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Abstract—This letter deals with stability and state feed-
back control of discrete-time Multi-Mode Multi-Dimensional
(M3D) linear systems. The M3D switch dynamics are
modeled through a state mapping describing the mode
transitions. This M3D model framework then allows to con-
sider poly-quadratic Lyapunov functions to obtain Linear
Matrix Inequalities conditions for stability proof and for
the synthesis of state-feedback controllers under H∞
performance. A numerical example illustrates the improve-
ment of the controller synthesis conditions here introduced
for discrete-time M3D systems over independent point-
wise mode solutions.

Index Terms—LMIs, robust control, switched systems.

I. INTRODUCTION

MOST works dealing with switching systems consider
multi-mode systems for which all modes share the

same number of states and model structure. The study in [1]
by Erik I. Verriest was an innovative work that presents
for the first time tools allowing the description of Multi-
Mode Multi-Dimensional switching system, categorized there
as M3D systems. Since then, the generalization of switching
systems to the multi-dimensional mode case have gained in
popularity thanks to the problems this framework allows to
tackle. In [2], the authors provide a framework for the optimal
control of M3D switching systems. As a motivating exam-
ple, they derived a model of an ice-skater with four distinct
modes for which the optimal control algorithm provides the
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optimal switching instant and the forces to be applied. An
interesting application of M3D systems was presented in [3],
where it is modeled a spacecraft group formation as a state-
varying switched system in which new spacecrafts can join
or leave the formation. Moreover, the authors provided results
to analyze the stability and fault tolerance of the formation.
In [4], conditions are given for checking the stability of Multi-
Dimensional switching systems with additional state jump,
based on parametric Lyapunov functions, given an applica-
tion to the problem of consensus in open multi-agent systems.
Meanwhile, in [5], the LQ control approach is studied for
multi-agent dynamic systems with increasing state dimen-
sions, and is applied to a tracking problem in leader-following
dynamics.

As emphasized, the application space of M3D systems
covers many different fields and opens up the possibility
of tackling new problems with a straightforward framework.
However, to the best of the Authors knowledge no work has
presented yet tools for the general stabilization and feedback
control of M3D systems. This letter concerns the domain of
linear systems, for which many problems in control theory
can be formulated using Linear Matrix Inequalities (LMI) [6].
The main contributions of this letter are the extension of
well-known LMI conditions for discrete-time LTI systems,
e.g., [7]–[10], to the stabilization and feedback control of
discrete-time M3D linear systems including:

• the proof of asymptotic stability,
• the computation of the H∞ norm,
• the synthesis of H∞ state-feedback controllers.
This letter is organized as follows: Section II presents the

dynamical equations of discrete-time M3D LTI systems. In
Section III, the stability of discrete-time M3D systems is stud-
ied. Meanwhile, in Section IV, conditions for computing the
H∞ norm of discrete-time M3D systems are given, which in
Section V are extended to the synthesis of state-feedback con-
trol for discrete-time M3D systems. A numerical example is
used in Section VI to explore the benefits of the proposed
method. Finally, some conclusions about the present study and
possible applications are discussed in Section VII.

This letter notation is the following. ‖·‖2 represents the
L2-norm and ‖·‖∞ represents the H∞ norm. xT represents
the transpose of x. X−1 represents the inverse of X, matrix
X > 0 represents that X is positive-definite and ∗ in an LMI
represents a symmetric element transposed. The term mode
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indicates a point of operation of the M3D system with indi-
vidual system matrices, x(i) represents that x belongs to the
mode i of the M3D system, xji represents that x is an element
involved in the transition from mode i to mode j.

II. M3D SYSTEM DYNAMICS

This letter is concerned with the study of discrete-time LTI
systems under Multi-Mode Multi-Dimensional (M3D) switch-
ing conditions. In the absence of M3D switching, the dynamics
of the active mode i (given m modes) are given as:

M(i) =
{

x(i)
k+1 = A(i)x(i)

k + B(i)wk

zk = C(i)x(i)
k + D(i)wk

(1)

where x(i)
k ∈ R

ni is the state vector, wk ∈ R
nw is the vector

of exogenous inputs with bounded energy such that wk ∈ L2
and zk ∈ R

nz is the vector of control performances. All along
this letter, it is assumed that the switching signal is available
in real-time, therefore, the active mode i is always known.

To account for the M3D switching, we consider the frame-
work introduced in [1], based on the notion of energy limited
transitions. Such representations are of high interest when the
structure and size of the system model can change accordingly
to operating conditions. Let assume two modes with states
x(i) ∈ R

ni and x(j) ∈ R
nj respectively. The M3D system mode

transition from mode i to mode j is defined by introducing the
state mapping Tji as:

x(j) = Tjix
(i), Tji ∈ R

nj×ni (2)

Now, the M3D transition is assumed to occur during the
switching from sampling instance k to sampling instance k+1.

With this assumption and from (1)-(2), the system dynamics
during the M3D transition from mode i to j are then given as:

M(ji) =
{

x(j)
k+1 = Tjix

(i)
k+1 = TjiA(i)x(i)

k + TjiB(i)wk

zk = C(i)x(i)
k + D(i)wk

(3)

III. STABILITY OF M3D SYSTEMS

As stated in [1] for energy limited transitions, a energy
function V(i)(x(i)

k ) ∈ R is associated with each mode i. By
setting (2), the energy function at the switching instance must
fulfill for energy dissipation:

V(j)(x(j)
k+1) = V(j)(Tjix

(i)
k+1) ≤ V(i)(x(i)

k ) (4)

By considering in this letter a poly-quadratic energy function
of the type

V(i)(x(i)
k ) = x(i)T

k X(i)x(i)
k , (5)

where X(i) ∈ R
ni×ni is a mode-dependent positive-definite

symmetric matrix, as in [7], then the stability of a M3D system
can be proved if the following theorem holds true.

Theorem 1: A M3D discrete-time autonomous system M is
stable if, for each mode i = 1, . . . , m of M, there exist matrices
Q(i) = Q(i)T

> 0, with Q(i) ∈ R
ni×ni , and G(i) ∈ R

ni×ni such
that the following conditions are satisfied:[

G(i)T + G(i) − Q(i) G(i)TA(i)T

∗ Q(i)

]
≥ 0

∀i mode (6)[
G(i)T + G(i) − Q(i) G(i)TA(i)T

Tij

∗ Q(j)

]
≥ 0

∀(i, j) connected pair of modes, i 
= j. (7)

Proof: Let us consider the active mode (1) restricted to the
autonomous dynamics:

M(i) =
{

x(i)
k+1 = A(i)x(i)

k . (8)

By considering (2), the dynamics of the autonomous mode
during the M3D transition then are:

M(ji) =
{

x(j)
k+1 = TjiA(i)x(i)

k . (9)

From (4), considering a energy function (5), the energy lim-
ited condition during the switching instance can be written as:

x(j)T

k+1X(j)x(j)
k+1 − x(i)T

k X(i)x(i)
k ≤ 0, (10)

which according to (9) is equivalent to:

(TjiA(i)x(i)
k )TX(j)(TjiA(i)x(i)

k ) − x(i)T

k X(i)x(i)
k ≤ 0 (11)

This can then be rearranged as:

x(i)T

k

[
A(i)T

TT
ji X(j)TjiA(i) − X(i)

]
x(i)

k ≤ 0 (12)

Using Schur complement, (12) is then equivalent to:[
X(j)−1

TjiA(i)

∗ X(i)

]
≥ 0 (13)

Applying basic matrix row/column manipulation and a congru-
ence transformation with diag([G(i), I]), where G(i) ∈ R

ni×ni

is a general matrix, leads to:[
G(i)T

X(i)G(i) G(i)TA(i)T
TT

ji

∗ X(j)−1

]
≥ 0. (14)

Now, let us assume that condition (7) is true. By setting X−1 ≡
Q in (7) the following inequality is obtained[

G(i)T + G(i) − X(i)−1
G(i)TA(i)T

TT
ji

∗ X(j)−1

]
≥ 0, (15)

Using the simplified Young’s relation [8], [11]:

G(i)T
X(i)G(i) ≥ G(i)T + G(i) − X(i)−1

then (15) is a sufficient condition for (14), and thus for the
stability of M during a M3D transition. Notice that for the non-
switching case, the same steps with X(i) = X(j) and Tji = I ∈
R

ni×ni proves the sufficiency of condition (6), with (6) being
a well known result for checking the asymptotic stability of
discrete-time linear systems through the use of LMI [8]. This
concludes the proof.

Remark 1: Theorem 1 can be seen as an extension to
discrete-time M3D systems of well-known results for the sta-
bility of discrete-time switched linear systems, e.g., [9]. Note
that Theorem 1 assumes a dwell-time equal to one sampling
period Ts, which presupposes a completely random switching
sequence and may be too strict. Instead, (7) can be modified to
obtain the minimum dwell-time �∗ for the M3D system M, by
discretizing M with a sampling time �∗Ts as explained in [9].



This remark about the switching dwell-time also applies to the
following results presented in this letter.

In the next section, the stability condition for M3D systems
is extended with conditions for H∞ performance.

IV. H∞ NORM FOR DISCRETE M3D SYSTEMS

Closed-loop systems need not only to be stable with respect
uncertainties and disturbances but also being able to fulfill
some performance requirements. To achieve this, one of the
most well-known and powerful techniques in the control lit-
erature for LTI systems is the H∞ robust control theory. The
key concept being the H∞ norm of systems, which is asso-
ciated with the maximum effect γ∞ the exogenous inputs wk
have over the control performance outputs zk:

‖z‖2

‖w‖2
≤ γ∞ (16)

The most common way of determining γ∞ is making use of
the Bounded Real Lemma [6]. The next theorem extends the
Bounded Real Lemma to the case of discrete M3D systems to
determine an upper bound of its H∞ norm.

Theorem 2: Consider a discrete M3D system M and scalar
γ∞ > 0. If, for each mode i = 1, . . . , m of M, there exist
matrices Q(i) = Q(i)T

> 0, with Q(i) ∈ R
ni×ni , and G(i) ∈

R
ni×ni such that the following LMI problem is feasible:

Q(i) > 0 (17)⎡
⎢⎢⎣

G(i)T + G(i) − Q(i) G(i)TA(i)T
G(i)TC(i)T

0
∗ Q(i) 0 B
∗ ∗ γ∞I D
∗ ∗ ∗ γ∞I

⎤
⎥⎥⎦ ≥ 0

∀i mode (18)⎡
⎢⎢⎣

G(i)T + G(i) − Q(i) G(i)TA(i)T
TT

ji G(i)TC(i)T
0

∗ Q(j) 0 TjiB
∗ ∗ γ∞I D
∗ ∗ ∗ γ∞I

⎤
⎥⎥⎦ ≥ 0

∀(i, j) connected pair of modes, i 
= j (19)

Then, γ∞ is an upper bound of the H∞ norm of M, such
that ‖M‖∞ ≤ γ∞. If the optimal γ∞ is required, the LMI
minimization problem for γ∞ is still an LMI problem with
variables γ∞, Q and G.

Proof: Let us consider a poly-quadratic energy function (5)
such that during the M3D mode transition the following
condition holds true

V(x(j)
k+1) − V(x(i)

k ) + 1

γ∞
zT

k zk − γ∞wT
k wk ≤ 0. (20)

Expanding the quadratic energy condition according to the
M3D switching dynamics (3), it can then be rearranged in
matrix form as [

x(i)
k

wk

]T

�

[
x(i)

k
wk

]
≤ 0, (21)

with � as in (22), shown at the bottom of the page.
Applying a Schur Complement around 1

γ∞ I followed by a

Schur Complement around X(j), then (21) is equivalent to⎡
⎢⎢⎣

X(j)−1
TjiA(i) TjiB(i) 0

∗ X(i) 0 C(i)T

∗ ∗ γ∞I D(i)T

∗ ∗ ∗ γ∞I

⎤
⎥⎥⎦ ≥ 0 (23)

Now, following the same way as in Theorem 1, from basic
row/column manipulations followed by a congruence trans-
formation by diag([G(i), I, I, I]) applied to (23), and making
use of the simplified Young’s relation, we can prove that the
LMI (19) with X−1 ≡ Q implies (23). As in the stability case,
for the non switching condition, by setting X(i) = X(j) and
Tji = I ∈ R

ni×ni the same chain of steps proves sufficiency of
condition (18), which is a well known result for the computa-
tion of the H∞ performance of discrete-time systems through
the use of LMI [10]. This concludes the proof.

V. H∞ STATE-FEEDBACK CONTROL

FOR DISCRETE M3D SYSTEMS

The objective of this section is to introduce the H∞ control
of discrete-time M3D systems. Let us consider the discrete-
time M3D system N, where the dynamics of the active mode
i are:

N(i) =
{

x(i)
k+1 = A(i)x(i)

k + B(i)
u uk + B(i)

w wk

zk = C(i)
z x(i)

k + D(i)
u uk + D(i)

w wk
(24)

where x(i)
k ∈ R

ni is the state vector, wk ∈ R
nw is the vector

of exogenous inputs with bounded energy such that wk ∈ L2,
zk ∈ R

nz is the vector of control performances and uk ∈ R
nu

is the vector of control inputs.
By introducing the discrete-time state-feedback control law

uk = K(i)x(i)
k , (25)

the H∞ control problem is therefore to find suitable matrices
K(i) ∈ R

nu×ni that render N closed-loop stable, and minimizes
the influences of the exogenous inputs wk on the control per-
formances zk, according to an H∞ norm criterion. This is
achieved if the following theorem holds true.

Theorem 3: Consider a discrete M3D system N and scalar
γ∞ > 0. If, for each mode i = 1, . . . , m of N, there exist
matrices Q(i) = Q(i)T

> 0, with Q(i) ∈ R
ni×ni , G(i) ∈ R

ni×ni

and Y(i) ∈ R
nu×ni such that the following LMI conditions are

satisfied:

Q(i) > 0 (26)⎡
⎢⎢⎢⎣

G(i)T + G(i) − Q(i) �
(i)
1,2 �

(i)
1,3 0

∗ Q(i) 0 B(i)
w

∗ ∗ γ∞I D(i)
w

∗ ∗ ∗ γ∞I

⎤
⎥⎥⎥⎦ ≥ 0 (27)

� =
[
A(i)T

TT
ji X(j)TjiA(i) − X(i) + 1

γ∞ C(i)TC(i) A(i)T
TT

ji X(j)TjiB(i) + 1
γ∞ C(i)TD(i)

∗ B(i)T
TT

ji X(j)TjiB(i) + 1
γ∞D(i)TD(i) − γ∞I

]
(22)
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with

�
(i)
1,2 = G(i)T

A(i)T + Y(i)T
B(i)T

u ,

�
(i)
1,3 = G(i)T

C(i)T

z + Y(i)T
D(i)T

u

∀i mode⎡
⎢⎢⎢⎣

G(i)T + G(i) − Q(i) �
(ji)
1,2 �

(ji)
1,3 0

∗ Q(j) 0 TjiB
(i)
w

∗ ∗ γ∞I D(i)
w

∗ ∗ ∗ γ∞I

⎤
⎥⎥⎥⎦ ≥ 0 (28)

with

�
(ji)
1,2 = G(i)T

A(i)T
TT

ji + Y(i)T
B(i)T

u TT
ji ,

�
(ji)
1,3 = G(i)T

C(i)T

z + Y(i)T
D(i)T

u

∀(i, j) connected pair of modes, i 
= j

Then, there exists a state-feedback control law uk = K(i)x(i)
k

such that ‖z‖2‖w‖2
≤ γ∞. The state-feedback control matrices are

recovered according to K(i) = Y(i)G(i)−1
, for each mode i =

1, . . . , m of N. Now, if the optimal γ∞ is required, the LMI
minimization problem for γ∞ is still an LMI problem with
variables γ∞, Q, G and Y .

Proof: Note that N(i) can be rewritten as M(i) in (1)
considering:

A(i) = A(i) + B(i)
u K(i) B(i) = B(i)

w

C(i) = C(i)
z + D(i)

u K(i) D(i) = D(i)
w (29)

Substitute the closed-loop system matrices M(i) from (18)
and (19) with the system matrices of N(i), according to (29).
Then, with the introduction of the linearizing change of vari-
ables Y(i) = K(i)G(i), the LMI conditions (27) and (28)
are both recovered. With (27) recovering a well-known
result for H∞ state-feedback synthesis for discrete-time LTI
systems [10]. This concludes the proof.

Remark 2: Note that, in some cases Theorem 3 may be
too restrictive. Indeed, as formulated, the closed-loop H∞
performance should be maintained even during a M3D mode
transition. If too conservative or unnecessary, a compromise
may be to drop the strong requirement of H∞ switching
performance in favor of only requiring switching stability. This
can be achieved by substituting the LMI condition (28) by[

G(i)T + G(i) − Q(i) �
(ji)
1,2

∗ Q(j)

]
≥ 0, (30)

which comes from applying the linearizing change of variables
Y(i) = K(i)G(i) in (7).

Remark 3: Reduction of conservatism in Theorem 3 could
also be achieved with the introduction of a new slack variable
Y(ji) = K(ji)G(ji) in either LMI condition (28) or (30), such
that the state-feedback controller K(ji) = Y(ji)G(ji)−1

is only
active during the transition from mode i to mode j. This is
similar as have been proposed for control of continuous-time
switching systems in [12].

VI. NUMERICAL EXAMPLE

In this section, a numerical example is given to illustrate
the potential of the synthesis conditions provided in this letter
for M3D systems. First, the M3D system is presented. Then,

the use and interest of the provided theorems are illustrated.
Finally, some simulation results are carried out together with
some analysis of the obtained results.

A. System Description

It is considered a discrete-time M3D system N such that the
active mode i dynamics are given by:

N(i) =
{

x(i)
k+1 = A(i)x(i)

k + B(i)
u uk + B(i)

w wk

zk = C(i)
z x(i)

k

(31)

The system N has three modes with state dimensions x(1)
k ∈

R
4, x(2)

k ∈ R
10 and x(3)

k ∈ R
6. The system matrices are

given by:

A(1) =

⎡
⎢⎢⎣

0.25 0.16 0.44 −0.08
0.2 −0.07 −0.28 0.06

0.48 −0.29 0.18 −0.02
0.00 0.06 0.00 0.60

⎤
⎥⎥⎦, (32)

A(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −0.15 0.06 0.18 −0.10 0.09
0.14 −0.02 −0.29 0.42 0.35 −0.13

−0.08 −0.27 0.21 0.06 −0.27 −0.06
0.24 0.34 0.09 0.15 −0.16 −0.16
0.10 0.32 −0.28 −0.11 −0.12 −0.07
0.07 −0.07 −0.09 −0.15 −0.03 0.46

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

and

A(2) =
[

A(1) A(2)
1,2

A(2)
2,1 A(3)

]
(34)

with

A(2)
1,2 =

⎡
⎢⎢⎣

0.26 − 0.28 0.16 − 0.27 0.15 − 0.13
−0.08 0.07 − 0.21 − 0.34 0.30 − 0.11
−0.08 0.34 0.07 − 0.20 0.00 0.42
0.14 0.26 0.46 0.04 0.07 0.04

⎤
⎥⎥⎦

A(2)
2,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.27 − 0.17 − 0.16 − 0.02
−0.12 0.03 0.33 0.19
0.09 − 0.18 0.08 0.51

−0.23 − 0.37 − 0.23 − 0.02
0.26 0.27 − 0.01 0.00

−0.14 − 0.09 0.43 0.08

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

Notice from (34) that modes 1 and 3 are subsystems
of mode 2. The chosen system aims to represent a multi-
component system with coupled dynamics. However, note that
having a mode encompassing all other modes is not a require-
ment of the methods presented in this letter. Also, note from
the first diagonal element in (33), that mode 3 (thus, mode 2
too) has unstable open-loop dynamics, with A(2) having unsta-
ble poles at p = 1.53 and at the unit circle, and A(3) having a
single unstable pole at p = 1.49.

On the other hand the system N has two control inputs, with
the input matrix of each mode given by:

B(1)
u =

[−1.53 0 − 1.96 0.73
−1.01 − 0.52 1.96 0

]T

, (36)

B(3)
u =

[
0.83 − 0.10 0.43 0.30 0 − 0.68

0 0 0 0.89 0 0.06

]T

(37)



and

B(2)
u =

[
B(1)T

u B(3)T

u

]T
(38)

All modes are affected by disturbance inputs, such that the
disturbance input matrix of each mode is given by

B(i)
w = 0.1 · B(i)

u . (39)

The performance output matrix for each of the three modes
of N are chosen as:

C(1)
z = [

0 0 0 1
]
, (40)

C(2)
z =

[
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]
(41)

and

C(3)
z = [

0 0 0 0 0 1
]

(42)

It is worth noticing that the dimension of the control
performance output vector z(k) is different for all modes. This
has been chosen to illustrate that the proposed method can han-
dle cases where the dimensions of u(k), w(k) and z(k) change
during mode transitions. This can be accomplished without
any modification on the results provided in previous sections.
It is also important to note that the control performance output
matrices C(i)

z indicate the signals to be minimized following
the H∞ criterion. Of course, for state feedback control, it is
moreover assumed that all states are available.

Note also that, later on, the control performance output of
the mode 1 is referred to as za(k), while it is referred to as zb(k)
for the mode 3, and therefore, for the mode 2 the considered
performance output vector is denoted z(k) = [za(k), zb(k)]T .

The M3D system N is considered to switch with arbitrary
conditions and no restrictions, such that the active mode in the
next sampling instance could potentially (but not necessarily)
switch to any of the other two modes. As a result, it is con-
sidered all mode pairs (i, j), i 
= j, are connected. The state
mappings Tji for each Multi-Dimensional transition are:

T12 = [
I4×4 04×6

]
, (43)

T32 = [
06×4 I6×6

]
, (44)

T13 = [
04×6

]
(45)

and

T21 = TT
12, T23 = TT

32, T31 = TT
13. (46)

Note that M3D transitions involving T21, T23 and T31 imply a
dilation of the state vector. In these cases, it is assumed that
new appearing state variables are initialized with zero initial
condition.

B. Control Design

Two different control approaches are considered in this sec-
tion. In the first baseline approach, independent state-feedback
controllers are designed for each mode i of N. In order to check
the stability of the global system N in closed-loop, Theorem 1
is then employed. The second approach follows our proposed
method, so the design of the state-feedback control law is
carried out applying Theorem 3 to the global system N.

Fig. 1. Active mode i during arbitrary switching conditions.

As mentioned, the synthesis of controllers for the first
approach is done as an independent discrete-time LTI con-
trol synthesis problem for each mode of N. The computation
of all controllers K(i) is performed considering the LMI con-
dition (27) from Theorem 3 only, without accounting for the
transition’s effect (so actually using the method in [10]). As
each controller is computed independently of the others, this
results in three different LMI optimization problems where
the optimal H∞ norms found in each case are γ

(1)∞ = 0.0732,
γ

(2)∞ = 0.1442 and γ
(3)∞ = 0.0686. However, it is well known

that stable systems can be rendered unstable under arbitrary
switching conditions [13]. With the independently computed
state-feedback controllers K(i) and relation (29), the stabil-
ity of the switched M3D closed-loop system can be tested
employing Theorem 1. In this scenario, the M3D closed-loop
system could not be proved to be stable as the conditions from
Theorem 1 were not satisfied.

Concerning the second scenario (our approach), the con-
trollers K(i) are computed considering the global M3D system
N by employing Theorem 3. To tackle the design problem
it is required to solve a total of nine LMI conditions, with
three LMI according to (27) for the H∞ control of each mode
plus six LMI conditions according to (28) to account for all
the possible Multi-Dimensional mode transitions. The obtained
optimal upper bound on the H∞ norm of the closed-loop
system is γ∞ = 0.19.

C. Simulation Analysis

Following the discussed control design approaches, two sim-
ulation scenarios are proposed. The first scenario considers
the case where independent controllers have been designed
for each mode, while the second scenario presents the results
of the global design approach proposed in Theorem 3. In
both scenarios, the system N evolves under arbitrary switch-
ing conditions, where the switching sequence is the same for
both cases, as shown in Fig. 1. Moreover the disturbance sig-
nals were generated such that they values change every five
sampling instances. The randomized value for each of the
two disturbance inputs was chosen to be with zero mean and
variance equal to 1 and 2, respectively.

The control output performance z(k) for each scenario is
shown in Fig. 2. On the top figure, it is shown the control
performances obtained during the first scenario with indepen-
dent controllers for each mode. On the bottom, it is given



Fig. 2. Control performance output z(k ).

Fig. 3. Energy Storage Function V (i)(x (i)
k ) of system N under arbitrary

switching.

the control performances output in the second scenario with
state-feedback controllers computed for the system N globally
according to Theorem 3.

From the simulation results given in Fig. 2, it can be seen
that during the first scenario, the control performances do not
converge and, in fact, they increase in magnitude with time as
the system N in this case is unstable. For the second scenario
however, the closed-loop system is stable despite the pres-
ence of the arbitrary switch conditions and state dimension
and system structure changes during mode transitions.

The stability of the closed-loop system can also be assessed
considering a poly-quadratic storage function as in (5), with
X ≡ Q−1, where Q is the symmetric positive-definite matrix
found from applying Theorem 3. Fig. 3 shows the evolution
of the storage function during both simulation scenarios.

In the first scenario (in blue), the energy in the system
initially converges towards zero. However, the energy in the
last sampling instances starts to increase dramatically indi-
cating closed-loop instability affected by the arbitrary Multi-
Dimensional transitions. In the second scenario (in red), the
energy can be seen to increase for a sampling period after some
transitions, which is to be expected when using discontinuous
Lyapunov functions in switching systems [9], [13]. However,
as seen by Fig. 3, the synthesis method based on Theorem 3
ensures the energy of the M3D system N is globally decreas-
ing, which shows that the system has been stabilized despite
arbitrary switching conditions.

VII. CONCLUSION

In this letter, new conditions using LMI formulation have
been provided in order to test the stability of discrete-time
M3D LTI systems, to compute the H∞ norm of such systems,
as well as to design state-feedback controllers. The syn-
thesis conditions were tested on a numerical M3D system
composed of three modes, two of which are open-loop unsta-
ble, all of different dimensions and under arbitrary switching
conditions.

Therefore, the results here presented allow to study con-
trol problems associated with complex Multi-Dimensional
systems while retaining strong stability guarantees. Some
application examples could be: the control of nonlinear
systems modeled as piecewise reduced linearizations of dif-
ferent dimensions (as commented in [14]) or the control
of MIMO systems with subsystems that could be dis-
carded or not. Furthermore, the results presented in this
letter may be extended with the use of structured Lyapunov
Functions in order to reduce the conservatism on the synthe-
sis conditions [15]. Another interesting extension concerns the
adaption of the results to the Linear Parameter Varying frame-
work, allowing to study problems beyond the scope of LTI
systems.
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