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Abstract: Most existing algorithms in mobile robotics consider a kinematic robot model for the the
Simultaneous Localization and Mapping (SLAM) problem. However, in the case of autonomous
vehicles, because of the increase in the mass and velocities, a kinematic model is not enough to
characterize some physical effects as, e.g., the slip angle. For this reason, when applying SLAM to
autonomous vehicles, the model used should be augmented considering both kinematic and dynamic
behaviours. The inclusion of dynamic behaviour implies that nonlinearities of the vehicle model
are most important. For this reason, classical observation techniques based on the the linearization
of the system model around the operation point, such as the well known Extended Kalman Filter
(EKF), should be improved. Consequently, new techniques of advanced control must be introduced
to more efficiently treat the nonlinearities of the involved models. The Linear Parameter Varying
(LPV) technique allows working with nonlinear models, making a pseudolinear representation,
and establishing systematic methodologies to design state estimation schemes applying several
specifications. In recent years, it has been proved in many applications that this advanced technique is
very useful in real applications, and it has been already implemented in a wide variety of application
fields. In this article, we present a SLAM-based localization system for an autonomous vehicle
considering the dynamic behaviour using LPV techniques. Comparison results are provided to show
how our proposal outperforms classical observation techniques based on model linearization.

Keywords: SLAM; LPV; Kalman Filter; LMI; autonomous vehicles

1. Introduction

The European Parliament Research Service (EPRS) considers autonomous driving
as one of the top ten technologies that will change people’s lives during this century [1].
The reason is that benefits provided by the autonomous driving are many and affect many
social spheres. The most relevant ones are the significant reduction in the number of traffic
accidents, by the elimination of the human error; the social inclusion of people with reduced
mobility, by the generation of economic door-to-door services; the reduction in the traffic
congestion, through the communication between vehicles and the use of an intelligent
agent of the transport; and the reduction in the energetic consumption and the pollution,
by the use of electric actuators and sophisticated control techniques.

To develop an autonomous vehicle, it is necessary that the vehicle software architecture
includes a localization system that provides the vehicle location to the controller and the
surrounding map to the trajectory planner. Then, the planner generates references and
provides them to the controller to execute the vehicle control, and, finally, the localization
system has to make new estimations for the carried actions. Therefore, this three modules
are intimately joined, and none of them can be designed without taking the characteristics
of the others into account. The authors have already largely explored the motion control [2]
and the trajectory planner [3] for vehicles with evident dynamic response. Now, we are
interested in extending this knowledge to build a localization node based on the solution of
a Simultaneous Localization and Mapping (SLAM) problem. This problem, in the context
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of autonomous vehicles, has recently been reviewed in [4,5] with special emphasis on visual
SLAM methods.

An important aspect to bear in mind when designing a localization system for an
autonomous vehicle is its dynamic behaviour. Traditionally, SLAM algorithms have been
developed for mobile platforms that move at low velocities and consequently can be
modelled by only applying kinematic models [6,7]. However, for velocities larger than
5 m/s (18 km/h), kinematic models cannot describe the behaviour of a vehicle correctly
enough [8]. An autonomous vehicle can very easily exceed the 5 m/s threshold during its
usual operation. Therefore, the modelling of its dynamic response becomes a fundamental
issue for autonomous driving. Consequently, the dynamic behaviour of the vehicle must
be considered for both the control and the localization system of the autonomous vehicle.

Methods considering the dynamic model for autonomous driving of vehicles have
just recently started to appear. In [9], a dynamic predictive control for the vehicle is
proposed, while the localization system based on the SLAM problem is still based on a
kinematic model. Although the dynamic states of the vehicle are observed, dynamics are
only modelled by the integration of the accelerations of the vehicle without using a dynamic
model of the vehicle, which takes into account the forces acting on it. To date, literature in
this field has not yet explored SLAM for autonomous vehicles considering dynamic models.
During the last decade, the development of SLAM-based techniques for autonomous
driving has been focused on perception techniques and on the descriptors, especially on
map management and on collaborative solutions [4]. However, all the proposed solutions
still use a kinematic model for the vehicle. Therefore, it is interesting to investigate SLAM
approaches for autonomous vehicles considering dynamic models.

Another relevant aspect to take into account is that vehicles are systems with an impor-
tant nonlinear behaviour, especially when its dynamic response is considered [8]. Therefore,
both for the observation and for the control of the vehicle, it is necessary to use nonlinear
techniques. In the SLAM literature, EKF is the predominant approach (see previous refer-
enced reviews [4,5]). UKF and CKF have also been considered as a manner to deal with
the nonlinearity problem related to the SLAM for autonomous vehicles (see, e.g., [10,11]),
but the the increased computational complexity is not justified by the improvement in the
accuracy achieved. In terms of control, there are a few nonlinear methodologies which
allow systematic tuning. The Linear Parameter Varying (LPV) technique allows working
with nonlinear models and establishing systematic methodologies to tune the controller
and the observer by applying various specifications using Linear Matrix Inequalities (LMI).
In recent years, it has been proved that this technique of advanced control is very useful
in real applications and has been implemented in a huge variety of fields [12]. There are
tuning methodologies based on the LPV technique for Model Predictive Control (MPC),
an optimal control methodology which is very interesting when combining the vehicle
controller with the trajectory planner module. In addition, in terms of observation, LPV
techniques avoid the linearization of the nonlinear problem around the operation point and
allow guaranteeing the global stability of the system by keeping the Lyapunov conditions
for nonlinear systems. This is the opposite of classical observation techniques, such as the
Extended Kalman Filter (EKF), which only guarantee stability around the point where the
linearization is calculated. Considering the coupling between the software modules, which
allow the autonomous driving and the benefits provided by the LPV techniques in systems
with a huge nonlinear response, it is logical to think that if the LPV technique has been
applied to the vehicle controller [2], it can also be applied to the localization system. How-
ever, the LPV technique has not yet been applied to the SLAM problem. The most similar
approach found in the literature is an EKF-SLAM problem solved by means fuzzy models
using the Takagi–Sugeno technique and applying a purely kinematic conception [13]. It
is already known that the Takagi–Sugeno technique has strong connections with LPV
techniques [14]. Hence, this approach is a good reference to rewrite the SLAM problem to
solve it applying LPV techniques and to incorporate the dynamic response of the vehicle,
which is needed for the autonomous driving of vehicles.
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In this article, a SLAM-based localization system for an autonomous vehicle in the
LPV framework is proposed. The proposed approach takes into account the dynamic
behaviour of the vehicle and it is adapted to the kinematic/dynamic controller architecture
for an autonomous vehicle previously presented in [2]. This controller is also implemented
using LPV techniques and executed into two separate layers that work with different
time periods. The fastest layer is in charge of the dynamic response of the vehicle, while
the slowest layer is in charge of its kinematic response. Therefore, the proposed vehicle
state estimation scheme should also be organized into two separate layers. The dynamic
observation must serve the dynamic controller, being part of the fastest layer. In the slowest
layer, the solution to a SLAM problem should allow executing the localization task so as to
serve the kinematic controller. At the same time, it should allow the map generation of the
surroundings of the vehicle so as to serve as the trajectory planner module.

The main contributions with respect to the SLAM state of the art are the following:

• A SLAM LPV KF scheme is proposed that does not require the linearization of the non-
linear vehicle model but instead embeds the nonlinearities in the varying parameters.

• The proposed SLAM approach considers both the kinematic and dynamic model of
the vehicle, allowing it to operate at higher speeds compared to the pure kinematic
schemes available in the literature.

• A design procedure based on the LMI framework allows the offline design of the LPV
KF, reducing the online computational complexity.

• The LMI framework is rooted in the Lyapunov stability theory guaranteeing the
quadratic stability of the LPV KF scheme.

This article is structured as follows. Section 2 presents the kinematic and dynamic
models for the autonomous vehicle considered as a case study. Section 3 describes the
proposed SLAM approach formulated in the LPV framework. Section 4 shows the design
procedure for the kinematic and the dynamic state estimation scheme. Section 5 presents the
simulation results using the considered case study. Finally, Section 6 shows the conclusions
of this work.

2. Problem Statement

To formulate a SLAM problem, firstly, it is necessary to define a motion model for the
vehicle and an observation model for the map. The motion model defines how the vehicle
moves inside the map, and the observation model allows determining how the landmarks
of the map are seen from the vehicle in movement. Therefore, the motion model is a state
transition function and the observation model is a kinematic transform inside the same
state representation.

In this article, a two dimensional environment is considered, and, therefore, the vehicle
can only do a planar movement (x and y translations and yaw rotation). Hence, ground
unevenness and vehicle instabilities are not taken into account.

2.1. Vehicle Modelling

As already stated, mobile robotics addresses the SLAM problem using a purely kine-
matic model formulation. However, in the case of autonomous vehicles, because of the
increase in the mass and velocities, a kinematic model is not enough to characterize some
physical effects as, e.g., the slip angle. Experimental results show that during the turns of
a vehicle, the linear velocity vector ~v detaches from the longitudinal direction of the vehicle
and lateral forces appear at the wheels, which can result in drifting situations. Therefore,
the motion model of the vehicle must take its kinematic and dynamic response into account.

The bicycle model proposed at [8] (see Figure 1) is taken to model the dynamic
behaviour of the vehicle. Alcalá et al. [2] show that this simplified model is sufficient for dy-
namically controlling the vehicle and providing a good balance between representativeness
and simplicity. The control actions are the traction force of the rear wheel FxR (accelerator
and breaker) and the steering angle of the front wheel δ (steering wheel). In addition, the op-
position forces acting on the vehicle are the aerodynamic force (Fdrag = 1

2 CdρA(v + vwind)
2),
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the friction force between the vehicle and the ground (Ff riction = µmg ), and the lateral
forces that appear on the wheels during the turns (FyF i FyR). On the one hand, a windless
environment is considered (vwind = 0), and, therefore, the aerodynamic force is known.
On the other hand, a variable friction is considered, and, therefore, the friction force acts
as an unknown perturbation to the system. The dynamic states are the linear velocity v,
the angular velocity ω, and the slip angle α; the latter appear between the linear velocity
vector and the longitudinal direction of the vehicle. Applying Newton’s second law, con-
sidering a polar frame formed by the velocity vectors of the vehicle, leads to the following
dynamic vehicle model

v̇ =
FxR cos α + FyF sin (α− δ) + FyR sin α− CDv2

m
− µg,

α̇ =
−FxR sin α + FyF cos (α− δ) + FyR cos α

mv
−ω,

ω̇ =
FyFa cos δ− FyRb

I

(1)

where
FyF = Cx(δ− α− aω

v
),

FyR = Cx(−α +
bω

v
),

CD = 1
2 Cdρ A

To exemplify the results in this paper, an autonomous vehicle based on a Tazzari
Zero used in the Elektra research project (http://adas.cvc.uab.es/elektra/, accessed on 24
October 2022) will be used as a case study. For this vehicle, the parameters of the dynamic
model (1) are summarized in Table 1.

Figure 1. Two-wheels bicycle model used as vehicle motion model. {W} is the global world frame
and {B} is the local vehicle frame.

http://adas.cvc.uab.es/elektra/
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Table 1. Dynamic model parameters of Tazzari Zero vehicle, which belongs to the Elektra research
project [15].

Dynamic Model Parameters of Tazzari Zero Vehicle

Par. Description Value

a Distance from CoG to front shaft 0.758 m
b Distance from CoG to rear shaft 1.036 m
m Vehicle mass 683 kg
I Vehicle inertia 561 kg·m2

Cx Tire stiffness coefficient 15,000 N
rad

Cd Vehicle drag coefficient 0.5
A Vehicle frontal area 4 m2

ρ Air density at 25 ºC 1.2 kg
m3

µ Friction coefficient tire-ground variable

The kinematic model of the vehicle describes, to a fixed observer placed at the origin
of the world frame {W}, how the centre of gravity of the vehicle {B} moves, giving the
kinematic states x and y, corresponding to the vehicle position, and θ, corresponding to its
orientation (see Figure 1). Considering the dynamic effects, the linear velocity v is rotated
by the slip angle α, leading to the following kinematic model for the vehicle

ẋ = vs. cos (θ + α),
ẏ = vs. sin (θ + α),
θ̇ = ω.

(2)

Note that the slip angle α is the link between both dynamic and kinematic models.

2.2. Map Modelling

The observation model of the map allows performing the kinematic transformation
between the observations of the surroundings of the vehicle measured from the absolute
world frame {W} and the same observations measured from the mobile frame of the vehicle
{V}. In this section, the observation model is derived for an exteroceptive sensor with
range and bearing measures, such as a laser sensor. To do so, firstly, some considerations
must be made:

• The sensor is not placed at the centre of gravity of the vehicle {V} but at a fixed point
of the vehicle frame described by the pose (s, t) and the orientation β. The new frame
that can be defined from this point is called the sensor frame {S}.

• To reduce the nonlinearity of the observation model, a transformation block of polar
coordinates to Cartesian coordinates is installed at the sensor output:[

xs
l (k)

ys
l (k)

]
=~j(~y(k)) =

[
cos (α(k)) 0
sin (α(k)) 0

][
d(k)
α(k)

]
,

where (xs
l , ys

l ) is the sensor measurement Cartesian representation and (d, α) is its
polar representation given by the original sensor. Using this block, it is considered that
the sensor provides a Cartesian measurement to the SLAM system, as is suggested
in [13].

According to the diagram presented in Figure 2, the observation model of the map
corresponds to the geometric transform Ts

w(k), which goes from the world frame {W} to
the sensor frame {S}. Nevertheless, there is not enough information available to determine
it completely, and it is necessary to pass by the vehicle frame {V}. Therefore, if Tv

w(k) is the
homogeneous transform which goes from the world frame to the vehicle frame (which is
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variable depending on the vehicle position) and if Ts
v is the homogeneous transform which

goes from the vehicle frame to the sensor frame (which is constant), then:

Ts
w(k) = Tv

w(k)T
s
v.

Considering that the vehicle is placed at the position (xw
v , yw

v ) described from the
world with an orientation θ and the sensor is placed at the position (s, t) described from
the vehicle with an orientation β, when the pertinent transforms are applied, the analytic
observation model is

xs
l (k) = −xw

v (k) cos (θ(k) + β)− yw
v (k) sin (θ(k) + β)

+ xw
l (k) cos (θ(k) + β) + yw

l (k) sin (θ(k) + β) + N1,
ys

l (k) = xw
v (k) sin (θ(k) + β)− yw

v (k) cos (θ(k) + β)
− xw

l (k) sin (θ(k) + β) + yw
l (k) cos (θ(k) + β) + N2,

(3)

where
N1 = −s cos β− t sin β,
N2 = s sin β− t cos β,

and the installation parameters of the exteroceptive sensor are described in Table 2.

Figure 2. Observation model diagram. {W} is the absolute world frame, {V} is the local vehicle
frame, and {S} is the local sensor frame.

Table 2. Installation parameters of the exteroceptive sensor on the Tazzari Zero vehicle.

Installation Parameters of LIDAR Sensor

Par. Description Value

s Distance from CoG to sensor on the vehicle longitudinal direction 0.3 m
t Distance from CoG to sensor on the vehicle cross direction 0.1 m
β Sensor orientation respect to the vehicle longitudinal direction 90°

Apart from the observation model of the map, a dynamic model of the map is needed
to describe the dynamic evolution of its landmarks. Since fixed landmarks at the world
frame {W} are considered, modelling its performance from this frame is very easy:{

ẋw
l = 0,

ẏw
l = 0.

(4)

where (xw
l , yw

l ) is the position of a landmark represented in the world frame {W}.
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2.3. Motion Model for the SLAM System

To develop a SLAM scheme using the proposed LPV approach, a linear observation
model for the system is necessary. Otherwise, the complexity of the interpolation of the
vertices of the polytopic LPV model grows notably. To accomplish this restriction, the map
observation model must be introduced with the system motion model; thus, all system
sensor measurements also become states and the observation model becomes trivial. Hence,
the kinematic transform of Equation (3) must be converted into a state transition function.
To do so, the time derivative of the kinematic transform is taken, and it is forced by the
dynamic model of the map (Equation (4)). The following kinematic motion model for the
map is obtained: {

ẋs
l = −vs. cos (α− β) + ω(ys

l − N2),
ẏs

l = −vs. sin (α− β)−ω(xs
l − N1),

(5)

where N1 and N2 are defined in Equation (3), the sensor parameters are in Table 2, and
(xs

l , ys
l ) is the position of a landmark represented in the sensor frame {S}. This model

describes how the static landmarks in the world frame {W} are moving with respect to
a static observer placed at the sensor frame {S}, which introduces a robocentric point of
view to the SLAM problem.

With the benefits of this derived model, now, the problem state vector includes all
sensor measurements, and it is possible to write a linear observation model for the SLAM
problem. Additionally, a conceptual reorganization of the problem models could be con-
ducted as follows:

Vehicle dynamic model (Equation (1))(
vs. α ω

)
↓

Direct observation model (Equation (3))
Vehicle kinematic −→ Map kinematic

model (Equation (2)) model (Equation (5))(
xw

v yw
v θ

)
←−

(
xs

l ys
l
)

Inverse observation model (Equation (6))
↑

Map dynamic model (Equation (4))(
xw

l yw
l
)

Note that the dynamic model defines the vehicle behaviour and provides the necessary
data to the two kinematic models. These two models allow one to perform the two
kinematic interpretations needed for the SLAM problem: vehicle displacement respect to
the static observer at the world frame and world displacement with respect to the static
observer at the vehicle frame. The direct and inverse observation models are the transforms
between these two kinematic conceptions. Finally, a dynamic model for the landmarks is
needed to define its evolution in the world map. However, as static landmarks at the world
frame are considered, the map dynamic model is very simple, and, with the purpose of
simplicity, it has been forced into the map kinematic model. Consequently, this model is
not explicit in the SLAM system motion model. Hence, the static position of each landmark
in the world frame is not explicit in the problem state vector and, if it is needed, it has to be
obtained at each iteration applying the inverse map observation model to the state vector:{

xw
l (k) = xw

v (k) + xs
l (k) cos (θ(k) + β)− ys

l (k) sin (θ(k) + β) + M1,
yw

l (k) = yw
v (k) + xs

l (k) sin (θ(k) + β) + ys
l (k) cos (θ(k) + β) + M2,

(6)

where
M1 = s cos β− t sin β,
M2 = s sin β + t cos β;

which results from inverting Equation (3).
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To summarize, the resulting motion model for the dynamic SLAM problem is:

v̇ =
FxR cos α + FyF sin (α− δ) + FyR sin α− CDv2

m
− µg,

α̇ =
−FxR sin α + FyF cos (α− δ) + FyR cos α

mv
−ω,

ω̇ =
FyFa cos δ− FyRb

I
,

˙xw
v = vs. cos (θ + α),
˙yw
v = vs. sin (θ + α),
θ̇ = ω,

ẋs
l = ωys

l − cos (α− β)vs. + (t cos β− s sin β)ω,
ẏs

l = −ωxs
l − sin (α− β)vs.− (t sin β + s cos β)ω,

(7)

where:
FyF = Cx(δ− α− aω

v
),

FyR = Cx(−α +
bω

v
),

CD = 1
2 Cdρ A

and its parameters are presented in Tables 1 and 2.

3. Proposed Solution

Before we introduce in detail the proposed kinematic/dynamic SLAM approach, firstly,
an overall overview is presented. To develop a SLAM system that suits the kinematic/dynamic
controller proposed in [2], it is necessary to structure it in layers. The fastest layer is in
charge of the vehicle dynamics estimation, while the slowest layer addresses the SLAM
problem using the results provided by the fastest layer (see Figure 3). Hence, the motion
model (7) is divided into two submodels, one per layer. On the one hand, the state estimator
of the fastest layer has to estimate the vehicle dynamic state ~xd =

[
vs. α ω

]T for the
dynamic controller of the autonomous driving system. As inputs, it has the dynamic control
signals~ud =

[
FxR δ

]T and the unknown input~n = µ, using the sensor measurements~yd =[
vs. ω

]T to correct the estimation. On the other hand, the kinematic state estimator must

estimate the vehicle kinematic state ~xk =
[
xw

v yw
v θ

]T and the states of the incremental
map built by the SLAM, to serve the kinematic controller and the trajectory planner
system of the autonomous driving system. As input, it has the state estimation provided
by the dynamic state estimator ~xd =

[
vs. α ω

]T that uses the sensor measurements

~yk =
[
xw

v yw
v θ xs

l1 ys
l1 · · · xs

lm ys
lm
]T to correct the estimation.

Figure 3. Kinematic and dynamic control architecture for an autonomous vehicle proposed in [2].
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Once an overview of the proposed two-layer estimation scheme is provided, in the
following subsections, the detail description of each estimator is provided.

3.1. Dynamic State Estimation

To estimate the dynamic behaviour of the vehicle, the vehicle dynamic model (1) is
considered as the motion model. This model is temporally discretized by applying the
Euler approximation using the dynamic sampling time τd. This allows one to obtain a
pseudolinear representation applying the LPV state-space formulation by embedding the
nonlinearities in the varying parameters as follows:

~xd(k) = ~fd(~xd(k− 1),~ud(k− 1),~n(k− 1))

= Φ(~ψd)k−1~xd(k− 1) + Γ(~ψd)k−1~ud(k− 1) + η ~n(k− 1) (8)

where

Φ(~ψd)k =

Φ11 Φ12 Φ13
0 Φ22 Φ23
0 Φ32 Φ33

,

Φ11 = 1− τd
1
2 CdρA

v
m

,

Φ12 = −τdCx
sin (α− δ) + sin α

m
,

Φ13 = τdCx
b sin α− a sin (α− δ)

mv
,

Φ22 = 1− τdCx
cos (α− δ) + cos α

mv
,

Φ23 = τdCx
b cos α− a cos (α− δ)

mv2 − τd,

Φ32 = τdCx
b− a cos δ

I
,

Φ33 = 1− τdCx
b2 + a2 cos δ

Iv
,

Γ(~ψd)k =

Γ11 Γ12
Γ21 Γ22
0 Γ32

,

Γ11 = τd
cos α

m
,

Γ12 = τdCx
sin (α− δ)

m
,

Γ21 = −τd
sin α

mv
,

Γ22 = τdCx
cos (α− δ)

mv
,

Γ32 = τdCx
a cos δ

m
,

η =

−τdg
0
0

,

the model parameters are in Table 1 and the dynamic scheduling vector is ~ψd(k) =[
δ(k) v(k) α(k)

]T .
If velocities v and ω are measured, the output equation for the dynamic system using

the LPV formulation is:
~yd(k) =~hd(~xd(k)) = Cd~xd(k) (9)

where

Cd =

[
1 0 0
0 0 1

]
.
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Using these sensor measurements, the dynamic LPV system (8) is observable for all
the values of the varying parameters.

The dynamic motion model (8) is additionally affected by an unknown input~n that
acts as a perturbation and is due to the friction force that is a function of the friction
coefficient µ(k) that varies and in general is not known exactly. To be able to estimate
the dynamic states without having this force, an Unknown Input Observer (UIO) scheme
is proposed [16]. According to this reference, to apply the UIO, firstly, the condition
rank{C η} = rank{η}must be verified. As matrix C is constant and given by (9), it is easy
to see that the condition is satisfied. Therefore, the UIO could be implemented. According
to [16], a possible implementation is based on the transformation matrix Ω :

Ω = I − η
[
(Cη)TCη

] −1(Cη)TC =

0 0 0
0 1 0
0 0 1

.

which allows one to produce a new motion model decoupled from the perturbation and
can be estimated using the input/output measurements:

~xd(k) = ~fd(~xd(k− 1),~ud(k− 1),~yd(k))

= Φ(~ψd)k−1~xd(k− 1) + Γ(~ψd)k−1~ud(k− 1) + Σ ~yd(k) (10)

where
Φ(~ψd)k = ΩΦ(~ψd)k,
Γ(~ψd)k = ΩΓ(~ψd)k,

Σ = η
[
(Cη)TCη

] −1(Cη)T ,

Note that all the involved matrices are defined in Equation (8).

3.2. Kinematic State Estimation and SLAM

To solve the SLAM problem, the motion and observation models of the kinematic
layer must be defined. The motion model includes the vehicle kinematic model (2), the map
kinematic model, and the implicit map dynamic model. As in the case of the dynamic
model, they are temporally discretized by applying the Euler approximation using the
kinematic sampling time τk and expressed in pseudolinear representation using the state-
space LPV representation based on nonlinear embedding the nonlinearities in the varying
parameters. In the case of considering n landmarks, the obtained LPV representation is:

~xk(k) = ~fk(~xk(k− 1),~xd(k− 1)) = Φ(~ψk)k−1~xk(k− 1) + Γ(~ψk)k−1~xd(k− 1), (11)

where

Φ(~ψk)k =



1 0 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 φ · · · 0 0
0 0 0 −φ 1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1 φ
0 0 0 0 0 · · · −φ 1


,

φ = τkω,
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Γ(~ψk)k =



Γ11 0 0
Γ21 0 0
0 0 Γ33

Γ41 0 Γ43
Γ51 0 Γ53

...
...

...
Γ41 0 Γ43
Γ51 0 Γ53


,

Γ11 = τk cos (θ + α),
Γ21 = τk sin (θ + α),
Γ33 = τk,
Γ41 = −τk cos (α− β),
Γ43 = τk(t cos β− s sin β),
Γ51 = −τk sin (α− β),
Γ53 = −τk(t sin β + s cos β),

where the model parameters are summarized in Table 2 and the kinematic scheduling
vector is ~ψk(k) =

[
α(k) ω(k) θ(k)

]
. Matrix Φ(~ψk)k is square with dimension 3 + 2n and

the dimensions of matrix Γ(~ψk)k are (3 + 2n)× 3.
To solve the SLAM problem, it is necessary to bear in mind that the kinematic state

vector is formed by the n discovered landmarks which form the incremental map. Note
that technically it is only possible to consider a subset of the discovered landmarks, called
the active landmarks. From that subset of active landmarks, a group of measurements are
correlated with the known landmarks of the map, which are used to perform the kinematic
observation task. The rest of active landmarks are new discoveries and will be included
in the map once the kinematic observation is performed. Hence, the measurements of the
kinematic system are the pose of the vehicle in the world frame and the position of the m
correlated active landmarks measured in the sensor frame are

~yk =
[
xw

v (k) yw
v (k) θ xs

l1(k) ys
l1 · · · xs

lm(k) ys
lm(k)

]T .

The resulting observation model is

~yk(k) =~hk(~xk(k)) = Ck~xk(k) (12)

where

Ck =



1 0 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1 0
0 0 0 0 0 · · · 0 1


with dimensions (3 + 2m)× (3 + 2n).

~̂xk(k) = ~̂x+k (k) + Lk(k)
[
~yk(k)− Ck~̂x+k (k)

]
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3.3. State Estimation Scheme

Once the models used for state estimation and SLAM have been introduced, they are
used through the following estimation structure,

~̂xd(k) = ~̂x+d (k) + Ld(k)
[
~yd(k)− Cd(k)~̂x+d (k)

]
(13)

where Cd is the output matrix defined in Equation (9) in the case of the dynamic estimation
or in Equation (12) in the case of SLAM. The difference between the different proposed
estimators is the considered model described in previous subsections and the way the
correcting gain Ld(k) is obtained using the design procedures presented in the next section.

Using (13) at every time iteration k, the vehicle motion model must be evaluated
using the control signals ~ud(k − 1) and previous state estimations ~̂x+d (k). The sensor
measurements~yd(k) are used to correct the state estimations provided by the model through
the correcting factor Ld(k).

4. Design Procedures

In this section, two different procedures are proposed to determine the correction gain
Ld(k) required for the state estimation scheme (13). The first approach is based on solving
online the Ricatti equation as in EKF [17]. However, the proposed approach avoids the
linearization of the model required in EKF by using the pseudolinearization offered by the
LPV formulation of the model presented in the previous section for the different models
considered. The second approach is based on using the polytopic representation of the
LPV model. This approach allows solving the Ricatti equations formulated as LMIs [17]
offline only in the vertices of the polytopic model. During the online operation, the value
of correction gain Ld(k) at each operation point is calculated online by interpolation of the
solution found offline at the vertices of the polytopic LPV model [12].

4.1. Online Approach

To apply the online approach, the matrices of the pseudolinear system model repre-
sentation are evaluated at the current operating point. The calculation of the gain Ld(k)
is based on solving the Ricatti Equation of the Kalman Filter using the current value of
system matrices. This implies performing the following calculations at each time iteration
k to determine the gain Ld(k) and the covariance matrix Pd(k)

P+
d (k) = Φ(~ψd)k−1Pd(k− 1)Φ(~ψd)

T
k−1 + Γ(~ψd)k−1QdΓ(~ψd)

T
k−1 + ΣRdΣ,

Z(k) = CdP+
d (k)CT

d + Rd,
Ld(k) = P+

d (k)CT
d Z(k)−1,

Pd(k) = P+
d (k)− Ld(k)CT

d P+
d (k).

Matrices Φ(~ψd)k−1, Φ(~ψd)k−1 and Σ are defined in Equation (10), matrix Cd is defined
in Equation (9), and Qd and Rd are, respectively, the covariance matrices of the disturbances
and sensor measurements.

In the case of SLAM, the following calculation must be performed at each iteration to
determine the gain Lk(k) and the covariance matrix Pk(k):

P+
k (k) = Φ(~ψk)k−1Pk(k− 1)Φ(~ψk)

T
k−1 + Γ(~ψk)k−1Pd(k− 1)Γ(~ψk)

T
k−1,

Z(k) = CkP+
k [rl, rl](k)CT

k + Rk,
Lk(k) = P+

k [rm, rl](k)CT
k Z(k)−1,

Pk(k) = P+
k [rm, rm](k)− Lk(k)CT

k P+
k [rl, rm](k).

Matrices Φ(~ψk)k−1 and Γ(~ψk)k−1 are defined in Equation (11), and matrix Ck is defined
in Equation (12). Pd(k− 1) is the covariance matrix of the dynamic estimation applied to
the kinematic estimation. In contrast, Pk(k − 1) is the variance matrix of the kinematic
estimation carried out on the previous iteration. As seen, both layers are linked by the
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variance matrix Pd. Finally, rl refers to the dimensions of matrix P+
k (k) corresponding to the

vehicle kinematics and to the active landmarks, and rm refers to all dimensions of matrix
P+

k (k).

4.2. Offline Approach

The offline approach is based on the use of the polytopic LPV vehicle model.
To define the polytopic LPV vehicle model, firstly, it must be noted that the dimension

of the dynamic scheduling vector ~ψd is nψ = 3. Hence, the dynamic polytopic model has
nΨ = 8 vertices ~ψdi, which are:

Ψd =



δ v α
δ v α
δ v α
δ v α

δ v α

δ v α

δ v α

δ v α


,

where the underlined and the overlined represent, respectively, the lowest and the highest
limit for each scheduling variable.

Then, the following Kalman Filter Ricatti equation expressed in LMI form [17] must
be solved for each vertex of the polytopic LPV model:


−Yd YdΦ(~ψdi)−W(~ψdi)Cd YdQ(~ψdi)

T W(~ψdi)
Φ(~ψdi)

TYd − CT
d W(~ψdi)

T −Yd 0 0
Q(~ψdi)Yd 0 −I 0
W(~ψdi)

T 0 0 −R−1

 ≤ 0 f or i = 1 . . . nΨ (14)

where
Q(~ψdi) =

√
Γ(~ψdi)QdΓ(~ψdi)T + ΣRdΣT ,

W(~ψdi) = Y−1
d Ld(~ψdi).

Φ(~ψdi), Γ(~ψdi) and Σ are defined in Equation (10), and Cd is the output matrix defined
in Equation (9). Qd and Rd are the variance matrices of the control signals and sensor
measurements. An additional LMI has to be included to guarantee the stability in the
Lyapunov sense of the resulting polytopic LPV estimation scheme:[

γI I
I Yd

]
≥ 0, (15)

where I is a three-dimensional identity matrix.
Finally, an optimization problem considering the previous LMIs (14) and (15) as

constraints must be solved, where the minimization goal is the scalar γ and the decision
variables are matrix Yd = P−1

d and matrices W(~ψdi). The problem solution provides the
gain Ld(~ψdi) for each vertex of the dynamic polytopic LPV model.

Once the gains Ld(~ψdi) for each vertex of the polytopic model are obtained offline,
the gain Ld(~ψd)(k) is adapted in function of the operation point as follows

Ld(~ψd)(k) =
nΨ

∑
i=1

µdi(k)Ld(~ψdi). (16)

where the interpolation factors µdi(k) for each vertex of the polytopic model are obtained
as follows:

µdi(k) =
nψ

∏
j=1

εij(η
j
0(k), η

j
1(k)) f or i = 1 . . . nΨ (17)
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with

η
j
0(k) =

ψj − ψj(k)
ψj − ψj

,

η
j
1(k) = 1− η

j
0(k),

f or j = 1 . . . nψ, (18)

taking into account the limits for each scheduling variable ψj(k).
Using the LPV polytopic approach to solve a SLAM problem requires limiting the

dimension of the map state vector of the kinematic system to only the m active landmarks
correlated with the known map. In this way, the dimension of the state vector does
not grow indefinitely as the problem advances and, by fixing a limit ρ to the maximum
number of correlated active landmarks at each iteration, the possible ρ + 1 dimensions
for the state vector can be forecast in advance. As the kinematic scheduling vector is not
affected by the position of any landmark, the polytopic model generated for the subset
of m correlated active landmarks is valid for any subset of active landmarks, while the
dimension of the subset remains at m. Following this approach, it is possible to tune
ρ + 1 different gains offline. Furthermore, during the observation algorithm, it is possible
to choose the convenient set of gains depending on the m correlated active landmarks
available at each operation point. Unlike with the online Ricatti methodology, the SLAM
problem solved by means of the polytopic approach uses a limited memory considering
only the landmarks close to the surroundings of the vehicle to perform the localization task,
without doing corrections to the entirety of the incremental map built during the whole
execution. Nevertheless, this problem relaxation allows the observability condition of the
kinematic layer to be accomplished.

To define the polytopic model of the kinematic system, firstly, it must be noted that the
dimension of the kinematic scheduling vector ~ψk is nψ = 3. Hence, the kinematic polytopic
model has nΨ = 8 vertices ~ψki defined as follows:

Ψk =



α ω θ

α ω θ
α ω θ

α ω θ
α ω θ

α ω θ
α ω θ

α ω θ


,

where the underlined and the overlined represent, respectively, the lowest and the highest
limit for each scheduling variable.

The dimension of the kinematic system is variable because of the number of landmarks
considered in the SLAM problem. Therefore, if ε ∈ [0, ρ] is the number of active landmarks
correlated with the known map for an operation point of the observer system, then a
tuning process must be performed for each possible dimension ε for the correlated active
landmarks subset. Hence, ρ + 1 different sets of gains must be calculated, because the case
without any measured known landmarks should be taken into account. To tune the set of
gains for ε landmarks, the LMI for the optimum gain [17] has to be considered for each
vertex of the polytopic model:


−Ykε YkεΦε(~ψki)−Wε(~ψki)Ckε YkεQ(~ψki)

T Wε(~ψki)
Φε(~ψki)

TYkε − CT
kεWε(~ψki)

T −Ykε 0 0
Q(~ψki)Ykε 0 −I 0
Wε(~ψki)

T 0 0 −R−1
kε

 ≤ 0 f or i = 1 . . . nΨ
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where
Q(~ψki) =

√
Γε(~ψki)PdΓε(~ψki)T ,

Wε(~ψki) = Y−1
kε Lε(~ψki).

Φε(~ψki) and Γε(~ψki) are defined in Equation (11), Ckε is the output matrix defined in
Equation (12), and Rk and Pd are, respectively, the covariance matrices of the sensor mea-
surements and the dynamic estimations used. As can be seen, all matrices are defined
according to the fixed ε active landmarks, and the covariance matrix Pd is the link between
the kinematic/dynamic estimation layers. Next, an additional LMI must be included to
guarantee the global stability of the polytopic estimation scheme to accomplish Lyapunov
conditions:

H =

[
γI I
I Ykε

]
≥ 0,

where I is an n + 2ε dimensional identity matrix.
Finally, the optimization problem defined by the resulting LMIs must be solved, where

the minimization goal is the scalar γ and the decision variables are the matrix Ykε and
the matrices Wε(~ψki). The problem solution provides a gain Lε(~ψki) for each vertex of the
kinematic polytopic model. This set of gains for the subset of ε active landmarks must
be saved in the vehicle estimator memory because it must be used during the estimation
process every time ε correlated active landmarks are available. The described process must
be repeated for each ρ + 1 possible subset of active landmarks.

To determine the polytopic gain Lε(~ψki)(k) for each operation point inside the estima-
tion loop, firstly, the ε active landmarks correlated with the map must be determined, that
is, for which map landmarks are the vehicle sensors able to obtain measurements at the
current iteration. This information allows fixing the system state ~xk[rl](k) for the operation
point. Next, the set of gains Lε(~ψki) for ε active landmarks has to be searched in the vehicle
estimator memory. Afterwards, the direct and inverse unit scaling of each scheduling
variable must be determined according to the previous kinematic estimations ~xk(k− 1),
applying Equation (18) for each scheduling variable. Then, the interpolation factors µki(k)
for each vertex of the polytopic estimator must be determined by applying Equation (17)
and following the logic used to define Ψk. Lastly, the interpolated gain must be calculated
by applying Equation (16) and the interpolation factors µki(k) previously found.

5. Simulation Results

In this section, simulation results are provided to illustrate the performance of the
proposed approaches and compare the differences between the two design procedures
presented in Section 4. Furthermore, a comparison with the classical EKF is provided to
prove the interest of the introduced techniques.

5.1. Simulation Set-Up

To conduct these simulations, a handmade Matlab environment inspired by the SLAM
Toolbox for Matlab [18] is used, and the control data are taken from the experimentation
carried in a previous work [2]. As a world map, a synthetic map is taken, formed by a mesh
of 12× 40 elements uniformly distributed between coordinates −50 m and 1050 m in the x
direction and between −50 m and 450 m in the y direction. Hence, the vehicle has 480 avail-
able landmarks along its path, although a limit of ρ = 10 active landmarks at each iteration
is set. Simulations are conducted considering the Tazzari Zero autonomous vehicle, whose
parameters are shown in Table 1, as well as the exteroceptive sensor installation parameters
shown in Table 2. The limits for the scheduling variables of the kinematic/dynamic LPV
models are set as follows:
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δ = −25◦, δ = 25◦,
v = 2 m/s, v = 18 m/s,
α = −0.1 rad, α = 0.1 rad,
θ = −90◦, θ = 160◦,

ω = −0.2 rad/s, ω = 0.2 rad/s.

A sampling time of τd = 1 ms is used for the dynamic state estimation layer, while
a sampling time of τk = 100 ms is considered for the SLAM layer. For the design of
the dynamic state estimator, diagonal covariance matrices Qd =

[
1, 1× 10−4], and

Rd =
[
1× 10−2, 1× 10−4] are considered. For the SLAM layer, diagonal covariance

matrices Rk =
[
1× 10−2, 1× 10−2, 1× 10−6], and Rm =

[
1× 10−2, 1× 10−2] are

used, where Rk is related to the kinematic sensors of the vehicle and Rm is related to the
measure of a single landmark. To design the polytopic LPV estimators following the of-
fline approach presented in Section 4, Mosek solver [19] is used to solve all the involved
optimization problems.

5.2. Simulation Scenarios

Two different experiments are conducted. In both cases, a variable friction between the
vehicle and the ground is considered, as well as additive perturbations and sensor noise.
All perturbations and noises are assumed to be Gaussian and are generated according
to their corresponding covariance matrices Q and R, which were previously defined.
In Figure 4, top right, the variable friction applied to the system is shown, and in Figure 4
left, the dynamic control signals ~ud with additive Gaussian disturbances are presented.
Using these data as inputs to the vehicle simulator and the sensor measurements ~yd
obtained, the dynamic response of the vehicle could be estimated. In both simulation
scenarios, these inputs are common, and consequently, the dynamic estimation results are
the same. These results are shown in Figure 5, where it can be observed that both estimation
techniques provide good results with a very similar performance. Both techniques filter the
system disturbances, although the polytopic LPV approach presents less estimation error
accumulation. As will be shown next, this result will be amplified in the kinematic SLAM
layer. Furthermore, in Figure 5 it is shown that for state α, which is not measured, a good
estimation is achieved. In contrast to all of that, in Figure 4, right, the friction estimation
performed by the UIO is shown. It can be seen that this estimation is equivalent for both
estimation techniques, although the UIO associates most of the disturbances received
with the friction, complicating the distinction between process disturbances and friction
force. Furthermore, the application of an UIO to this specific problem implies that the
measurement of the state v is analytically assigned directly to the estimation, blocking any
correction or filtering process to that state. This phenomenon is shown in Figure 5, where it
is seen how the estimation of the state v could not be filtered. In conclusion, although the
UIO is necessary to compensate the variable perturbation introduced by the vehicle friction,
it cannot completely eliminate the effect of additive Gaussian disturbances.

Using the dynamic estimations, the kinematic SLAM estimation can be performed.
Two experiments are proposed to evaluate the robustness of the proposed SLAM approach.
In the first experiment, initialization of landmarks is corrupted with an additive Gaussian
noise with a standard deviation of 10 m, which allows modelling an exteroceptive sensor
with a very bad state initialization. The results in this case are shown in Figure 6, where sig-
nificant differences are observed between the online and offline design approaches. For this
reason, the classical solution using an EKF, based on first-order linearization, is also plotted
and used as a reference for comparison. On the one hand, it can be observed that the online
approach presents significant biases, following the same trend as the EKF but accumulating
more error. On the other hand, the offline design approach based on the polytopic LPV
estimator accumulates less error than the EKF and provides a vehicle localization with an
order accuracy of a few decimeters for the position, one order of magnitude less than the
estimation performed by the Ricatti observer. These error accumulations appear during
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the vehicle turns, when the ~v direction is detached from the longitudinal direction of the
vehicle, dynamic effects become evident and drifts can appear at the vehicle wheels. As the
dynamic behaviour is affected by important nonlinearities, these results show how the
polytopic observer is able to deal with the nonlinearities problem, and therefore, it becomes
the most dynamically sensitive, improving the classical EKF. Despite this, note that the
estimation for the polytopic observer is a bit more noisy than the EKF, especially for the
vehicle orientation. However, the global accuracy improves with respect to the EKF, and it
can be concluded that the polytopic observer stands out for the localization task.
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Figure 4. Vehicle dynamic inputs in the simulation with friction and Gaussian noise.
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Figure 5. Vehicle dynamic state estimation from the simulation with friction and Gaussian
noise/disturbances.

Figure 7, left, shows the results of the mapping task for this experiment. It can be
seen how, unless using a sensor with bad accuracy for the initialization of landmarks, both
proposed techniques are robust enough to converge close to the real landmark’s position.
Furthermore, note how the vehicle discovers its closest surroundings and accurately places
the landmarks in the incremental map. At the same time, the vehicle trajectory on the map
can also be determined correctly. Therefore, the mapping task is carried out properly for
both techniques, and no significant differences are observed.
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Figure 6. Vehicle kinematic state estimation from the simulation with friction, Gaussian noise, and
noisy initialization of landmarks.
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Figure 7. Vehicle trajectory at the world map. Up: Simulation with noisy initialization of landmarks.
Down: Simulation with zero initialization of landmarks.
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The second experiment belongs to a critical case in which no state initialization mecha-
nism is available. The EKF-SLAM technique is very sensitive if new discovered landmarks
are not properly initialized. In [20], the initialization process for the SLAM system state
vector ~x and the SLAM system variance matrix P is described. This process was applied
in the previous experiment, but now it is removed and all landmarks initialization are set
to nearly zero. This will allow us to more deeply analyse the robustness of the proposed
SLAM solution and check if this initialization is needed for the proposed methodologies.
Figure 8 shows the kinematic results for this experiment. It is seen how, as expected,
the EKF is not able to deal with this high uncertainty. Similarly, the Riccati observer also
cannot assume it, but, on the contrary, the polytopic approach is able to perform a good
localization with an error of decimetres for the vehicle position. These results show how
this technique outperforms the robustness of the classical EKF when no accuracy on land-
mark initialization is able. Furthermore, Figure 7, right, shows the results of the mapping
task for this experiment. It can be observed how only the polytopic observer is able to
converge and accurately place the discovered landmarks in the incremental map. For the
other techniques, a significant drift on the vehicle trajectory is appreciated, and in particular
for the EKF, significant oscillations appear in every landmark discovery.
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Figure 8. Vehicle kinematic state estimation from the simulation with friction, Gaussian noise and
zero initialization of landmarks .

In conclusion, the presented results show how the the dynamic estimation tasks
are developed correctly for both proposed techniques, apparently without significant
differences at this level. However, achieving accuracy in the vehicle location becomes
more complex, and the best estimation is provided by the polytopic observer. The Ricatti
observer is conceived as the direct evolution of the EKF-SLAM methodology to include the
dynamic response of the vehicle and use LPV techniques. It is seen how this approximation
fails, and the results become worse with respect to the classical EKF. For this reason, it is
necessary to go in depth into the LPV techniques and find a new approximation of the
SLAM problem based on the polytopic models and tuning methodologies based on the
optimization of a set of LMIs. This approximation turns out to be more accurate because
it avoids updating the system model at the operation point, performing an interpolation
for the whole problem domain. This weighing allows Lyapunov stability conditions to
be accomplished for the global system and allows one to reach a better observation of
the nonlinear problem. This is the improvement to the SLAM problem introduced in this
article.
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6. Conclusions

In this article, the SLAM problem is solved by applying a methodology based on
kinematic/dynamic models using the LPV framework. The proposed SLAM approach is
designed for mobile platforms with a considerable mass and not operated at low velocities,
such as autonomous vehicles. For this type of mobile platform, its dynamic response be-
comes evident and contrasts with the mobile robots considered in classical SLAM problems,
where only kinematic effects are modelled. A difference from those classical approaches
is that in this proposal, an estimation mechanism of the dynamic response of the vehi-
cle is provided, which is combined with the solution to a SLAM problem. Furthermore,
this approach proves that to solve a problem with important nonlinear behaviour, it is
necessary to go in depth into advanced control techniques, avoiding the classical EKF,
which linearizes the system model around the operation point. The approach introduced
in this paper is based on the use of the LPV technique, which considers the whole problem
domain and avoids any linearization, and it has been verified in simulation, showing the
advantages of the polytopic stationary observer with respect to the Ricatti iterative observer.
To implement the polytopic estimator, a reformulation of the SLAM problem has been
necessary, developing the map kinematic model presented in Equation (5), which allows
a linear observation model for the SLAM problem and introduces a robocentric point of
view to it. Furthermore, the polytopic technique only requires considering the measurable
surroundings of the vehicle, avoiding the maintenance of the whole discovered map. It is
verified in simulation that these relaxations do not have adverse effects to the localization
task and allows it outperform the classical EKF-based methods.

Moreover, the proposed approach considers an observation system with an archi-
tecture that couples with the kinematic/dynamic controller structured in layers for an
autonomous vehicle proposed at [2]. Both systems are built using the same vehicle models
and are implemented with gain-scheduling LPV techniques. Both systems allow showing
that it is possible to separate the kinematic and dynamic responses, permitting perform
the dynamic treatment independently to the kinematic treatment. At the same time, in this
article is shown how the vehicle kinematic estiamted layer can be combined with a SLAM
problem, in the same way as in [3] the vehicle kinematic control layer is combined with
the trajectory planner. Therefore, the presented kinematic/dynamic localization system
allows to advance in the development of a layered software which permits the autonomous
driving of a vehicle.

As future work, the following aspects will be further researched:

• The proposed approach will be applied and tested in the real vehicle in the context of
current ongoing research project.

• The extension of the proposed observation approach to take into account 3D scene
factors (such as ground unevenness and vehicle instability) will be explored.

• The inclusion of range sensors instead of state sensors will also be considered.
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