,1(𝑘 − 1), 𝑥̈𝑥(𝑘), 𝑥̈𝑥(𝑘 − 1))

𝑀̂𝐵,2(𝑘) (𝑀𝐵,2(𝑘),𝑀𝐵,2(𝑘 − 1), 𝑥̈𝑥(𝑘), 𝑥̈𝑥(𝑘 − 1))

𝑀̂𝐵,3(𝑘) (𝑀𝐵,3(𝑘),𝑀𝐵,3(𝑘 − 1), 𝑥̈𝑥(𝑘), 𝑥̈𝑥(𝑘 − 1))

3. Fault diagnosis based on ANFIS and convex Takagi–Sugeno
interval observers

This section presents the proposed method for fault diagnosis based
on ANFIS and convex TS interval observers. The scheme flow chart
is presented in Fig. 3. The general idea is to obtain uncertain convex

S models for each of the dynamic ARRs using ANFIS. Subsequently,
se the obtained convex TS models to design a bank of convex TS
nterval observers. Finally, use the observers designed for fault de-
ection through the residuals generation and their evaluation with
daptive thresholds; and for fault isolation using a fault (incidence)
atrix. These three stages are described next. The section ends with

he considered fault scenarios.
3.1. Convex Takagi–Sugeno system from ANFIS

An ANFIS is considered to learn a particular structure from input–
output data and approximate nonlinear systems behaviors (Alcala et al.,
2020). In this work, an ANFIS is used to approximate each wind
turbine subsystem’s nonlinear behavior employing a set of fuzzy if-then
rules and convex Takagi–Sugeno models. The objective is to obtain an
approximated model for fault diagnosis, although the data sets for the
learning stage are comprised of fault-free sensor data. The input data
for the ANFIS are composed of each regressive expression of Table 2,
which represents the wind turbine in nominal operating conditions. The
training provides a set of consequent parameters and a set of premise
parameters that define the membership functions (MF) of the convex TS
models, producing nonlinear relationships between the different linear
polynomials. The MFs used for this procedure are Generalized Bell-
Shaped (GB) functions. GB functions have proven to obtain the best
performance in nonlinear model approximation (Dorzhigulov & James,
2019).

Fig. 4 depicts the construction of the convex TS model 𝜔̂𝑔 for
approximating subsystem 𝜔𝑔 . The input dataset is comprised of the
variables in the regression form of 𝜔𝑔 , presented in Table 2; namely,
𝜏𝑔(𝑘), 𝜏𝑟(𝑘), 𝜔𝑔(𝑘) and its delays 𝜔𝑔(𝑘 − 1) and 𝜔𝑔(𝑘 − 2). The ANFIS
adjusts the premise and consequent parameters during the learning
stage. Once the learning has finished, it proceeds to construct the
convex TS representation for the 𝜔̂𝑔 ARR.

The inputs to the ANFIS are weighted by means of the membership
functions during the learning process until the neuro-fuzzy param-
eters are optimized. The ANFIS uses backpropagation and recursive
least squares methods to adjust the consequent parameters during the
learning stage. Once the learning has finished and the premise and
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Fig. 3. Flow chart for the fault diagnosis based on ANFIS and convex Takagi–Sugeno interval observers.
Fig. 4. Polytopic TS learning scheme for the subsystem case 𝜔̂𝑔 .
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consequent parameters for each ANFIS have been calculated, it pro-
ceeds to construct the convex TS representation for each wind turbine
subsystem. Therefore, for the polynomial representation, the case of the
subsystem 𝜔̂𝑔 will be used; it is formulated as:

𝑃𝑖 = 𝑝1𝑖𝜔𝑔(𝑘) + 𝑝2𝑖𝜔𝑔(𝑘 − 1) + 𝑝3𝑖𝜔𝑔(𝑘 − 2) + 𝑝4𝑖𝜏𝑔(𝑘) + 𝑝5𝑖𝜏𝑟(𝑘) + 𝑝6𝑖,

∀𝑖 = 1,… , 𝑁𝑣, (1)

where 𝑃𝑖 is a linear polynomial representation of a subsystem, 𝑝𝑗𝑖,∀𝑗 =
1,… , 𝑁𝜁 are the system parameters obtained from ANFIS; 𝑁𝜁 repre-
sents the number of premise parameters as displayed in Fig. 4; and 𝑁𝑣
epresents the number of vertices. Terms in (1) can be rearranged as:

𝑃𝑖 =
⎡

⎢

⎢

⎣

𝑝1𝑖 𝑝2𝑖 𝑝3𝑖
𝑝𝐼1𝑖 𝑝𝐼2𝑖 𝑝𝐼3𝑖
𝑝𝐼𝐼1𝑖 𝑝𝐼𝐼2𝑖 𝑝𝐼𝐼3𝑖

⎤

⎥

⎥

⎦

𝑥 +
⎡

⎢

⎢

⎣

𝑝4𝑖 𝑝5𝑖
𝑝𝐼4𝑖 𝑝𝐼5𝑖
𝑝𝐼𝐼4𝑖 𝑝𝐼𝐼5𝑖

⎤

⎥

⎥

⎦

𝑢 +
⎡

⎢

⎢

⎣

𝑝6𝑖
𝑝𝐼6𝑖
𝑝𝐼𝐼6𝑖

⎤

⎥

⎥

⎦

, (2)

where 𝑥 =
[

𝜔𝑔(𝑘) 𝜔𝑔(𝑘 − 1) 𝜔𝑔(𝑘 − 2)
]𝑇 is the state vector and

𝑢 =
[

𝜏𝑔 𝜏𝑟
]𝑇 is the input vector. The polynomial structure is

transformed to a discrete-time state-space representation as:

𝑥(𝑘 + 1) = 𝐴𝑖𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖, ∀𝑖 = 1,… , 𝑁𝑣, (3)

where 𝐴𝑖, 𝐵𝑖 and ℎ𝑖 are constant matrices structured from the conse-
quent parameters of the polynomial structure. The membership func-
tion is constructed by considering the GB function, which is defined by
three neuro-fuzzy parameters as follows:

𝜂𝑚(𝜁𝑜) =
1

1 + 𝜁𝑜−𝑐𝑚𝑜
𝑎𝑚𝑜

2𝑏𝑚𝑜
, ∀𝑚 = 1,… , 𝑁𝑀𝐹 , ∀𝑜 = 1,… , 𝑁𝜁 , (4)

here 𝑎, 𝑏, 𝑐 determines the width, slope, and center of the GB function,
espectively; 𝜁 represents the vector of ANFIS input variables (from now
 o
n, it will be referred to as premise parameter), 𝑁𝑀𝐹 represents the
number of MF per premise parameter. For a common case where 𝑁𝑀𝐹
is two, then the normalized weights (𝜂𝑁𝑖 ) are calculated as follows:

𝜇𝑖(𝜁 ) =
𝑁𝜁
∏

𝑗=1
𝜉𝑖𝑗 (𝜂0, 𝜂1), ∀𝑖 = 1,… , 𝑁𝑣, (5)

where 𝜁𝑖𝑗 (⋅) corresponds to any of the weighting functions that depend
on each 𝑖th rule, such as the normalized weights are obtained as:

𝜇𝑁𝑖 (𝜁 ) =
𝜇𝑖(𝜁 )

∑𝑁𝑣
𝑗=1 𝜇𝑗 (𝜁 )

, ∀𝑖 = 1,… , 𝑁𝑣. (6)

Each premise parameter 𝜁𝑜 is estimable and varies in a defined interval
𝜁𝑜 ∈

[

𝜁𝑜, 𝜁𝑜
]

∈ R. The polytopic TS model for each subsystem is
obtained as:

𝑥(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇𝑁𝑖 (𝜁 (𝑘))

(

𝐴𝑖𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖
)

,

𝑦(𝑘) = 𝐶𝑥(𝑘), (7)

𝑁𝑣 is obtained by 𝑁𝑣 =
(

𝑁𝑀𝐹
)𝑁𝜁 = 32. It is important to mention that

uncertainties are part of the model due to noise, model mismatches, and
the method itself. Taking into account these issues, which are denoted
by the 𝛥𝐴𝑖 matrices, system (7) is rewritten as:

(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇𝑁𝑖 (𝜁 (𝑘))

(

(𝐴𝑖 + 𝛥𝐴𝑖)𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖
)

,

𝑦(𝑘) = 𝐶𝑥(𝑘), (8)

he values of the uncertain matrices are proportional to the values
f the parameters, which are adjusted by the minimum deviation to
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wrap the nominal values of the convex model. This uncertain repre-
sentation will be used to apply a fault diagnosis method based on
interval observers whose main advantage is to consider bounded initial
conditions/parameters and generate adaptive residual thresholds that
provides robustness to the fault diagnosis process. Nonetheless, in order
to reduce the complexity, only uncertainties in 𝐴𝑖 are considered. This
assumption does not reduce the method applicability as discussed in Li
et al. (2019), Martínez-García et al. (2020) and Xie et al. (2021). The fit
is performed iteratively during ANFIS learning, where recursive least
squares (RLS) is responsible for calculating the optimal values of the
covariance matrix that will contain the uncertainty on the parame-
ters. Furthermore, it is assumed that the uncertainties are bounded as
follows:

𝛥𝐴𝑖 ≤ 𝛥𝐴𝑖 ≤ 𝛥𝐴𝑖. (9)

It is important to note that the uncertain model (8) is obtained by
considering only fault-free data. Therefore, its structure is independent
of the different types of faults that can affect the components of the
wind turbine, which be discussed below by considering a fault diagnosis
observer.

The fault diagnosis test is based on residual generation by checking
whether the measurements are consistent with the system data or not.
However, due to parametric uncertainty, an exact estimate of the state
𝑥(𝑘) cannot be obtained to compare the data directly. However, con-
sidering (8), an observer is designed that provides an interval estimate
of 𝑥(𝑘), that is, some lower and upper estimates of 𝑥(𝑘), such that:

̂(𝑘) ≤ 𝑥(𝑘) ≤ 𝑥̂(𝑘). (10)

hen, by considering this uncertain system, the following fault diagno-
is observer is proposed.

.2. Fault diagnosis based on interval observers

Generally, fault detection obtains residuals comparing the measured
nd estimated outputs. However, due to the uncertainties considered
n System (8), which could corrupt the signals, it is essential to obtain
esiduals that are not affected by these uncertainties. Interval observers
ave proven to be efficient for uncertain systems because they can
stimate states in upper and lower intervals of the variables to be
stimated. The convex interval observer considered in this work has
he following form:

̂(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇𝑁𝑖 (𝜁 (𝑘))

(

(𝐴𝑖 − 𝐿𝑖𝐶)𝑥̂(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖 + 𝛥𝐴𝑖
+𝑥̂+(𝑘)

− 𝛥𝐴𝑖
+
𝑥̂−(𝑘) − 𝛥𝐴𝑖−𝑥̂

+(𝑘) + 𝛥𝐴𝑖
−
𝑥̂
−
(𝑘) + 𝐿𝑖𝑦(𝑘)

)

,

̂(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇𝑁𝑖 (𝜁 (𝑘))

(

(𝐴𝑖 − 𝐿𝑖𝐶)𝑥̂(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖 + 𝛥𝐴𝑖
+
𝑥̂
+
(𝑘)

− 𝛥𝐴𝑖
+𝑥̂

−
(𝑘) − 𝛥𝐴𝑖

−
𝑥̂+(𝑘) + 𝛥𝐴𝑖−𝑥̂

−(𝑘) + 𝐿𝑖𝑦(𝑘)
)

, (11)

here 𝐿𝑖 and 𝐿𝑖 are the observer gain matrices to be computed. 𝛥𝐴𝑖
+
=

max
{

0, 𝑥̂
}

, 𝛥𝐴𝑖
−
= 𝛥𝐴𝑖

+
− 𝛥𝐴𝑖, 𝛥𝐴𝑖+ = max

{

0, 𝑥̂
}

, 𝛥𝐴𝑖− = 𝛥𝐴𝑖+ − 𝛥𝐴𝑖,

̂
+
= max

{

0, 𝑥̂
}

, 𝑥̂
−
= 𝑥̂

+
− 𝑥̂, 𝑥̂+ = max

{

0, 𝑥̂
}

, 𝑥̂− = 𝑥̂+ − 𝑥̂. The upper
and lower values of the estimated output are obtained as:

𝑦(𝑘) = 𝐶+𝑥̂(𝑘) − 𝐶−𝑥̂(𝑘) (12)

𝑦(𝑘) = 𝐶+𝑥̂(𝑘) − 𝐶−𝑥̂(𝑘) (13)

where 𝐶+ = max {0, 𝐶} and 𝐶− = 𝐶+ − 𝐶, subject to the observer
equations given by (11). The main problem is to compute the gain
matrices of the interval observer (11), such as the estimated states
converge asymptotically to (12) and (13) despite the uncertainties.

nder the assumption that:

̂(0) ≤ 𝑥(0) ≤ 𝑥̂(0). (14)
he following sufficient conditions in the linear matrix inequalities
LMI) formulation are considered to solve this problem:

heorem 3.1 (Rotondo et al., 2016). Given an LMI region, defined as:

=
{

𝑧 ∈∶ 𝑓𝒟 (𝑧) < 0
}

, (15)

where the characteristic function 𝑓𝒟 (𝑧) is defined as:

𝒟 (𝑧) = 𝛼 + 𝑧𝜑 + 𝑧∗𝜑𝑇 =
{

𝛼𝑘𝑙 + 𝜑𝑘𝑙𝑧 + 𝜑𝑙𝑘𝑧∗
}

𝑘,𝑙∈[1,𝑚] , (16)

ith 𝛼 = 𝛼𝑇 ∈ R𝑚𝗑𝑚 and 𝜑 ∈ R𝑚𝗑𝑚, if there exist a diagonal matrix
∈ R2𝑛𝑥𝗑2𝑛𝑥 , a symmetric matrix 𝑄 = 𝑄𝑇 ∈ R2𝑛𝑥𝗑2𝑛𝑥 , block diagonal

atrices 𝑊𝑖 ∈ R2𝑛𝑥𝗑2𝑛𝑥 , 𝑖 = 1,… , 𝑁 , with the following structure:

𝑖 =

(

𝑊𝑖 ∈ R𝑛𝑥𝗑𝑛𝑥 0
0 𝑊𝑖 ∈ R𝑛𝑥𝗑𝑛𝑥

)

(17)

and constants 𝜀1 > 0, 𝜀2 > 0, 𝛾 > 0 such that:

𝑃 > 0 (18)

𝑄 > 0 (19)

and, for 𝑖 = 1,. . . ,N:

⎛

⎜

⎜

⎜

⎝

𝑃
1+𝜀1

𝑃𝐷𝑖 −𝑊𝑖𝛾
𝑃

1+𝜀1
(𝑃𝐷𝑖 −𝑊𝑖𝛾)𝑇 𝑃 −𝑄 − 𝛾𝜂2𝐼2𝑛𝑥 0

𝑃
1+𝜀1

0 𝛾𝐼2𝑛𝑥 − 𝜀𝑃

⎞

⎟

⎟

⎟

⎠

≥ 0 (20)

𝑃
[

𝐴𝑖 0
0 𝐴𝑖

]

−𝑊𝑖𝛾 ≥ 0 (21)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑘𝑙𝑃 + 𝜑𝑘𝑙

((

𝐴𝑇𝑖 0
0 𝐴𝑇𝑖

)

𝑃 − 𝛾𝑇𝑊 𝑇
𝑖

)

+𝜑𝑘𝑙

(

𝑃

(

𝐴𝑖 0
0 𝐴𝑖

)

−𝑊𝑖𝛾

)

𝑘,𝑙∈[1,𝑚]

< 0
(22)

with:

𝐷𝑖 =

(

𝐴𝑖 + 𝛥𝐴𝑖+ 0

0 𝐴𝑖 + 𝛥𝐴𝑖
+

)

(23)

𝛾 =
(

𝐶 0
0 𝐶

)

(24)

𝜂 = 2 max
𝑖=1,…,𝑁

(

‖𝛥𝐴𝑖
+ − 𝛥𝐴𝑖

+
‖2 + ‖𝛥𝐴𝑖

−
‖2 + ‖𝛥𝐴𝑖

−
‖2

)

(25)

𝜀 = 1 + 𝜀2 + (1 + 𝜀1)−1 (26)

then, the TS interval observer (11) with gains calculated as:

= 𝑃−1𝑊 𝑖 (27)

𝐿 = 𝑃−1𝑊 𝑖 (28)

ensure the estimation of the interval x(k) given by (10), provided that (11)
and (14) are fulfilled.

The overall system of LMIs (18),(19),(20),(21) and (22) can be
solved efficiently using available solvers, as YALMIP toolbox. The proof
of the theorem can be consulted in Rotondo et al. (2016).

3.3. Fault diagnosis based on residual generation

By considering the estimated outputs (12)–(13), the following resid-
uals can be obtained as:

𝑟(𝑘) = 𝑦(𝑘) − 𝑦(𝑘); (29)

𝑟(𝑘) = 𝑦(𝑘) − 𝑦(𝑘); (30)

where 𝑟(𝑘) ∈ R𝑁𝑦 is the residual. In the ideal case, 𝑟(𝑘) ≈ 0 if there are
no faults present. However, it may be non-zero in a fault-free scenario

due to measurement noise, modeling errors, among others.
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A robust passive approach based on an adaptive threshold can be
sed (Puig et al., 2008). Thus, using this passive approach, the impact
f the parameter uncertainties on the residual 𝑟(𝑘) associated with each
utput of the system 𝑦(𝑘) is bounded by an interval that will include the
ero value in the absence of faults. Therefore, a fault detection test can
e formulated as:

(𝑘) ∈
[

𝑦(𝑘), 𝑦(𝑘)
]

(31)

where 𝑦(𝑘) is the sensor output, and 𝑦(𝑘) and 𝑦(𝑘) are the limits of the
redicted output given by (12) and (13).

The residuals are derived from the ARRs described in Section 2, the
espective observers will be designed for the dynamic residuals:

𝑟1(𝑘) = 𝑃𝑔(𝑘) − 𝑃𝑔(𝑘)(𝜔𝑔(𝑘), 𝜏𝑔(𝑘)), (32)

𝑟2(𝑘) = 𝜏𝑔(𝑘) − 𝜏𝑔(𝑘), (33)

𝑙+2(𝑘) = 𝛽𝑙(𝑘) − 𝛽𝑙(𝑘), (34)

𝑟6(𝑘) = 𝜔𝑟(𝑘) − 𝜔̂𝑟(𝑘), (35)

𝑟7(𝑘) = 𝜔𝑔(𝑘) − 𝜔̂𝑔(𝑘), (36)

𝑟8(𝑘) = 𝜙𝑟(𝑘) − 𝜙̂𝑟(𝑘)(𝜙𝑟(𝑘), 𝜔𝑟(𝑘)), (37)

𝑟9(𝑘) = 𝛯𝑒(𝑘) − 𝛯̂𝑒(𝑘)(𝛯𝑒(𝑘), 𝜔𝑦,𝑟(𝑘)), (38)

9+𝑙(𝑘) =𝑀𝐵,𝑙(𝑘) − 𝑀̂𝐵,𝑙(𝑘), 𝑙 = 1, 2, 3. (39)

he equations mentioned above search to generate residuals sensitive
nly to one fault. However, from the obtained ARRs, it is clear that
ome faults cannot be isolated because the same fault activates different
esiduals. In this scenario, the method only guarantees the detection but
ot the isolation.

In a fault scenario, the residuals are activated when exceeding the
imits of the interval. If the interval limits are well-defined, then all
alse alarms can be avoided because the ARR guarantee the separability
f the effect of each fault on the residuals. These residuals are stored in
fault incidence matrix, whose elements are constructed by considering

he following logic:

𝑗,𝑖(𝑘) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑟𝑖(𝑘) ∈
[

𝑟𝑖(𝑘), 𝑟𝑖(𝑘)
]

1 if 𝑟𝑖(𝑘) ∉
[

𝑟𝑖(𝑘), 𝑟𝑖(𝑘)
] ,∀𝑗 ∈ [1,… , 𝑁𝑓 ],

∀𝑖 ∈ [1,… , 𝑁𝑦] (40)

here 𝑁𝑓 is the number of faults. Fault isolation is done by evaluating
he incidence matrix and the knowledge of the binary relationship
etween the residuals.

.4. Fault scenarios

The FAST wind turbine benchmark covers different types of possible
aults, as listed in Table 3. These faults have different degrees of
everity; some are very serious and should result in a quick and safe
hutdown; other faults are less severe and can cause a performance
egradation. Different numerical simulations are carried out for the
iagnostic scheme based on Table 3. Each fault scenario is related to
ifferent types of faults that can occur in a real environment (sensors,
ctuators or components). The results obtained are described in the
ext section.

. Results

This section presents the results of the fault diagnosis obtained
rom numerical simulations carried out in the benchmark described
n Odgaard et al. (2013). The wind speed used for the simulations was
17m∕s on average with the profile shown in Fig. 5. The simulations
were carried out for a time interval of 630 s with a sampling frequency
of 80Hz, counting 50 401 samples per variable in the data vectors.
Table 3
Faults simulated in the benchmark.

Fault Class Description Type

Fault 1 Blade root bending moment sensor Scaling
Fault 2 Accelerometer Offset
Fault 3 Generator speed sensor Scaling
Fault 4 Pitch angle sensor Stuck
Fault 5 Generator power sensor Scaling
Fault 6 Low speed shaft position encoder Bit error
Fault 7 Pitch actuator Abrupt
Fault 8 Pitch actuator Slow
Fault 9 Torque offset Offset
Fault 10 Yaw drive Stuck drive

The mechanical and electrical parameters predefined in the benchmark
were not changed, since the characteristics of the wind turbine model
meet the requirements to perform FD tests in a realistic environment.

Fault-free simulations were performed to form the data sets for
ANFIS training. The data sets were divided into 70% for training, 15%
for validation, and 15% for testing. The number of fuzzy rules (FR) is
related to the number of premise parameters of each ARR subsystem as
FR = 2𝑁𝜁 . For the case of 𝜔̂𝑔 , 𝜔̂𝑟 and 𝛽𝑙, 32 FRs were obtained; for 𝜏𝑔 and
̂𝑔 , 16 FRs were obtained. Therefore, the number of local models was
he same as FR for the TS representation. Due to the space limitation,
he model is not presented here, but for 𝛽𝑙, the corresponding model is:

(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇𝑁𝑖 (𝜁 (𝑘))

(

(𝐴𝑖 + 𝛥𝐴𝑖)𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖
)

,

𝑦(𝑘) = 𝐶𝑥(𝑘), (41)

here 𝑥(𝑘) =
[

𝛽𝑙(𝑘), 𝛽𝑙(𝑘 − 1), 𝛽𝑙(𝑘 − 2)
]𝑇 is the state vector and 𝑢(𝑘) =

𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1)
]𝑇 is the input vector. Then, by solving the LMIs (18)–

22) of Theorem 3.1, the following 𝑃 matrix is obtained:

=
⎡

⎢

⎢

⎣

0.5587 0.0759 0.0016
0.0853 0.02285 0.1763
0.0016 0.1763 0.7715

⎤

⎥

⎥

⎦

; (42)

here 𝑃 is positive definite, valid for the set of matrices 𝐿1 of system
41) and satisfies the stability and observability criteria. Due to the
pace limitation, the gain matrices are not displayed here but they can
e easily calculated with Eqs. (27) and (28).

In Fig. 6, the result of the blade pitch angle interval observer is
displayed, where the observer envelops the nominal signal of the 𝛽𝑙
measurement.

In order to verify the performance of the proposed fault diagnosis
method, the entire sequence of ten faults presented in Table 3 is
applied. Faults were detected at the time of occurrence, established
according to the detection and isolation requirements of the benchmark
given in Odgaard et al. (2013). Table 4 display the incidence matrix
onstructed according to (40). Fault detection and isolation can be done
asily by evaluating this matrix. For example, let us consider the fault
n the torque sensor corresponding to fault 9 from 𝑡 = 495 s to 𝑡 = 520 s

whose corresponding residuals are displayed in Fig. 7. As observed, the
activated residuals are 𝑟1, 𝑟2, 𝑟6, and 𝑟7, which is congruent with the
information displayed of the incidence matrix. Then, the fault isolation
can be done by evaluating this particular signature with binary logic.
A similar analysis can be done for the rest of the faults. Although the
plots in Figs. 6 and 7 correspond only to the wind profile shown in
Fig. 5, other tests with different wind profiles did not show significant
variations in fault detectability/isolability.

Note that for faults 4, 7 and 8 the same residuals are activated,
which means that these faults can be detected, but cannot be isolated.
From the physical point of view, this situation occurs because they
correspond to the same component of the pitch system. Since the
proposed scheme is based on the ARRs, this issue represents an area of
opportunity to explore other data-driven fault diagnosis schemes that

could deal with these faults.
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Fig. 5. Wind speed profile at hub height for simulation tests.
Fig. 6. Interval observer 𝛽
𝑙

and 𝛽𝑙 of 𝛽𝑙 .
Table 4
Incidence matrix for the set of fault scenarios considered in the benchmark.

Fault 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 𝑟11 𝑟12
1 0 0 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0 1 1 1
3 1 0 0 0 0 0 1 0 0 0 0 0
4 0 0 1 1 1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 1 1 1 0 0 0 0 0 0 0
8 0 0 1 1 1 0 0 0 0 0 0 0
9 1 1 0 0 0 1 1 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1 0 0 0

To obtain a perspective of the effectiveness of the proposed method,
t is compared with different FD schemes. Table 5 compares the re-
orted detection time for different methods, taking as a reference the
etection time requirements reported in Odgaard et al. (2013). The
etection times (𝑇𝐷) are in terms of the sampling time (𝑇𝑠) which is

.0125 s in this case. The first column is related to the fault number,
and the second column displays the required detection time. The rest of
the columns display different detection methods, including this paper’s
proposal. The results reported in the literature of four relevant methods
are considered. A fusion classifier approach (CFA), reported in Pas-
hazadeh et al. (2018) where a combination of three classifiers is used
for fault detection: multilayer perceptron (MPL), 𝑘-nearest neighbor
(KNN), and decision tree. Some of the faults can be detected within the
time requirements, however, this method does not consider (NC) faults
1 and 7. A support vector machine and Kalman observer (SVMKO) used
to isolate faults in different components proposed by Sheibat-Othman
et al. (2013). This proposal marks NC three faults and only a few are
within the requirements. A scheme combining support vector machine
and residual (SVMR) techniques for FD of wind turbine faults proposed
by Zeng et al. (2013). The results of this combined method meet the FD
time requirements, but cannot detect fault 1. Interval observers based
on ARRs (IOBA) presented by Sanchez et al. (2015) which is a model-
based method and improves the previous FD results with respect to the
number of faults that can be detected, but it strongly depends on the
model and the calibration in its methodology. Finally, the approach

presented in this work is shown in Table 5 as ANFIS-TS where its
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Fig. 7. Observed fault 9 signature in drive-train sensor.
ffectiveness can be observed, being able to detect all faults in the
equired time.

With respect the FD times, the SVRM method can detect faults 2,
, 7 and 8 slightly faster than the method proposed in this paper. It
s important to mention that although SVRM can detect these faults
aster; compared to the required time for detection, the difference with
NFIS-TS is minimal. While ANFIS-TS is superior for faults 4,6,9 and
0, where the improvement in detection time is more significant when
he required time for detection is taken into account, particularly for
aults 4 and 10. In addition, ANFIS-TS can detect fault 1, which SVRM
annot. The rest of the methods are clearly slower than ANFIS-TS. Thus,
t can be concluded that ANFIS-TS is effective in FD, complying with
he detection times and improving most of the FD times, demonstrating
that when using the data-based methods and combining them with
observers, the results are improved.

This work followed the standard way of adding the uncertainty by
using the measured data covariance. Nevertheless, a better form of
adding this uncertainty could be by considering them as part of the
fuzzy identification of the ANFIS. On the other hand, the selected in-
terval limits affect the fault diagnosis observer. To improve the method,
techniques based on set membership can be implemented to propagate
the uncertainties through zonotopic interval observers. Finally, faults 4,
7, and 8 can be detected but not isolated because of the construction
of the residuals, which are based on the ARR. However, it is possible
to implement an additional residual evaluation based on an ANN that
could discern between the slight differences of the residuals and thus
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Table 5
Comparison of results of different FD schemes.

Fault 𝑇𝐷 required 𝑇𝐷 obtained

ANFIS-TS CFA SVMKO SVMR IOBA

1 <10 𝑇𝑠 2 𝑇𝑠 NC NC NC 3 𝑇𝑠
2 <10 𝑇𝑠 7 𝑇𝑠 17 𝑇𝑠 3 𝑇𝑠 6 𝑇𝑠 18 𝑇𝑠
3 <10 𝑇𝑠 2 𝑇𝑠 4 𝑇𝑠 22 𝑇𝑠 1 𝑇𝑠 3 𝑇𝑠
4 <10 𝑇𝑠 2 𝑇𝑠 7 𝑇𝑠 44 𝑇𝑠 6 𝑇𝑠 3 𝑇𝑠
5 <10 𝑇𝑠 2 𝑇𝑠 4 𝑇𝑠 11 𝑇𝑠 2 𝑇𝑠 3 𝑇𝑠
6 <10 𝑇𝑠 4 𝑇𝑠 13 𝑇𝑠 34 𝑇𝑠 6 𝑇𝑠 6 𝑇𝑠
7 <8 𝑇𝑠 5 𝑇𝑠 NC NC 2 𝑇𝑠 375 𝑇𝑠
8 <100 𝑇𝑠 9 𝑇𝑠 11 𝑇𝑠 12 𝑇𝑠 2 𝑇𝑠 33 𝑇𝑠
9 <3 𝑇𝑠 2 𝑇𝑠 18 𝑇𝑠 35 𝑇𝑠 3 𝑇𝑠 3 𝑇𝑠
10 <50 𝑇𝑠 3 𝑇𝑠 32 𝑇𝑠 NC 36 𝑇𝑠 3 𝑇𝑠

isolate the faults that are not possible with the method proposed in this
article (see Puig & Blesa, 2013 where the residual order of activation
is used for improving isolability).

5. Conclusions

In this work, a fault detection scheme for a wind turbine based on
Takagi–Sugeno interval observers was proposed considering parametric
uncertainty. Unlike other FD works, TS models are structured based
on the measurements available in the system. The proposed method
generates confidence intervals that represent the lack of knowledge due
to modeling errors. It is verified that the fault-free measurements are
within the intervals, avoiding false alarms.

Structural analysis of the wind turbine was carried out to ob-
tain a bipartite graph that relates a set of components and a set of
measured variables. Consequently, the ARRs that structured convex
Takagi–Sugeno (TS) models were obtained with an approach based on
neuro-fuzzy learning to identify the wind turbine dynamics. To get the
convex TS representation with modeling uncertainty, the ANFIS were
used, which were trained with fault-free data.

The Takagi–Sugeno observers were designed with fuzzy learning
from inputs and outputs measurements. The fault diagnosis was ad-
dressed by a bank of interval TS observers with adaptable thresholds.

A convex TS system was obtained in the proposed methodology that
considers the parametric uncertainty using only measurements and sys-
tem data. Therefore, observers can be designed, and the LMIs improved.
There is an exploit framework to implement methods without using the
equations of the dynamic system. When no model faithfully represents
a real system, considering the uncertainty bands represents a detection
advantage in faults that are not modeled.

As future work, robust fault diagnostic schemes will be imple-
mented, where the uncertainty propagates in the parameters, adding
noise at the outputs. Another avenue that will be explored is the
implementation of observers based on zonotopes.
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