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Abstract— This paper presents an economic reliability-aware
Model Predictive Control (MPC) approach for the Prognostics
and Health Management (PHM) of generalized flow-based
networks. The main enhancement with respect to some existing
approaches relies on the integration of the network reliability
model obtained from a Bayesian Network. In this case, the
controller is able to optimally manage the supply taking into
consideration the distribution of the control effort. The life
of the actuators is extended by delaying as much as possible
the network reliability decay. The proposed methodology also
considers an optimal inventory replenishment policy based on
a desired risk acceptability level, leading to the availability of
safety stocks for unexpected excess demand in networks. The
proposed implementation is illustrated with a real case study
corresponding to an aggregate model of the Drinking Water
transport Network (DWN) of Barcelona.

I. INTRODUCTION

The management of flow-based networks is an interesting
research topic owing to the fact that they are uncertain and
complex systems with an important economic, environmen-
tal, and social impact. The random behaviour of the network
demands and the variability on the prices of the electricity
(which directly influences the actuators operation costs) are
the critical characteristics when trying to control this type
of systems in real-time. To deal with this problem, several
approaches have been proposed from the research community
[9]. Most of them employ an MPC strategy, which solves
a finite time-horizon optimization problem given the future
predictions, that suitably fits with the need to take into
account the demand forecasts to sufficiently fill the different
reservoirs on time. Different approaches were suggested to
enhance this concept, such as in [1], where an LPV-MPC
controller based on a single-layer economic optimization
problem with dynamic constraints has been implemented to
manage a pre-established risk acceptability levels to cope
with the uncertainty of the demand forecast. In [2], an MPC
based on a single-layer economic optimization problem with
dynamic constraints to cope with the components degrada-
tion awareness and safety stock availability to satisfy non-
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Industrial (CSIC-UPC), Carrer Llorens Artigas, 4-6, 08028 Barcelona,
Spain. e-mail: javier.pedrosavicenc.puig@upc.edu

stationary flow demands, has been proposed. In [3], a health-
aware LPV-MPC by using a chance-constraints approach of
the reliability model has been developped.

The main contribution of this paper is to integrate a
Bayesian Network reliability model of a generalized flow-
based network into the common economic MPC used in these
cases; and evaluate it together with the optimal inventory re-
plenishment conditions. Thus, the system reliability obtained
from the Bayesian inference is an event-oriented performance
criterion that measures the probability that all customer
demands will be completely served within a given time
interval from the stock on hand without delay, under normal
and emergency conditions. In [10], a first attempt of such
integration has already been proposed using tracking MPC
and reliability obtained using Bayesian Networks combined
with reliability importance method to include an additional
term in the objective function that takes into account the
actuators’ reliability.

In this paper, the main enhancement with respect to some
existing approaches relies on augmenting the DWN model
with the network reliability model obtained from a Bayesian
Network. Moreover, this paper includes the development of
the whole approach to achieve a network flow optimisation
considering both economic and reliability criteria. Another
contribution of the work is the application of the proposed
technique to a real case of Barcelona DWN.

The structure of this work is as follows. Section II presents
the economic MPC of drinking water transport networks.
Section III describes the inclusion of the health-aware ob-
jective in the economic MPC. Section IV illustrates the
proposed approach in an aggregate model of the Barcelona
DWN. Finally, Section V draws the main conclusions and
suggest future research paths.

II. ECONOMIC MPC OF DRINKING WATER
TRANSPORT NETWORKS

A. Control-Oriented Model

The control-oriented model to implement the MPC is a
discrete-time system (1) that corresponds to the dynamics of
the storage devices for all time instant k ∈ Z≥0.

x(k + 1) = Ax(k) +Bu(k) +Bdd(k), (1)

being x ∈ Rnx the states of the model, and nx the number
of storage devices on the network; they represent the tanks’
levels. The vector u ∈ Rnu represent the control inputs
associated to the flow rates through the actuators of the
network, being nu the total number of them. The vector
d ∈ Rnd represent the disturbances corresponding to the



network demands quantities, being nd the total number of
them. And A ∈ Rnx×nx , B ∈ Rnx×nu and Bd ∈ Rnx×nd

are the system time-invariant matrices that depends on the
network configuration.

Furthermore, the system is subject to some constraints.
First of all, it is subject to the flow-mass balance relations in
the nodes (being nn the total number of them), leading one
equation for each node formulated in a matrix form like:

0 = Euu(k) + Edd(k), (2)

being Eu ∈ Rnn×nu and Ed ∈ Rnn×nd the time-invariant
matrices that depends on the network’s junctions.

Besides, a DWN is subject to the physical inputs and states
constraints, provided by convex and closed polytopic sets
defined as:

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (3a)
u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (3b)

where G ∈ Rnx×nx , g ∈ Rnx , H ∈ Rnu×nu , and h ∈ Rnu

are matrices collecting the system constraints.
Concerning the operation of the considered flow-based

networks, it is assumed that the demands in d(k) and the
states in x(k) are measurable at each time instant k ∈ Z≥0;
while the pair (A,B) is stabilizable.

B. Optimization Problem Formulation

As the MPC requires some criteria to obtain the control
actions, an optimization problem must be defined. Then, the
control goal is to minimize a convex stage cost function ℓ :
Z≥0 × X × U −→ R≥0, which might carry any functional
relationship with the system operation. Therefore, the control
aim can be expressed for minimization of a convex multi-
objective cost function

J =

Np∑
i=0

(ℓe(i|k) + ℓs(i|k) + ℓ∆u(i|k)) (4)

where:
• Economic objective: the economical costs that involve

the flow transport while providing the demanded volume
should be minimized

ℓe(k) ≜ α(k)TWeu(k) (5)

where α(k) is the price per volume unit, and We is
a diagonal positive definite matrix that is used as a
weight to prioritize the terms in the complete objective
function.

• Safety objective: the storage devices should guarantee
some safety supply level to deal with unexpected vari-
ations in the demand

ℓs(k) ≜

{
∥x(k)− xs∥2 if x(k) ≤ xs

0 otherwise
(6)

where xs indicates the storages’ safety levels. However,
this piecewise linear formulation can be avoided by con-
sidering that the safety cost function can be expressed
through a soft constraint by using a slack variable ξ
like:

x(k) ≥ xs − ξ(k) (7)

and also being introduced as an objective term to retain
feasibility of the optimization problem:

ℓs(k) ≜ ξT (k)Wsξ(k) (8)

where Ws is a diagonal positive definite matrix that is
used as a weight to prioritize the terms in the complete
objective function.

• Smoothness objective: in order to avoid overloads on
the pipes, and to preserve the network’s components
lifetime, the actuators are managed based on smooth
control actions. To achieve this smoothing effect, the
variation of the control actions among two consecutive
time instants is penalized as follows:

ℓ∆u(k) ≜ ∆u(k)TW∆u∆u(k) (9)

where ∆u(k) ≜ u(k) − u(k − 1), and W∆u is a
diagonal positive definite matrix that is used as a
weight to prioritize the terms in the complete objective
function.

III. RELIABILITY-AWARE ECONOMIC MPC USING
BAYESIAN NETWORK APPROACH

A. Bayesian Model

Before introducing the Bayesian Model (BM), it would
be convenient to remind what Bayesian probability and
Bayes’ theorem stands for. The first basically consists on an
interpretation of the probability, in such, instead of frequency
or propensity of some phenomenon, probability is interpreted
as a degree of belief in an event, like quantifying a reasonable
expectation. While the second is a probability theory used to
deal with Bayesian statistics, which describes a conditional
probability for an event based on some data, such as prior
information or beliefs about the event. Thus, a Bayesian
Model is a very useful statistical model to manage the
inference of complex systems with conditional dependencies;
and to compute the reliability of any event on them. In
addition, they are usually represented by an acyclic directed
graph, which easily shows the parental relationships between
the relevant system components.

In this project, a BM is aimed to be used for the reliability
evaluation of the flow-based network, but only considering
the actuators as components with considerable reliability
influence. In order to lighten the computation of the proposed
approach, and consequently, make it able to compute larger
systems, a BM is evaluated for each demand independently.
And once the reliabilities of all the demands are obtained,
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the global system reliability is calculated. Figure 1 shows
a graph example of the BM for a single demand of a
simple DWN. Then, to integrate the BM in the MPC, an
equivalent interpretation of the implied inference is required.
This reinterpretation starts finding the minimal paths from
all the available sources, and as indicated, only taking into
account the actuators involved in them. The pure parents are
considered to be these actuators, corresponding to the first
light blue nodes column of Figure 1. These are observable
evidences, required to perform the conditional probabilities
for the subsequent children (next graph columns of Figure
1), which are, respectively:

Step 1: All paths leading to the relevant demand, whose
reliabilities lies on the series multiplication of the actuators’
reliabilties involved in each one, which means the direct
product of these probabilities: P =

∏n
i=0 Pi, implying that

all of them must be operative to make the path feasible.
In the network example of the Figure 1, this is represented
with the nodes corresponding to the available paths in the
second purple nodes column. The parents for each one are
the actuators involved in each path, and they are the same
ones whose reliabilities will be multiplied to obtain each
path’s one.

Step 2: All sources with access to provide the relevant
demand. In this case, the reliability for each one is the
parallel multiplication of the reliabilities of those paths that
provide supply from the relevant source, which means the
complementary of the product of all the complementaries of
these probabilities: P = 1−

∏n
i=0 1−Pi, implying that one

feasible path is enough to make the source available. In the
network example of the Figure 1, this is represented with
the nodes corresponding to the available sources in the third
light green nodes column. The parents for each one are the
paths supplying from each source, and they are the same ones
whose reliabilities will be computed to obtain each source’s
one.

Step 3: Finally, there is the relevant demand, whose
reliability is also a parallel multiplication of the available
sources, implying that one available source is enough to
provide the supply. In this case, it corresponds to the last
column with a single red node of the graph example of Figure
1, and all the sources are the parents to perform the relevant
reliability calculation.

Fig. 1. Single demand Bayesian Model graph.

Afterwards, once the reliabilities of all the demands are
computed separately, the reliability for the global system
is evaluated as well as a series multiplication of all the
demands, implying that all of them must be provided to
satisfy the system.

B. Augmenting Network Model with the Bayesian Model

As discussed in the introduction, the main contribution
of this work is to integrate the information about system
health in the MPC controller by using a BM. This way,
and considering the actuators the only components which the
degradation affects to, a continuous evaluation of their states
can be performed to check the overall system reliability.

1) Individual Reliability: In the literature, different types
of distributions have been considered to characterize the evo-
lution of the reliability with time. The most commonly used
are exponential, normal, log-normal, and Weibull distribu-
tions [5]. In this case, the exponential function is considered.

First of all, it is important to define the concept of failure
rate, which is crucial to obtain reliability. The general expla-
nation of failure rate, indicated by λ, is presented as the frac-
tion of the density of the stochastic lifetime to the remainder
function (i.e., conditional probability). Particularly, systems
are designed to work under different load values. According
to [5], the load firmly affects the component failure rate.
Therefore, for presenting system reliability evaluation, the
load versus failure rate relationship should be considered.

In this paper, actuator failure rates under various load
levels are considering in function of the applied control
input. The following exponential law is the most widely used
relationship to characterize the variation of the actuator fault
rates with the load

λi(k) = λ0
i exp

(
βiui(k)

)
, i = 1, ..., n (10)

where λ0
i represents the baseline failure rate (nominal failure

rate) and ui(k) is the control action at a time instant k for
the i-th actuator, being n. βi is a constant parameter that
depends on the actuator characteristics.

Then, the reliability of a component Ri(t), in the useful
life period, can be specified at a certain time t by exploiting
the exponential function as follows

Ri(t) = exp

(
−

∫ t

0

λi(τ) dτ

)
, i = 1, ..., n (11)

In discrete-time, Equation (11) can be rewritten as

Ri(k+1) = Ri(k)·exp
(
−Ts ·λi(k)

)
, i = 1, ..., n (12)

where λi(k) is the failure rate at a time instant k that is
acquired from the i-th component under varying load levels
ui; and Ts is the sampling time.



2) Overall System Reliability Modeling: The system lifes-
pan can be determined by the reliability of the overall system,
which is denoted as Rg(k). This reliability is obtained based
on the computation of the previous presented reliabilities of
elementary components (or subsystems). Therefore, Rg(k)
is influenced by the configuration of the actuators, that can
be computed from the combination of parallel and/or series
of the network components [7].

To add the Bayesian inference in the MPC, the developed
reinterpretation of the Bayesian model introduced in Section
III-A must be performed, starting computing the reliabilties
for the multiple paths Pj subsystems as

Rpj(k) =
∏
i∈Pj

Ri(k), Pj ⊂ I j = 1, 2, ..., np (13)

being np the total number of paths; and Pj the subset of
the i-indices corresponding to the actuators involved in each
path.

Consecutively, the paths are subdivided in new subsys-
tems. First, according the demand which provide to; and
then according the source from where the supply is provided.
So, to obtain the reliabilities for each source, the following
computation is performed

Rsl(k) = 1−
∏
j∈Sl

(1−Rpj(k)), Sl ⊂ J l = 1, 2, ..., ns

(14)
being ns the total number of sources; and Sl the subset of
the j-indices corresponding to the paths providing from each
source. And, to obtain the reliabilities for each demand

Rdh(k) = 1−
∏
l∈Dh

(1−Rsl(k)), Dh ⊂ L h = 1, 2, ..., nd

(15)
being nd the total number of sources; and Dh the subset of
the l-indices corresponding to the available sources for each
demand.

Finally, to infer the overall system reliability, the relia-
bilities of all the demands are evaluated in series; since, as
mentioned above, they all must be supplied for the system
feasibility.

Rg(k) =

nd∏
h=1

Rdh(k) (16)

3) Inclusion in the Economic MPC Problem Formulation:
The economic MPC formulation presented in Section II must
be modified to include the preservation of the actuators
lifetime. This is achieved by adding a new term in the MPC
objective function that aims the reliability maximization, and
by augmenting the system model according to the reliabil-
ity model obtained using the Bayesian modeling approach
presented above. For this purpose, the reliabilities evolution
over time is included to the model in such a way a conversion
is needed that allows computing them in a linear-like form.
This conversion is based on applying logarithms, starting

from rewriting the individual actuators reliability evolution
from Equation (12) as follows

logRi(k + 1) = logRi(k)−Ts ·λi(k), i = 1, ..., n (17)

This expression allows to the system to actualize the parent
reliabilites, but, for computation simplicity, the extra objec-
tive term should only include the whole system reliability,
computed from (16). So, in order to obtain the demands
reliabilities carrying on the use of logarithms to preserve
the linear computation convenience, the Equation (15) is
expanded while taking the unreliability (F (k) = 1 − R(k))
leading to

Fdh(k) =
∏

j∈Sl & l∈Dh

(
1−

∏
i∈Pj

Ri(k)

)
, (18)

Then, in order to relate (17) with (18), the following
variable changing is introduced

zj(k) = 1−
∏
i∈Pj

Ri(k), (19)

which applying logarithms drives to

log zj(k) =
log zj(k)

log (1− zj(k))
·
∑
i∈Pj

logRi(k), (20)

and according to (18),

logFdh(k) =
∑

j∈Sl & l∈Dh

log zj(k), (21)

which is equivalent to the following expression with βj =
log zj(k)

log (1− zj(k))

logFdh(k) =
∑

j∈Sl & l∈Dh

(
βj ·

∑
i∈Pj

logRi(k)

)
, (22)

All in all, the structure of the augmented system is the
following

xr(k + 1) = Arxr(k) +Bru(k) +Bdrd(k), (23)

where the state vector will be also augmented by including
the logarithms of the demands unreliabilities and the loga-
rithms of the actuators reliabilities; in order to actualize them
properly in each iteration, as follows

xr(k) = [x1(k), ..., xnx(k), logFd1(k), ...
, logFdnd(k), logR1(k), ..., logRn(k)]

T (24)

and the system matrices corresponding to



Ar =



A 0nx×nd+n∑s
i∈ps,l

βj(k)

0nd×nx Ind×nd

...∑s
i∈ps,l

βj(k)

0n×nx 0n×nd In×n


,

Br =


B

0nd×n

−λi × In×n

 , Bdr =


Bd

0nd×nd

0n×nd

 .

(25)

However, to be able to implement the Equation (17) in
the augmented system, we should remove the exponential
of the failure rate function (10); since it has the control
input in its exponent, and it does not comply with the linear
computation of (23). To achieve the required linearity, a good
approach would be to approximate the exponential law to its
corresponding first order Taylor series, as follows

exp
(
βi · ui(k)

)
≈ 1 + βi · ui(k), (26)

which fits quite well for values << 1; and taking into
account that the real values of λ0

i , βi and ui(k) will have
this order, it meets the need. Then, in terms of (10), the
expression would end up being

λi(k) = λ0
i + λ0

i · βi · ui(k), i = 1, ..., n (27)

The influence of the failure decay can be interpreted with
the resulting terms of (27), which corresponds to a typical
linear function: with a constant independent term, that would
represent the unavoidable constant degradation over time;
and a proportional term as a function of the control input,
that would represent the relative degradation to the applied
control. Assuming that the constant degradation computation
does not provide us with any further advantage, owing to it
only would imply the addition of a constant term in (23); it is
removed as well to simplify the computation, (27) resulting
in

λi(k) = λ0
i · βi · ui(k), i = 1, ..., n (28)

Regarding the objective function, the economic MPC
formulation presented in (4) is modified by including the
next term:

ℓr(k) ≜ Wr · logFg(k), (29)

where Fg(k) stands for the unreliability of the overall system,
which is computed like Equation (16) but considering the
unrealibility; and Wr is a positive scalar used as a weight
to prioritize the terms in the complete objective function.

Leading the following new multi-objective cost function to
be minimized in the prediction horizon Np:

Jr =

Np∑
i=1

(ℓe(i|k) + ℓs(i|k) + ℓ∆u(i|k) + ℓr(i|k)) (30)

To assure the feasibility of the obtained control actions,
the cost function must be subjected to the system constraints
introduced in the Section II-A, as well as to the one related
with the safety objective. So, at each time instant, the
following optimization problem is solved online:

min
u(k),xr(k),ξ(k)

Jr(u(k), xr(k), ξ(k)) (31)

subject to:

xr(i+ 1|k) = Arxr(i|k) +Bru(i|k) +Bdrd(i|k)
0 = Euu(i|k) + Edd(k), i = 0, · · · , Np − 1

u(i|k) ∈ U, i = 0, · · · , Np − 1

ξ(i|k) ≥ 0, i = 0, · · · , Np

xr(0|k) = xr(k),

x(i|k) ∈ X, i = 1, · · · , Np

x(i|k) ≥ xs − ξ(i|k), i = 1, · · · , Np

IV. APPLICATION

A. Case Study

In order to evaluate the approach proposed in Section III,
a part of the Barcelona DWN, presented in [2], is used as
the case study. This network, corresponding to the one in
Figure 2, includes 9 sources, consisting of 5 underground
and 4 surface sources, which currently provide an inflow of
about 2 m3/s. And it is composed of 17 tanks, 12 nodes, 25
demands and 61 actuators (valves and pumps).

Fig. 2. Barcelona drinking water transport network.

B. Results And Discussion

In order to show and assess the effect of including the
reliabilities awareness to the MPC optimization, its related
weight of the relevant term of objective function (Wr) can



be set greater than 0; otherwise, the controller would not
take them into account. Besides, the total economic cost
and the final reliabilities of the actuators, as well as the
whole system one, could be good indicators to evaluate
their contributions. Then, a four days horizon simulation
was performed with some demand and cost values collected
from the same paper as the case study [2]. Starting with
an overall system reliability of 100%, the results of this
simulation taking the reliabilities into account (Wr = 100)
gave a final overall system reliability of 83%, with a cost of
52.32 e.u.; and the results of the same mentioned simulation
not taking the reliabilities into account (Wr = 0) gave a final
overall system reliability of 79%, with a cost of 52.34 e.u..
The prices and the initial failure probabilities values are not
realistic, but they were selected in order to better appreciate
the influence of the implementation.

Before the main discussion, it is important to highlight all
the weights used in this particular simulation for the objective
function of the optimization problem (introduced in Section
II-B), which are: We = 100;W∆u = 50;Ws = 10; and
Wr = {100, 0}. In addition, to support the importance of
the objective function terms’ weights, their influence can
be properly noted when analysing the same case study with
different weight combinations, as proceeds in the Figure 3. In
its simulations, only two of the weights were changing (We

and Wr); the other two were fixed: W∆u = 50;Ws = 10,
because they are not the main object of this work.

Fig. 3. System reliability and accumulative cost for different weights cases.

Then, the first observable evidence from these results, and
an expected outcome, is that, taking reliabilities into account,
makes the whole system reliability remain closer to 1 (which
corresponds to the functions starting from the upper-left
figure corner and the right axis); while, otherwise, it is
getting worse. However, it was expected that the reliabilities
integration would affect negatively to the total operational
costs; but surprisingly, if not modifying the economic term
weight of the objective function, the cost remains practically
the same and keeping the same trend.

Regarding the two weights modified to see their influence
on the system, the economic term weight seems to not offer a
variability on the results, but rather the choice of whether or

not to optimize the production; owing to the fact that, until
it was disabled by a null weight, the trend was being the
same; and once disabled, the trend was held. On the other
hand, the reliability term weight seems to yield a minimal
variance, but it looks like restricted by the economic term,
since until it was not disabled by a null weight, the reliability
is not optimized in a considerable better way.

V. CONCLUSIONS

This paper has presented a new approach of an economic
reliability-aware model predictive control (MPC) for the
management of generalized flow-based networks. The main
enhancement with respect to some existing approaches relies
in the dynamic integration of the Bayesian model of the
whole system in the controller to manage the supply taking
into consideration the distribution of the control effort, in
order to extend the life of the network by delaying as much
as possible the reliability decay. Besides, it also considers an
optimal inventory replenishment policy based on a desired
risk acceptability level, leading to the availability of safety
stocks for unexpected excess demand in networks. The
proposed implementation has been illustrated with a real
case study corresponding to a sector of the water transport
network of Barcelona.
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