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Abstract 

This paper proposes a new approach for set-membership state estimation of switched discrete-time 
linear systems subject to bounded disturbances and noises. A zonotopic outer approximation of the state 
estimation domain is computed and a new criterion is proposed to reduce the size of the zonotope at 
each sample time. The zonotopic set-membership estimator design for switched systems is provided 
within the LMI framework. The extension of the proposed scheme to deal with unknown inputs is also 
presented. An application to vehicle lateral dynamics state estimation is provided. Simulation results 
demonstrate the effectiveness of the proposed algorithm and highlight its advantages over the existing 
methods. 
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. Introduction

In recent years, switched systems have attracted an increasing interest in the scientific
ommunity because of their ability to represent complex and nonlinear behaviours and their
pplicability to real systems [1] . Switched systems [2,3] is an important class of hybrid
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ynamic systems [4] , involving a collection of subsystems and a switching discrete law
etermining at each time the active subsystem dynamics. The motivation to study this class
f systems is mainly twofold. First, several physical and engineering systems can be repre-
ented by switched systems, as e.g. chemical processes [5] , switching power converters [6] ,
etworked control systems [7] , automotive and aircraft control [8,9] , among other. Second,
he design of switched controllers provides a way to overcome the weaknesses of a single
ontroller, which often leads to conservative performances when the system has to operate a
ide operating range and parameter variations. 
Nowadays, important theoretical results have already been achieved in the literature of

witched systems dealing with stability, stabilization and controllability [2,3,10–13] , observ-
bility, detectability and estimation [14,15] . Since the major problem that is commonly in-
erent to all dynamic systems is the lack of complete state measurements, the state estima-
ion problem for switched systems has attracted a lot of attention during the last decades
16,17] . The state estimation problem of switched systems was originally studied in [18] .
ater, Alessandri and Coletta proposed in [17] , a Luenberger-like observer for continuous-

ime deterministic linear switched systems with known discrete law evolution. In [19] , this
pproach has been extended to the case of unknown discrete modes and a method of discrete
nd continuous state estimation for linear switched systems has been presented. In [20] , an
lternative method based on second-order sliding mode observer has been successfully im-
lemented to reconstruct the continuous and discrete states for switched Lagrangian systems.
evertheless, the state estimation in the presence of model uncertainties represented by un-
nown (even time-varying) parameters, external disturbances or measurement noises poses
reat challenges in practical applications. Indeed, in this case, observer design is structurally
omplicated, since all uncertainties should be either estimated simultaneously or decoupled
rom the observer equation. In [21–23] , the previous approaches are generalized to cover
inear and nonlinear switched systems with unknown inputs. In [24,25] , classical adaptive ob-
erver as well as sliding-mode-based observers techniques have been applied for continuous
tate reconstruction in the presence of model uncertainty. Besides, robust H ∞ 

filter design
as been widely proposed for switched systems (see [26–29] and references therein). It is
oteworthy that, the applicability of each of the aforementioned punctual observers depends
eavily on systems uncertainties, especially, if we have to deal with large uncertainties in
odel parameters, inputs and measurements. 
Recently, an attractive alternative approach, known as, bounded-error description, has been

roposed [30–35] . In this framework, initiated by Schweppe [36] and Witsenhausen [37] ,
he modeling errors, disturbance, and measurement noise are assumed to be unknown but
ounded by a priori known bounds. This hypothesis is motivated by the fact that a lower and
pper bounds on model errors and/or measurement is often the only information available in
arious practical situations. In the literature, several approaches have been proposed to solve
he state bounding problem. On the one hand, interval observers based on cooperative systems
heory and, on the other hand, set-membership estimators based on set theory. Several types
f sets have been used to implement these approaches as ellipsoids [38–40] , parallelotopes
41] , zonotopes [42–44] and intervals [32,45,46] .

This paper proposes a new zonotopic set-membership state estimation approach for uncer-
ain discrete-time switched systems affected by unknown but bounded disturbances and mea-
urement noises. A zonotopic outer approximation of the state estimation domain is computed
nd a new W -radius minimization criterion is proposed to reduce the size of the zonotope at
ach sample time. Our methodology offers a good compromise between estimation accuracy



and computational complexity. Compared to the relevant existing literature [35,44,47,48],  
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he main contributions of this paper are: 

• This paper proposes a new approach for set-membership state estimation of switched
discrete-time linear systems subject to bounded disturbances and noises.
• The zonotopic set-membership estimator design for switched systems is provided within

the LMI framework;
• Robustness against worst-case disturbances is ensured in a straightforward manner by min-

imizing directly the effect that the worst-possible input disturbances can have on the re-
sulting W -radius of the state bounding zonotope. Notably, our approach avoids introducing
additional constraints and decision variables related to ellipsoid minimization problems
used conventionally to minimize the W -radius of the zonotope as done in [49,50] . Sim-
ulation results demonstrate the effectiveness of the proposed algorithm and highlight its
advantages over the existing methods.
• The developed set-membership state estimation approach is shown to be equivalent to a

switched zonotopic observer;
• An extension of the proposed methodology is presented when the system is subject to both

bounded uncertainties and unknown inputs;
• Application to vehicle sideslip angle set-membership estimation is presented with and

without considering road curvature (unknown input). Experimental evaluation based on
real data confirms the efficiency and reliability of the proposed method.

This paper is organized as follows: Section 2 presents the background material regarding
onotopes. In Section 3 , zonotopic guaranteed set-membership approach for uncertain switched
iscrete-time systems is proposed. First, parameterized intersection zonotope is computed by
ntersecting the measurement state set and the predicted state set. Then, a new optimization
ethodology subject to LMI constraints is proposed to minimize the radius of the obtained

onotope. Section 4 discusses the equivalence between the proposed set-membership and the
onotopic observer approaches. Section 5 introduces the extension of the proposed observer to
he case of dealing with unknown inputs through an Unknown Input Observer (UIO) scheme.
ection 6 illustrates the effectiveness of the proposed scheme through an application to vehicle
ideslip angle estimation. Finally, conclusions are drawn in Section 7 . 

. Preliminaries

In this section, some basic set definitions and operations that will be used along this paper
re introduced. 

efinition 1. An unitary interval is a vector denoted by B = [ −1 , 1] . An unitary box in IR 

n x ,
s a box composed of n x unitary intervals. 

efinition 2 [44] . A zonotope of order m in IR 

n is the translation by the center p ∈ IR 

n

f the image of an unitary hypercube of dimension m in IR 

m under a linear transformation
 ∈ IR 

n×m , the zonotope X is defined by:

 = 〈 p, H 〉 = p � H B 

m = { p + H z : z ∈ B 

m } (1)
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efinition 3. The Minkowski sum of two sets X 1 and X 2 is given by X 1 � X 2 = { x 1 + x 2 :
 1 ∈ X 1 , x 2 ∈ X 2 } .
roperty 1. The Minskowski sum of two zonotopes X 1 = p 1 � H 1 B 

m 1 and X 2 = p 2 � H 2 B 

m 2

s also a zonotope defined by X = X 1 � X 2 = (p 1 + p 2 ) � [ H 1 H 2 ] B 

m 1 + m 2 .

efinition 4 (Zonotope interval hull [44] ) . Consider the zonotope X = p � H B 

m , the smallest
nterval box that contains this zonotope, i.e. its interval hull denoted by �, is computed by:

X = p � rs(H ) B 

m (2)

here rs(H ) is a diagonal matrix such that rs(H ) ii =
∑ m

j=1 | H i j | , i = 1 , . . . , n.

efinition 5 ( W -radius [51] ) . Given a zonotope X = 〈 p, H 〉 ⊂ R 

n and a weighting matrix
 = W 

T � 0, the W -radius of X is defined by

 

W = max 

x∈ X 
‖ x − p‖ 2 2,W 

= max 

z∈ B 

q 
‖ H z‖ 2 2,W (3)

here ‖ . ‖ 2,W 

is the weighted 2-norm, i.e. ‖ H z ‖ 2 2,W 

= z T H 

T W H z .

roperty 2 (Zonotope reduction [51] ) . A reduction operator, denoted ↓ q,W 

, allows to re-
uce the number of generators of a zonotope X to a fixed number n ≤ q < m, such that
 = 〈 p, H 〉 ⊂ 〈 p, ↓ q,W 

H 〉 . A common procedure for implementing the operator ↓ q,W 

is sum-
arized as follows: 

(1) Sort the column of segment matrix H ∈ IR 

n×m in decreasing weighted vector norm ‖ . ‖ W 

,
H = [ h 1 , . . . , h j , . . . , h m 

] , ‖ h j ‖ 2 W 

≥ ‖ h j+1 ‖ 2 W 

;
(2) Enclose the set H > 

generated by the m − q + n smaller columns into a box (i.e.,
interval hull): If m ≤ q, then ↓ q,W 

H = H , Else ↓ q,W 

H = [ H > 

, rs(H < 

)] ∈ IR 

n×q ,
H > 

= [ h 1 , . . . , h q−n ] , H < 

= [ h q−n+1 , . . . , h m 

]

where ‖ . ‖ W 

is the Frobenius norm and rs(H < 

) is a diagonal matrix with diagonal elements
f rs(H < 

) i,i = 

∑ m 

j=1 | H < 

| i, j , i = 1 , . . . , n.

There are other zonotope reduction procedures. A thorough comparison about the existing
ethods is presented in [52] . 

. Set-membership estimator for uncertain switched discrete-time systems

In this work, the following class of stable (or stabilisable) uncertain discrete-time switched
ystems is considered 

 k+1 = A σ (k) x k + B σ (k) u k + ω σ (k) (4)

 k = C σ (k) x k + υσ(k) (5)

here x k ∈ IR 

n x , u k ∈ IR 

n u , y k ∈ IR 

n y denote the vectors of state, input and measurement out-
ut, respectively. σ (k) : N 0 → I = { 1 , 2, . . . , N } is the switching law that determines the
iscrete mode. It is assumed to be a priori unknown but online available. A σ (k) ∈ IR 

n x ×n x ,
 σ (k) ∈ IR 

n x ×n u and C σ (k) ∈ IR 

n y ×n x are state, input and output matrices. Since no model can
xactly represent the state and measurement of the real system considering only the known
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nputs, the validity of the switched model Eq. (5) includes uncertainty model (modeling er-
ors, disturbances, measurement noise, etc.) with the two additional inputs ω σ (k) ∈ IR 

n x and
σ (k) ∈ IR 

n y . Only the knowledge of a bound on their realizations is supposed and no statistical
roperty must be satisfied contrarily to the Kalman filtering approach. 

Before we proceed with the detailed set-estimator design, the following assumptions are
ntroduced. 

ssumption 1. The initial state is assumed to be unknown but bounded by a zonotope X 0 =
 p 0 , H 0 〉 , where p 0 ∈ IR 

n x and H 0 ∈ IR 

n x ×n x are the center and segment matrix of this zonotope,
espectively. 

ssumption 2. ω σ (k) ∈ IR 

n x and υσ(k) ∈ IR 

n y are assumed to be unknown but bounded by
onotopes W σ (k) = 〈 0, D σ (k) 〉 and V σ (k) = 〈 0, F σ (k) 〉 , respectively.

.1. Parameterized intersection zonotope 

Hereafter, a set-membership state estimation approach based on zonotopes for switched
iscrete-time system Eq. (5) is proposed. This approach is based on parameterized intersection
onotope for implementing the measurement consistency test. Before stating the main results,
he uncertain state set, measurement state set and exact uncertain set are defined as in [35] . 

efinition 6 ( Uncertain state set ) . Given the switched system Eq. (5) with x 0 ∈ X 0 =
 p 0 , H 0 〉 , ω σ (k) ∈ W σ (k) , ∀ σ (k) and for all k ∈ N , the uncertain state set X k is defined by

 k = 

{
x ∈ IR 

n x 
∣∣x ∈ A σ (k) X k−1 � B σ (k) u k−1 � W σ (k)

}
(6)

efinition 7 ( Measurement state set ) . Given the switched system Eq. (5) , a measurement
utput vector y k and υk ∈ V σ (k) , ∀ σ (k) and for all k ∈ N , the measurement state set P k is
efined by 

 k = 

{
x ∈ IR 

n x 
∣∣C σ (k) x k − y k = F σ (k) s 2 , ∀ s 2 ∈ B 

n y
}

(7)

efinition 8 ( Exact uncertain set ) . Given the switched system Eq. (5) , a measurement output
ector y k , ω σ (k) ∈ W σ (k) , υk ∈ V σ (k) , ∀ σ (k) and for all k ∈ N , the exact uncertain state set
 (k) is defined by 

 k = X k ∩ P k (8)

The goal is to compute an approximation 

ˆ X k of the exact uncertain set X k by an outer
pproximation of the intersection between the uncertain trajectory X k and the region of the
tate space that is consistent with the measured output y k and the initial state set X 0 (see
ig. 1 ). 

Based on the prediction and correction steps (detailed in the algorithm below), the pro-
edure of this technique is similar to that of Kalman filter. While the Kalman filter deals
ith the average case, the proposed set-membership estimator considers the worst case. Now,

et us assume that x k ∈ X k ⊆ ˆ X k = 〈 ̂  p k , ˆ H k 〉 at time k ∈ N that also satisfies x 0 ∈ X 0 at time
 = 0. Suppose in addition that a measured output y k is obtained at time instant k. Under
hese assumptions, an outer bound of the exact uncertain state set X k can be estimated using
he Algorithm 1 . 



Fig. 1. Set-membership state estimation. 

Algorithm 1 Set-membership state estimation. 

1. Prediction step : Given the switched system Eq. (5), compute the zonotope X k that bounds
the set of predicted states Eq. (6) for the uncertain trajectory of the system using properties 
of zonotopes in Section 5; 
2. Measurement step : Parametrize the measurement state set P k by using Eq. (7) and taking
into account the measurement vector y k ; 
3. Correction step : To find the state estimation set, compute an outer approximation 

ˆ X k of
the intersection between X k and P k 
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Now let describe how this algorithm can be practically implemented using zonotopes. The
ey issue is to find a parameterized zonotope ˆ X k that contains the intersection of the two
ets X k and P k used in the correction step of the previous algorithm. The zonotope ˆ X k is
arameterized with respect to a switched correction matrix �σ(k) ∈ IR 

n x ×n y . The structure of
his zonotope is given below. 

roposition 1. Given the switched system Eq. (5) , a measurement output vector y k , x 0 ∈ X 0 ,
 σ (k) ∈ W σ (k) , υk ∈ V σ (k) and x k−1 ∈ 〈 ̂  p k−1 , ˆ H k−1 〉 ⊆ 〈 ̂  p k−1 , H k−1 〉 with H k−1 = ↓ q,W 

( ˆ H k−1 ) ,

 σ (k) . Then, for any switched correction matrix �σ(k) ∈ IR 

n x ×n y , we have x k ∈
{ 
X k ∩ P k

} 
⊆

ˆ 
 k = 〈 ̂  p k , ˆ H k 〉 , where

ˆ p k = (I n x − �σ(k) C σ (k) ) A σ (k) ̂  p k−1 + (I n x − �σ(k) C σ (k) ) B σ (k) u k−1 + �σ(k) y k (9a)

ˆ 
 k =

[
(I n x − �σ(k) C σ (k) ) A σ (k) H k−1 , (I n x − �σ(k) C σ (k) ) D σ (k) , �σ(k) F σ (k)

]
(9b)

roof. . For any x k ∈
{ ˆ X k ∩ P k

}
, it follows that x k ∈ 

ˆ X k and x k ∈ P k . Consider the switched

ystem Eq. (5) with the inclusion x k−1 ∈ 〈 ̂  p k−1 , ˆ H k−1 〉 ⊆ 〈 ̂  p k−1 , H k−1 〉 and ω σ (k) ∈ W σ (k) , there
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xists a vector s 1 ∈ B 

q+ n x such that

 k = A σ (k) ̂  p k−1 + B σ (k) u k−1 + 

[
A σ (k) H k−1 , D σ (k) 

]
s 1 (10)

n addition, from x k ∈ P k , there exists a vector s 2 ∈ B 

n y such that

 σ (k) x k − y k = F σ (k) s 2 (11)

et �σ(k) ∈ IR 

n x ×n y . Adding and subtracting the term �σ(k) C σ (k) 

[
A σ (k) H k−1 D σ (k) 

]
s 1 in

q. (10) , we obtain ∀ σ (k)

 k = A σ (k) ̂  p k−1 + B σ (k) u k−1 + �σ(k) C σ (k) 

[
A σ (k) H k−1 D σ (k) 

]
s 1 

+ 

[
(I n x − �σ(k) C σ (k) ) A σ (k) H k−1 (I n x − �σ(k) C σ (k) ) D σ (k) 

]
s 1 (12)

y substituting x k in Eq. (11) by Eq. (10) , we also have 

C σ (k) 

[
A σ (k) H k−1 D σ (k) 

]
s 1 = y k + F σ (k) s 2 − C σ (k) (A σ (k) ̂  p k−1 + B σ (k) u k−1 ) (13)

hen, by replacing C σ (k) 

[
A σ (k) H k−1 D σ (k) 

]
s 1 in Eq. (12) , it follows that

 k = (I n x − �σ(k) C σ (k) ) A σ (k) ̂  p k−1 + (I n x − �σ(k) C σ (k) ) B σ (k) u k−1 + �σ(k) y k

+ 

[
(I n x − �σ(k) C σ (k) ) A σ (k) H k−1 (I n x − �σ(k) C σ (k) ) D σ (k) �σ(k) F σ (k)

][s 1
s 2 

]
(14)

hus, Eqs. (9a) and (9b) are obtained and the proof is complete. �

.2. Optimal switched correction matrix design 

The approach considered in this paper consists in computing a weighting matrix W i =
 

T
i � 0 and a correction matrix �i such that for all i ∈ I and for all k ≥ 0, the W i -radius of

he zonotopic state estimation set is decreased. 
According to Definition 5 , the size of the intersection zonotope ˆ X k given by Eq. (9) can

e measured by the W i -radius as follows: 

 

W
k = max 

x k ∈ ̂ X k 

∥∥∥∥x k − ˆ p k (�σ(k) ) 

∥∥∥∥
2 

2,W σ (k) 

= max
z∈ B 

(q+ n x + n y ) 

∥∥∥∥ ˆ H k (�σ(k) ) z 

∥∥∥∥
2 

2,W σ (k) 

= max
z∈ B 

(q+ n x + n y ) 
z T ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) z (15)

here W σ (k) = W i , ∀ i ∈ I is the weighting matrix of appropriate dimensions for the ith subsys-
em. As stated above, a suitable design of the correction matrix �σ(k) is required to minimize
he effects of uncertainties and guarantee that the size of the intersection zonotope is not
ncreasing. Then, if there exists a scalars ασ(k) and γσ (k) associated with each subsystem
(k) = i such that
l W 
k−1 ≤ −ασ(k) l 

W 

k−1 + γσ (k) εσ (k) (16)

here �l W 
k−1 = l Wk − l W 

k−1 and εσ (k) is a positive switched constant that represents the maximum
nfluence of disturbances and measurement noises as follows: 

σ (k) = max
b 1 ∈ B 

n x 

∥∥D σ (k) b 1 

∥∥2
2 + max

b 2 ∈ B 

n y 

∥∥F σ (k) b 2 

∥∥2
2 (17)
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hen, the size of ˆ X k is decreasing. If Eq. (16) holds, then for time instant k → ∞ , this
xpression is equivalent for all i ∈ I to

 

W
∞ = (1 − αi ) l 

W
∞ + γi εi (18)

t follows that 

 

W
∞ = γi

εi 

αi 
, ∀ i ∈ { 1 , . . . , N } (19)

o minimize the W -radius (i.e l W 

∞ 

), for given αi and εi , the attenuation gain γi should be
inimized ∀ i ∈ I . Then, the design of the correction matrix �i associated with each subsys-

em i involves solving a Multi-Objective Global Minimum Optimization problem with LMIs
onstraints according to the following theorem. 

heorem 2. Consider the intersection zonotope X k = 〈 ̂  p k , ˆ H k 〉 in ( Eq. 9 ). Inequality
q. (16) holds if there exists a matrix Y i ∈ IR 

n x ×n y , a positive definite matrix W i ∈ IR 

n x ×n x ,
calars γ > 0, γi > 0 for given scalar αi ∈ (0, 1) that are obtained by solving the following
MI optimization problem 

min 

 i , Y i ,γi 

γ

i ≤ γ (20a)

(αi − 1) W i ∗ ∗ ∗
0 −γi D 

T 
i D i ∗ ∗

0 0 −γi F 

T 
i F i ∗

(W i − Y i C i ) A i (W i − Y i C i ) D i Y i F i −W i

⎤
⎥⎥ ⎦ 

≺ 0 (20b)

∀ i ∈ I , with Y i = W i �i .

roof. Let z = [
z T s T 1 s T2

]T ∈ B 

q+ n x + n y with z ∈ B 

q , s 1 ∈ B 

n x and s 2 ∈ B 

n y , then using
q. (15) we have 

�
l W 
k−1 = max

z∈ B 

(q+ n x + n v ) 

∥∥∥ ˆ H k (�σ(k) ) z 
∥∥∥2 

2,W σ (k) 

− max 

z ∈ B 

q 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

(21)

t follows that 

l W 
k−1 = max 

z ∈ B 

q , z∈ B 

(q+ n x + n v ) 

(∥∥∥ ˆ H k (�σ(k) ) z 
∥∥∥2 

2,W σ (k) 

−
∥∥∥H k−1 z 

∥∥∥2 

2,W σ (k) 

)

= max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y 

(⎡⎣ 

z 
s 1 
s 2 

⎤ 

⎦
T 

ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) 

⎡
⎣ 

z 
s 1 
s 2 

⎤
⎦

− z T H 

T 
k−1 W σ (k) H k−1 z

)
(22)
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y adding and subtracting the terms −γσ (k) εσ (k) and max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

, where εσ (k) is

iven by Eqs. (17), (22) is rewritten as 

l W 
k−1 = max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y 

(⎡ 

⎢ ⎣ 

z 

s 1 

s 2 

⎤ 

⎥⎦
T 

ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) 

⎡ 

⎢ ⎣ 

z 

s 1 

s 2 

⎤
⎥⎦

+ ασ(k) z 
T H 

T 
k−1 W σ (k) H k−1 z − z T H 

T 
k−1 W σ (k) H k−1 z − γσ (k) s 

T 
1 D 

T 
σ (k) D σ (k) s 1

− γσ (k) s 
T 
2 F 

T 
σ (k) F σ (k) s 2

)
− max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

+ γσ (k) εσ (k) (23)

ubstituting Eq. (9b) into Eq. (23) , the above inequality can be rewritten as 

�
l W 
k−1 = max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y 

⎛ 

⎜ ⎜ ⎝ 

⎡ 

⎢⎣
H k−1 z 

s 1 

s 2 

⎤ 

⎥⎦
T (


T 
σ (k) W σ (k) 
σ(k) +

⎡
⎢⎣

(ασ (k) − 1) W σ (k) 0 0 

0 −γσ (k) D 

T
σ (k) D σ (k) 0 

0 0 −γσ (k) F 

T
σ (k) F σ (k) 

⎤ 

⎥ ⎦ 

⎞ 

⎟ ⎠ 

⎡ 

⎢⎣
H k−1 z 

s 1 

s 2 

⎤ 

⎥ ⎦ 

⎞
⎟⎠

−max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

+ γσ (k) εσ (k)

(24)

here 
σ(k) =
⎡
⎣ (I n x − �σ(k) C σ (k) ) A σ (k)

(I n x − �σ(k) C σ (k) ) D σ (k)

(I n x − �σ(k) C σ (k) )�σ(k) F σ (k)

⎤ 

⎦
T 

. If the following inequality holds ∀ i ∈ I


T 
i W i 
i +

⎡ 

⎣(αi − 1) W i 0 0 

0 −γi D 

T 
i D i 0 

0 0 −γi F 

T 
i F i

⎤
⎦ ≺ 0 (25)

hich is equivalent by means of the application of the Schur complement to Eq. (20b) , then,
t follows from Eq. (24) that 

l W 
k−1 ≤ −αi l 

W 

k−1 + γi εi , ∀ i ∈ I (26)

ence, by minimizing the gain γi , ∀ i ∈ I , the intersection zonotope ˆ X k+1 can be made as tight
s possible. In order to solve this multi-objective optimization problem, one objective scalar

is minimized while the others are transformed into constraints γi ≤ γ . This completes the
roof of Theorem 2 . �

emark 1. Note that the order of the zonotopes grows with both operations Eqs. (9a) and (9b) ,
ncreasing the computational and storage requirements. In zonotope-based set-membership
tate estimation, it is a common practice to iteratively reduce the zonotope order such that
t remains upper bounded [51] . When reduction operations take place, the prediction sets in
9) are computed using the reduced order zonotope H k−1 = ↓ q,W 

( ˆ H k−1 ) . Different methods
or reducing the order of a zonotope are reviewed in . 
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.3. Comparison with existing LMI methods for set-membership estimation 

To compare the proposed approach with the existing ones, a straightforward extension of
he classical results of zonotopic state estimation [44] to the class of switched system Eq. (5) is
resented. Note that, as in the previous sections, a similar two-step procedure (prediction and
orrection) is applied. Then, according to ( [44] , Chapter 3) the decreasing condition of the
 -radius Eq. (15) can be expressed in the case of switched system as follows: 

 

W
k ≤ ˜ ασ(k) l 

W 

k−1 + εσ (k) (27)

here ˜ ασ(k) ∈ (0, 1) and εσ (k) = max
b 1 ∈ B 

n x 

∥∥D 1 b 1 

∥∥2
2 + max

b 2 ∈ B 

n y 

∥∥F 1 b 2 

∥∥2 
2 . As W 1 and V 1 are convex

ets and the 2-norm is a convex function, the constant εσ (k) can be easily deduced. Subse-
uently, when k goes to infinity, the condition Eq. (27) is written as l W∞ = ˜ αi l W∞ + εi , ∀ i ∈ I ,
eading to 

 

W
∞ = 

εi

1 − ˜ αi 
, ∀ i ∈ { 1 , . . . , N } (28)

onsider the ith ellipsoid = { x : x T ˜ W i x ≤ εi
1 − ˜ αi 

} which is normalized as follows: E i = { x :
 

T (1 − ˜ αi ) ̃  W i 

εi
x ≤ 1 } . This ellipsoid is related to the ˜ W i -Radius of the guaranteed zonotopic state

stimation at infinity. Thus, the minimum 

˜ W i -radius, i.e. l W 

∞ 

, of the zonotope ˆ X k can be
btained by finding the ellipsoid E i , ∀ i ∈ I of the smallest diameter. This leads to solving the
ollowing optimization problem [44] : 

max 

i , ̃  αi , ˜ W i , ̃  Y i 
τ

ubject to 

i ≥ τ (29a)

(1 − ˜ αi ) ˜ W i

εi 
� τi I n x (29b)

˜ αi ˜ W i ∗ ∗ ∗
0 D 

T 
i D i ∗ ∗

0 0 F 

T 
i F i ∗

˜ W i A i − ˜ Y i C i A i ˜ W i D i − ˜ Y i C i D i ˜ Y i F i ˜ W i

⎤
⎥⎥ ⎦ 

� 0 (29c)

The decision variables are ˜ αi ∈ (0, 1) , τ , τi > 0, ˜ W i = 

˜ W 

T 
i � 0, ˜ W i ∈ IR 

n x ×n x and 

˜ Y i =
˜ 
 i ˜ �i ∈ IR 

n x ×n y . The BMI optimization problem Eq. (29) is solved by using a search loop on
˜ i leading to an LMI problem.

In comparison with the optimization problem Eq. (29) , Theorem 2 gives a new formulation
f robust guaranteed state estimation with guaranteed cost, i.e. γi . If for the switched system
q. (5) , Theorem 2 provides feasible solution for W i and Y i such that the objective function γi

ttains its minimum value. Then, the resulting zonotope X k admits a W i -radius upper-bounded
y 

 

W
∞ = γi

εi 

αi 
, ∀ i ∈ I (30)



Fig. 2. Zonotopic observer approach. 
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t should be noticed that the term γi , which has no counterpart in the classical zonotopic
et-membership estimation theory [44] , plays an important role in making the proposed cri-
erion Eq. (30) less conservative than the existing one Eq. (28) . The scalar parameter γi

n Theorem 2 can be appropriately tuned to reduce the adverse effect of disturbance upper
ound εi (i.e. worst case) on the W i -radius Eq. (26) . Accordingly, the main feature of the
roposed method is to yield a robust guaranteed estimation procedure, simple to implement,
ith reduced complexity and less computation time without resorting to ellipsoid minimization
roblems. 

. Equivalence of the proposed set-membership estimator with a zonotopic observer

In the previous section, a set-membership estimation approach for switched systems based
n zonotopes has been proposed. An estimate ˆ X k of the exact consistent state set X k has
een computed by intersecting the uncertain state set X k consistent with the model and the
ne consistent with the measurements P k (see Fig. 1 ). In the sequel, the equivalence of the
roposed set-membership estimator and a zonotopic observer for the class of switched sys-
em Eq. (5) will be presented. The equivalent switched observer is based on the classical
alman filter structure [53] where zonotopic sets are used instead of usual Gaussian proba-
ility distributions. As illustrated in Fig. 2 , the zonotopic observer is a recursive algorithm,
hat incorporates all the provided information (model and observations) and processes the
vailable measurements to estimate the current state set of the system 

ˆ X 

zo 
k . Note that set-

embership and interval observer based approaches are commonly thought to be different,
lthough they are already compared to each other in case of LTI systems [54] . In this section,
e show that these approaches are actually equivalent, and, produce mathematically identical

onotopes. Comparison of the centers and segments of the obtained zonotopes establish a
lear equivalence between the two approaches. 

Let us consider the uncertain switched discrete-time system Eq. (5) , the structure of the
onotopic Observer is expressed as 

 k = A σ (k) ̂  x k−1 + B σ (k) u k−1 (31a)

ˆ  k = z k + L σ (k) 

[
y k − C σ (k) z k

]
(31b)
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here z k ∈ IR 

n x is the apriori estimate of x k based only on the model and ˆ x k ∈ IR 

n x is the
osterior estimate of x k considering both the model and the measurements. L σ (k) ∈ IR 

n x ×n y is
he gain matrix to be designed. 

The following theorem presents the time evolution of the state zonotopic sets. 

heorem 3. Given the switched system Eq. (5) , measured output y k , x 0 ∈ X 0 , ω σ (k) ∈
 σ (k) , υk ∈ V σ (k) , ∀ σ (k) , x k−1 ∈ 〈 ̂  p 

zo 
k−1 , 

ˆ H 

zo
k−1 〉 ⊆ 〈 ̂  p 

zo 
k−1 , H 

zo 
k−1 〉 with H 

zo 
k−1 = ↓ q,W 

( ˆ H 

zo 
k−1 ) and

 switched gain matrix L σ (k) ∈ IR 

n x ×n y . The zonotope bounding uncertain states can be recur-
ively defined by x k ∈ 

ˆ X 

zo
k = 〈 ̂  p 

zo 
k , 

ˆ H 

zo 
k 〉 , where

ˆ p 

zo
k = (I n x − L σ (k) C σ (k) ) A σ (k) ̂  p 

zo
k−1 + (I n x − L σ (k) C σ (k) ) B σ (k) u k + L σ (k) y k (32a)

ˆ 
 

zo 
k = 

[
(I n x − L σ (k) C σ (k) ) A σ (k) H 

zo 
k−1 , (I n x − L σ (k) C σ (k) ) D σ (k) , L σ (k) F σ (k)

]
(32b)

roof. Let e k = x k − ˆ x k be the state estimation error. From Eq. (31) , we have

ˆ  k = (I n x − L σ (k) C σ (k) ) A σ (k) ̂  x k−1 + (I n x − L σ (k) C σ (k) ) B σ (k) u k + L σ (k) y k (33)

hen, the dynamics estimation error can be expressed as 

 k = x k − (I n x − L σ (k) C σ (k) ) A σ (k) ̂  x k−1 − (I n x − L σ (k) C σ (k) ) B σ (k) u k

− L σ (k) C σ (k) x k − L σ (k) υσ(k)

= (I n x − L σ (k) C σ (k) ) x k − (I n x − L σ (k) C σ (k) ) A σ (k) ̂  x k−1

− (I n x − L σ (k) C σ (k) ) B σ (k) u k − L σ (k) υσ(k)

= (I n x − L σ (k) C σ (k) ) A σ (k) e k−1 + (I n x − L σ (k) C σ (k) ) ω σ (k) − L σ (k) v σ (k) (34)

rom Eqs. (33) and (34) , the uncertain system state x k is given by 

 k = e k + ˆ x k
= (I n x − L σ (k) C σ (k) ) A σ (k) e k−1 + (I n x − L σ (k) C σ (k) ) ω σ (k) − L σ (k) v σ (k)

+ (I n x − L σ (k) C σ (k) ) A σ (k) ̂  x k−1 + (I n x − L σ (k) C σ (k) ) B σ (k) u k−1 + L σ (k) y k
= (I n x − L σ (k) C σ (k) ) A σ (k) x k−1 + (I n x − L σ (k) C σ (k) ) ω σ (k) − L σ (k) v σ (k)

+ (I n x − L σ (k) C σ (k) ) B σ (k) u k + L σ (k) y k (35)

onsidering the uncertain system state x k−1 ∈ X 

zo 
k−1 = 〈 ̂  p 

zo 
k−1 , 

ˆ H 

zo 
k−1 〉 ⊆ 〈 ̂  p 

zo 
k−1 , H 

zo 
k−1 〉 as prior,

he uncertain state at time instant k can also be bounded by the zonotope X 

zo
k = 〈 ̂  p 

zo 
k , 

ˆ H 

zo 
k 〉

hat is defined as follows: 

 k+1 = (I n x − L σ (k) C σ (k) ) A σ (k) ̂  p k + (I n x − L σ (k) C σ (k) ) B σ (k) u k + L σ (k) y k+1

+ 

[
(I n x − L σ (k) C σ (k) ) A σ (k) 

ˆ H k , (I n x − L σ (k) C σ (k) ) D σ (k) , L σ (k) F σ (k)

]⎡⎣ 

s 1 
s 2 

−s 3

⎤
⎦ (36)

here s 1 ∈ B 

q , s 2 ∈ B 

n ω and s 3 ∈ B 

n υ . Thus, Eqs. (32a) and (32b) are obtained and the proof
s complete. �
emark 2. Recall that, the zonotope reduction operator ↓ q,W 

(. ) defined in Property 2 is used
n order to reduce the computational complexity during the state propagations. 



Fig. 3. Zonotopic Observer (ZO) versus Set-Membership Approach (SMA) using zonotopes. 
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Note that the predicted center and segments Eq. (32) computed using the zonotopic
nterval-observer approach are similar in structure to those in Eq. (9) provided using the
et-membership state estimation approach. As shown in Fig. 3 , since the two structures are
quivalent, the observer gain L σ (k) can be obtained by using the same optimization problem
roposed for the set-membership approach in Theorem 2 , i.e. to obtain �σ(k) . 

orollary 4. Given the zonotopic observer with the structure defined in Theorem 3 , the op-
imal switched gain matrix L σ (k) can be obtained following the same procedure as the one
escribed in Theorem 2 . 

This equivalence is illustrated using the case study presented in Section 6 . 

. Extension to consider unknown inputs

In this section, we will extend the proposed set-membership state estimation approach for
ncertain switched discrete-time systems subject to unknown inputs. 

Let us consider again discrete-time switched model Eq. (5) but now including unknown
nputs 

x k+1 = A σ (k) x k + B σ (k) u k + E σ (k) d k + ω σ (k)

y k = C σ (k) x k + υσ(k)
(37)

here x k ∈ IR 

n x , u k ∈ IR 

n u , d k ∈ IR 

n d , y k ∈ IR 

n y denote the state, known and unknown inputs
nd measurement output vectors, respectively. A σ (k) ∈ IR 

n x ×n x , B σ (k) ∈ IR 

n x ×n u , E σ (k) ∈ IR 

n x ×n d

nd C σ (k) ∈ IR 

n y ×n x are state, input, unknown input and output distribution matrices. The
witching signal σ (k) is a piecewise-constant function, which takes its values in the finite
et I = { 1 , . . . , N } , where N > 1 is the number of subsystems. ω σ (k) ∈ IR 

n ω and υσ(k) ∈ IR 

n υ

epresent the state disturbance and measurement noise vectors, respectively. 
Before we proceed with the detailed set-estimator design, the following additional assump-

ions are considered. 

ssumption 3. For the switched system Eq. (37) , let us assume that the following rank
ondition is satisfied ∀ σ (k) ∈ I , k ∈ N :

ank(C σ (k) E σ (k) ) = rank(E σ (k) ) = n d (38)
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hus, there exists a non-empty set of solutions of switched matrices P σ (k) and M σ (k) satisfying
 σ (k)

P σ (k) + M σ (k) C σ (k) = I n x
P σ (k) E σ (k) = 0

(39)

emark 3. Assumption 3 means that all the unknown inputs contained in the vector d k are
ble to be decoupled by the proposed unknown input set-membership estimator. However, it
hould be pointed out that, there could be some difficulties to satisfy the rank condition given
n Eq. (38) . In this case, the design conditions of the traditional unknown input observers can
e solved by decoupling a part of unknown inputs included in d k , and, by rewriting: 

 k =
[

d 

1 
k 

d 

2
k 

]
(40)

here d 

1 
k ∈ IR 

n d1 denotes the unknown input vector that can be actively decoupled, while
 

2
k ∈ IR 

n d2 is the remaining number of unknown inputs to be treated as bounded uncertainties.
orrespondingly, the matrix E σ (k) can be rewritten as 

 σ (k) =
[
E 

1
σ (k) E 

2
σ (k) 

]
(41)

here E 

1
σ (k) ∈ IR 

n x ×n d1 and E 

2
σ (k) ∈ IR 

n x ×n d2 . As a result, the switched system dynamics
q. (37) can be further rewritten as 

x k+1 = A σ (k) x k + B σ (k) u k + E 

1
σ (k) d 

1
k + ω 

1
σ (k) 

y k = C σ (k) x k + υσ(k)
(42)

ith rank(CE 

1 
σ (k) ) = rank(E 

1 
σ (k) ) = n d1 and ω 

1
σ (k) = ω σ (k) + E 

2
σ (k) d 

2
k is assumed to be un-

nown bounded by a given zonotope (i.e., ω 

1
σ (k) ∈ W 

1 
σ (k) ). It should be emphasized that the

ecomposition Eq. (40) can be also used to overcome some limitations of the set-based ap-
roaches, namely, when some system disturbances are unknown and difficult or impossible
o be bounded in a predefined zonotope. In this case, unbounded disturbances are considered
s unknown inputs and are decoupled completely in the switched observer design. 

In Section 3 , an outer-approximation 

ˆ X k of the intersection between uncertain trajectory
 k and the region of the state space P k which is consistent with the measured output is

omputed. The outer-approximation is parameterized by the correction matrix �σ(k) using a
onotope-based procedure. In what follows, this approach is extended to the class of systems
f the form Eq. (37) . For sake of clarity, measurement state set P k and exact uncertain set
 k are defined in the same way as in Definitions Eqs. (7) and (8) while the uncertain state

et X k is redefined below in order to take into account the effect of the unknown input d k .
ubsequently, an outer bound of the exact uncertain state set X k is estimated using the same
teps as in Algorithm 1 . Based on a judicious design methodology, the effect of the unknown
nputs is effectively cancelled. 

efinition 9 ( Uncertain state set ) . Given the switched system Eq. (37) with x 0 ∈ X 0 , ω σ (k) ∈
 σ (k) , ∀ σ (k) and for all k ∈ N , the uncertain state set X k is defined by

X k = 

{ 
x ∈ IR 

n x 
∣∣x ∈ A σ (k) X k−1 � B σ (k) u k−1 � D σ (k) W σ (k) � E σ (k) d k−1

}
(43)
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.1. Guaranteed state intersection 

We now present the set-membership state estimation approach for the uncertain switched
iscrete-time system Eq. (37) . An outer approximation of the exact estimation set X k is
btained by intersecting the predicted state X k and the measurement set P k . This statement
s summarized by means of the following theorem. 

heorem 5. Given the switched system Eq. (37) , a measurement output vector y k , x 0 ∈
 0 , ω σ (k) ∈ W σ (k) , υk ∈ V σ (k) , ∀ σ (k) , x k−1 ∈ 〈 ̂  p k−1 , ˆ H k−1 〉 ⊆ 〈 ̂  p k−1 , H k−1 〉 with H k−1 = ↓ q,W

( ˆ H k−1 ) , P σ (k) ∈ IR 

n x ×n x and M σ (k) ∈ IR 

n x ×n y satisfying Eq. (39) . Then, for any switched cor-

ection matrix �σ(k) ∈ IR 

n x ×n y , x k ∈ 

{ 
X k ∩ P k 

} 
⊆ ˆ X k = 〈 ̂  p k , ˆ H k 〉 , where

ˆ p k = T σ (k) P σ (k) A σ (k) ̂  p k−1 + T σ (k) P σ (k) B σ (k) u k−1

+ (M σ (k) + �σ(k) − �σ(k) C σ (k) M σ (k) ) y k (44a)

ˆ 
 k =

[
T σ (k) P σ (k) A σ (k) H k−1 T σ (k) P σ (k) D σ (k) T σ (k) M σ (k) F σ (k) �σ(k) F σ (k) 

]
(44b)

here T σ (k) = I n x − �σ(k) C σ (k) .

roof. For any x k ∈
{ 
X k ∩ P k

}
, we know x k ∈ X k and x k ∈ P k . Consider the switched system

q. (37) with the inclusion x k−1 ∈ 〈 ̂  p k−1 , ˆ H k−1 〉 ⊆ 〈 ̂  p k−1 , H k−1 〉 and ω σ (k) ∈ W σ (k) , there exists
 vector s 1 ∈ B 

q+ n ω such that

 k = A σ (k) ̂  p k−1 + B σ (k) u k−1 + E σ (k) d k−1 +
[
A σ (k) H k−1 , D σ (k) 

]
s 1 (45)

esides, from x k ∈ P k , there exists a vector s 2 ∈ B 

n υ such that

 σ (k) x k − y k = F σ (k) s 2 (46)

onsidering a pair of switched matrices P σ (k) and M σ (k) satisfying Eq. (39) ∀ σ (k) , combining
qs. (45) and (46) leads to 

(P σ (k) + M σ (k) C σ (k) ) x k = P σ (k) A σ (k) ̂  p k−1 + P σ (k) B σ (k) u k−1 + P σ (k) E σ (k) d k−1 +
M σ (k) y k + 

[
P σ (k) A σ (k) H k−1 P σ (k) D σ (k) 

]
s 1 + M σ (k) F σ (k) s 2

(47)

et R σ (k) =
[
P σ (k) A σ (k) H k−1 P σ (k) D σ (k) M σ (k) F σ (k) 

]
and s = 

[
s T 1 , s T2

]T 
. If the matrix

q. (39) hold, then Eq. (47) can be simplified as follows 

x k = P σ (k) A σ (k) ̂  p k−1 + P σ (k) B σ (k) u k−1 + M σ (k) y k + R σ (k) s (48)

et �σ(k) ∈ IR 

n x ×n x , by adding and substituting a correction term �σ(k) C σ (k) R σ (k) s in Eq. (48) ,
e obtain ∀ σ (k)

x k = P σ (k) A σ (k) ̂  p k−1 + P σ (k) B σ (k) u k−1 + M σ (k) y k
+�σ(k) C σ (k) R σ (k) s + (I n x − �σ(k) C σ (k) ) R σ (k) s

(49)

y multiplying in both side of Eq. (49) by C σ (k) and substituting C σ (k) x k in Eq. (49) by
q. (46) , we have 

 σ (k) R σ (k) s = y k − C σ (k) M σ (k) y k − C σ (k) P σ (k) A σ (k) ̂  p k−1

−C σ (k) P σ (k) B σ (k) u k−1 + F σ (k) s 1 (50)
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hen, by replacing C σ (k) R σ (k) s in Eq. (49) by Eq. (50) , it follows that 

 k = (I n x − �σ(k) C σ (k) ) P σ (k) A σ (k) ̂  p k−1 + (I n x − �σ(k) C σ (k) ) P σ (k) B σ (k) u k−1

+ (M σ (k) + �σ(k) − �σ(k) C σ (k) M σ (k) ) y k 

+ 

[
(I n x − �σ(k) C σ (k) ) R σ (k) , �σ(k) F σ (k)

][ s 
s 1 

]
(51)

hus, by using the above definition of R σ (k) and by letting T σ (k) = I n x − �σ(k) C σ (k) ,
qs. (44a) and (44b) are obtained and the proof is complete. �

.2. Optimal switched correction matrix design 

Following the same methodology as in the previous section, the size of the intersection
onotope ˆ X k+1 is measured by the W i -Radius as follows

 

W
k = max

z∈ B 

(q+ n x +2n y ) 

∥∥∥∥ ˆ H k (�σ(k) ) z 

∥∥∥∥
2 

2,W σ (k) 

= max
z∈ B 

(q+ n x +2n y ) 
z T ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) z (52)

here W σ (k) = W i , ∀ i ∈ { 1 , . . . , N } is the weighting matrix for the ith subsystem. If there
xists a scalars ασ(k) and γσ (k) associated with each subsystem σ (k) = i such that

l W 
k−1 ≤ −ασ(k) l 

W 

k−1 + γσ (k) εσ (k) (53)

here εσ (k) is a positive switched constant that represents the maximum influence of distur-
ances and measurement noises: 

σ (k) = max
s 1 ∈ B 

n ω 

∥∥D σ (k) s 1 
∥∥2

2 + max
s 2 ∈ B 

n υ

∥∥F σ (k) s 2 
∥∥2

2 (54)

hen, the size of the zonotope ˆ X k is decreasing. If Eq. (53) holds, then for time instant
 → ∞ , we have

 

W
∞ = 

γi εi 

αi 
, ∀ i ∈ { 1 , . . . , N } (55)

o minimize the W i -Radius (i.e l W 

∞ 

), the smallest performance level gain γi is sought for the
th subsystem. It is clear from Eq. (55) that the gain γi , ∀ i ∈ I provides a tighter information
n terms of the effect of ε i , ∀ i ∈ I on the W i -Radius l W 

∞ 

. This leads to solve the following
ptimization problem: 

heorem 6. Given the intersection zonotope ˆ X k = 〈 ̂  p k , ˆ H k 〉 in ( Eq. 44 ). Inequal-
ty Eq. (53) holds if there exists a matrix Y i ∈ IR 

n x ×n y , a positive definite matrix W i ∈ IR 

n x ×n x ,
or given scalars αi ∈ (0, 1) , γ > and εi > 0 such that the following LMI problem holds

min 

i , W i , Y i 
γ

i ≤ γ , ∀ i ∈ { 1 , . . . , N } (56)
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(αi − 1) W i ∗ ∗ ∗ ∗
0 −γi D 

T 
i D i ∗ ∗ ∗

0 0 −γi F 

T 
i F i ∗ ∗

0 0 0 0 ∗
(W i − Y i C i ) P i A i (W i − Y i C i ) P i D i (W i − Y i C i ) M i F i Y i F i −W i

⎤
⎥⎥⎥⎥⎦ � 0, ∀ i ∈ I (57)

ith Y i = W i �i .

roof. Let �
l W 
k−1 = l W 

k − l W 

k−1 , and, z = [
z T s T 1 s T 2 s T3

]T ∈ B 

q+ n x +2n y with z ∈ B 

q , s 1 ∈
 

n x , s 2 ∈ B 

n y and s 3 ∈ B 

n y , then using Eq. (52) we have

�
l W 
k−1 = max

z∈ B 

(q+ n x +2n y ) 

∥∥∥ ˆ H k (�σ(k) ) z 
∥∥∥2 

2,W σ (k) 

− max 

ˆ z ∈ B 

q 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

(58)

his leads to 

�
l W 
k−1 = max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y ,s 3 ∈ B 

n y 

(∥∥∥ ˆ H k (�σ(k) ) z 
∥∥∥2

2,W σ (k) 

−
∥∥∥H k (�σ(k) ) z 

∥∥∥2 

2,W σ (k) 

)

= max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y ,s 3 ∈ B 

n y 

(⎡⎢ ⎢ ⎣ 

z 
s 1 
s 2 
s 3 

⎤ 

⎥⎥⎦
T 

ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) 

⎡
⎢ ⎢ ⎣ 

z 
s 1 
s 2 
s 3 

⎤
⎥⎥ ⎦ 

−

z T H 

T 
k−1 W σ (k) H k−1 z

)
(59)

y adding and subtracting the terms max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

and −γσ (k) εσ (k) where εσ (k) is

iven by Eqs. (54), (59) is rewritten as 

�
l W 
k−1 = max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y ,s 3 ∈ B 

n y 

(⎡⎢ ⎢ ⎣ 

z 
s 1 
s 2 
s 3 

⎤ 

⎥⎥⎦
T 

ˆ H 

T 
k (�σ(k) ) W σ (k) 

ˆ H k (�σ(k) ) 

⎡
⎢ ⎢ ⎣ 

z 
s 1 
s 2 
s 3 

⎤
⎥⎥ ⎦ 

+

ασ(k) z T H 

T 
k−1 W σ (k) H k−1 z − z T H 

T 
k−1 W σ (k) H k−1 z − γσ (k) s T 1 D 

T
σ (k) D σ (k) s 1 −

γσ (k) s T 2 F 

T
σ (k) F σ (k) s 2 

)
− max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

+ γσ (k) εσ (k)

(60)

ubstituting Eq. (44b) into Eq. (60) , we get 

max 

z ∈ B 

q ,s 1 ∈ B 

n x ,s 2 ∈ B 

n y ,s 3 ∈ B 

n y 

(⎡⎢⎢⎣
H k−1 z 

s 1 
s 2 
s 3 

⎤ 

⎥⎥⎦
T (


T 
σ (k) W σ (k) 
σ(k) +

⎡
⎢⎢⎣

(ασ (k) − 1) W σ (k) 0 0 0 

0 −γσ (k) D 

T
σ (k) D σ (k) 0 0 

0 0 −γσ (k) F 

T
σ (k) F σ (k) 0 

0 0 0 0 

⎤
⎥ ⎥⎦)

⎡
⎢⎢⎣

H k−1 z 
s 1 
s 2 
s 3 

⎤
⎥⎥⎦
)

−max 

z ∈ B 

q 
ασ(k) 

∥∥∥H k−1 z 
∥∥∥2 

2,W σ (k) 

+ γσ (k) εσ (k)

(61)



Fig. 4. Schematic diagram of the vehicle bicycle model. 
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here 
σ(k) =

⎡
⎢ ⎢ ⎣ 

T σ (k) P σ (k) A σ (k) 

T σ (k) P σ (k) D σ (k) 

T σ (k) M σ (k) F σ (k) 

�σ(k) F σ (k) 

⎤
⎥⎥ ⎦ 

. If the following inequality holds ∀ i ∈ I

⎡
⎢⎢⎣

(ασ (k) − 1) W σ (k) 0 0 0 

0 −γσ (k) D 

T
σ (k) D σ (k) 0 0 

0 0 −γσ (k) F 

T
σ (k) F σ (k) 0 

0 0 0 0 

⎤
⎥⎥ ⎦ 

+ 
T 
σ (k) W σ (k) 
σ(k) ≺ 0

(62)

hich is equivalent by Schur complement to Eq. (57) , then 

l W 
k−1 ≤ −ασ(k) l 

W 

k−1 + γσ (k) εσ (k) (63)

rom which we prove that satisfying Eq. (57) is enough to fulfill the condition Eq. (53) .
urthermore, the tight size of the intersection zonotope must be sought, hence the introduction
f the conditions Eq. (56) which completes the proof of Theorem 6 . �

. Application to vehicle sideslip angle estimation

Vehicle lateral dynamics may be modeled using a two degree of freedom (2-DOF) model
nown as the ”bicycle model” to describe the lateral and yaw motions [55] . The vehicle’s
eft and right wheels are grouped together to form a single steerable front wheel and rear
heel with negligible inertia as shown in Fig. 4 . This representation, also known as ”single

rack model”, has been proven to perfectly represent the vehicle lateral dynamics behavior
nd especially when evaluating sideslip angle and studying lateral efforts. In this model, roll
ovement is neglected and vertical motions are ignored. 
The two-dimensional model describing the vehicle lateral behavior can be represented by

he following differential equations: 

m v x ˙ β + m v x ˙ ψ = F y f + F yr

I z ψ̈ = l f F y f − l r F yr
(64)

here m, I z , are the mass and the yaw moment, v x is the longitudinal velocity, β and 

˙ ψ are
ehicle sideslip angle and yaw rate, l f , l r are distances from front and rear axle to the center
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u

f gravity (CG), while F y f and F yr are lateral tire force of front and rear tires. The lateral
orces F y f and F yr are assumed to be proportional to the tire slip angles α f and αr for small
ideslip angle [56] : 

F y f = c f α f = c f (δ f − β − l f 
v x 

˙ ψ )

F yr = c r αr = c r (−β + 

lr 
v x 

˙ ψ )
(65)

here c f , c r are the cornering stiffness of front and rear tires while δ f represents the front
teering angle. 

Gathering Eqs. (64) and (65) and choosing β and 

˙ ψ , as state variables, leads to the
ollowing state equations: 

˙ β

ψ̈

]
= 

[ − c f + c r
mv x 

c r l r −c f l f 
mv 2 x 

− 1
c r l r −c f l f 

I z 
− c r l 2 r + c f l 2 f 

I z v x 

] [
β
˙ ψ 

]
+ 

[ 

c f
mv x 
c f l f 
Iz 

]
δ f (66)

The bicycle model Eq. (66) was first discretized using zero order hold method. Next,
 switched representation of the vehicle model Eq. (66) is considered to take into account
ehicle longitudinal velocity variations. A switched system where each subsystem operates
round a given constant longitudinal velocity value (for example, three subsystems defined
or low, average and high longitudinal speed) is adopted in this paper. Then, a switching
ignal depending on the measured longitudinal velocity is considered. Note that, all vehicle
odel parameters are assumed to be known. Environmental disturbances as well as non-
odelled effects (unknown wind gust, cornering stiffness variations) are added to the vehicle
odel through additive state disturbance and measurement noise vectors ω σ (k) and ε σ (k) . The

vailable measurements are yaw rate ˙ ψ , longitudinal velocity v x and front steering angle δ f .
he real data used in the validation process are based on measurements obtained from tests
arried out on an instrumented vehicle of the LIVIC 

1 laboratory in a test track located in the
ity of Versailles-Satory, France ( Fig. 5 ). The track is 3.5km length with various curvatures
anging between 30m and 600m. 

The vehicle is equipped with several exteroceptive and proprioceptive sensors. Here, we
resent, in a succinct manner, the sensors used to collect the measurements of the variables
equired in this study: 

• Yaw rate ˙ ψ and lateral acceleration a y are measured by a three-axis inertial unit which
provides the accelerations and rotational velocities along the three axes (roll, pitch and
yaw).
• Steering angle input δ f is provided by an absolute optical encoder.
• Longitudinal velocity v x is measured by an odometer.
• Sideslip angle β is obtained using a Correvit sensor. The measure is not used in the

observer design. It serves only for validation.

.1. Case 1 

In order to examine the performance of the proposed design, a first experimental data set is
sed, where three subsystems are defined for v 1 x = 8 . 50 m/s, v 2 x = 13 . 55 m/s and v 3 x = 18 . 05
1 Laboratory for Vehicle Infrastructure Driver Interactions. 



Fig. 5. Test track (Satory, France) [57] . 

Fig. 7. Longitudinal velocity v x . 

Fig. 6. Steering angle δ f . 
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/s. The choice between the modes is done according to vehicle longitudinal measure in
ig. 7 . The switching rule is then designed as follows: 

(t ) =
⎧⎨ 

⎩ 

1 i f 6 m/s < v x ≤ 11 m/s
2 i f 11 m/s < v x ≤ 16 m/s
3 i f 16 m/s < v x ≤ 20 m/s

(67)

here the three modes correspond to three different driving conditions: low, medium, and
igh longitudinal speed. Steering angle and the considered switching law are shown in Figs. 6
nd 8 . The disturbance and noise vectors satisfy | ω k | ≤

[
0. 002 0. 01 

]T 
and | v k | ≤ 0. 03 . The



Fig. 8. Switching signal σ (k) . 

Fig. 9. Interval estimation of vehicle side slip angle β using Theorem 2 (dashed gray line) and optimization problem 

(29) (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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witched correction matrices �σ(k) and 

˜ �σ(k) are obtained by solving constraints Eqs. (20) and
29) , respectively. The scalar β in Eq. (29) and (1 − ασ(k) ) in Eq. (20) are set equal for
omparison purpose. This allows to show the usefulness of adding the gain γσ (k) in the new
ormulation (20) . Therefore, the following feasible solutions are obtained by solving LMI
onstraints Eq. (29) and Eq. (20) for ˜ α1 = ˜ α2 = ˜ α3 = 0. 1 and α1 = α2 = α3 = 0. 9 :

1 =
[−0. 0003 

0. 0996

]
, �2 =

[−0. 0071 

0. 1460

]
, �3 =

[−0. 0002 

0. 1339

]

˜ 1 =
[

0. 0113
0. 5817

]
, ˜ �2 =

[
0. 0233
0. 7969

]
, ˜ �3 =

[
0. 0240
0. 8903

]

he results of interval estimation are depicted in Figs. 9 and 10 . As shown, the proposed
ethod allows to obtain an accurate and tight interval estimation of vehicle state variables

han the method in [44] . The attenuation of disturbance and measurement noise effects can
learly be observed. Figure 11 and 12 compare interval width for sideslip angle e β = β − β

nd yaw rate e ˙ ψ 

= 

˙ ψ − ˙ ψ . It can be noticed that the proposed estimation framework can
andle additive uncertainties more effectively than the conventional methods. 

The state estimation using the zonotopic observer and the set-membership approach is
ompared in order to validate the obtained mathematical equivalence. Using Theorem 2 , the
witched observer gains L i , ∀ i ∈ I are obtained for ˜ α1 = ˜ α2 = ˜ α3 = 0. 1 and α1 = α2 = α3 =
. 9 :

 1 =
[−0. 0003

0. 0996

]
, L 2 =

[−0. 0071
0. 1460

]
, L 3 =

[−0. 0002
0. 1339

]



Fig. 10. Interval estimation of vehicle yaw rate ˙ ψ using Theorem 2 (dashed gray line) and optimization problem 

Eq. (29) (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 11. Interval error e β using Theorem 2 (gray line) and optimization problem Eq. (29) (red line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Interval error e ˙ ψ using Theorem 2 (gray line) and optimization problem Eq. (29) (red line). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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s the computation time needed for solving optimization problems is the most important mat-
er in assessing the efficiency of an algorithm. A comparison in terms of the computational
ime required for solving the optimization problem Eq. (29) and the one presented in Theo-
em 2 was done. Experiment were conducted using an Intel Core i7 with a processor running
t 2.9 GHz in MATLAB R2016a running under Windows 10. The results are presented in
ig. 13 . 

In terms of the required computation time, the optimization problem in Eq. (29) requires
 highest computational demand compared to Theorem 2 (Three time larger for a 2nd or-
er system). The proposed design strategy exhibits very small computation time. Thus, the
roposed method outperforms the conventional design significantly. 

The interval estimation of the vehicle sideslip angle and yaw rate are compared to those
btained using SMA and illustrated in Figs. 14 and 15 . Both approaches are able to provide
nterval state estimation results with the same performance as have been shown in Section 4 .



Fig. 13. Computation time required by each method. 

Fig. 14. Interval estimation of vehicle side slip angle β using Zonotopic Observer (dashed gray line) and Set- 
Membership Approach (red line). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 15. Interval estimation of vehicle yaw rate ˙ ψ using Zonotopic Observer (dashed gray line) and Set-Membership 
Approach (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 



Fig. 16. Vision system measurement. 
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.2. Case 2 

In order to illustrate the inclusion of the unknown input improvement presented in Sec-
ion 5 , vehicle lateral dynamics in a cornering lane is considered. The vision system model
roviding vehicle angular and lateral displacements from the center-line at a look ahead dis-
ance l s (See Fig. 16 ) is used. These measurements are extracted from images obtained with
 suitable vision system, taking into consideration the motion of the vehicle and changes in
he road geometry. 

The equations describing the evolution of the vision system measurement are given as
ollows: 

˙ ψ L = 

˙ ψ − v x ρ
˙ y L = v y + v x ψ L + l s ( ˙ ψ − v x ρ) 

(68)

hich can be rewritten in the following state representation form: 

˙ ψ L 

˙ y L

]
= 

[
0 0 

0 v x 

][
ψ L 

y L 

]
+ 

[
0 1 

1 l s 

][
v y 
r 

]
+ 

[ −v x 
−l s v x

]
ρ (69)

here y L and ψ L are the offset and angular displacements at a look ahead distance l s , while,
represents the road curvature. 
Combining the two degrees of freedom model describing the vehicle yaw and lateral mo-

ions Eq. (64) together with the equations describing the evolution of the vehicle angular and
ateral displacements Eq. (69) , leads to a single dynamical system subject to the road curvature
s an unknown input. By adopting a switched representation of the resulted discretized vehi-
le model and considering that the state and measurement equations are subject to additive



Fig. 17. Steering angle. 

Fig. 18. Longitudinal velocity. 

Fig. 19. Road curvature. 
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isturbance and noise, an uncertain discrete-time switched system of the form Eq. (37) is
btained. 

A second set of experimental data is used to evaluate the proposed unknown input set-
embership state estimator. The measurements are acquired using the same prototype vehicle

escribed above. The lateral offset and angular displacements y L and ψ L are measured using
lustering of a video, camera mounted under the mirror of the vehicle, and vision algorithms.
or the simulation scenario, three subsystems are defined for v 1x = 3 . 1 m /s, v 2 x = 8 . 5 m /s and
 

3
x = 13 . 75 m/s. The steering angle, longitudinal velocity, road curvature and the considered
witching law are shown in Figs. 17–20 . 

The disturbance and noise vectors satisfy | ω k | ≤
[
0. 002 0. 004 0. 02 0. 003

]T
and

 v k | ≤
[
0. 005 0. 04 0. 003 

]T 
. The switched matrices M σ (k) and P σ (k) are obtained by solv-

ng constraints Eq. (39) using the generalized inverse. Therefore, the following feasible solu-
ions are considered: 

 1 =

⎡ 

⎢ ⎢ ⎣ 

1 −0. 0100 −0. 0013 0. 0010
0 1 . 0100 0. 0013 −0. 0010 

0 −0. 0100 0. 6178 −0. 4846 

0 −0. 0100 −0. 4869 0. 3819

⎤
⎥⎥ ⎦ 

, M 1 =

⎡
⎢ ⎢ ⎣

0. 0100 0. 0013 −0. 0010
−0. 0100 −0. 0013 0. 0010
0. 0100 0. 3822 0. 4846
0. 0100 0. 4869 0. 6181

⎤
⎥⎥⎦



Fig. 20. Switching signal. 

Fig. 21. Interval estimation of sideslip angle. 
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 2 =

⎡ 

⎢ ⎢ ⎣ 

1 −0. 0200 −0. 0108 0. 0041
0 0. 9800 0. 0241 −0. 0092 

0 −0. 0200 0. 8782 −0. 3345 

0 0 −0. 3435 0. 1309

⎤
⎥⎥ ⎦ 

, M 2 =

⎡
⎢ ⎢ ⎣ 

0. 0200 0. 0108 −0. 0041
0. 0200 −0. 0241 0. 0092
0. 0200 0. 1218 0. 3345

0 0. 3435 0. 8691

⎤
⎥⎥⎦

 3 =

⎡ 

⎢ ⎢ ⎣ 

1 −0. 0200 −0. 0140 0. 0036
0 1 . 0200 0. 0140 −0. 0036 

0 −0. 0200 0. 9254 −0. 2350 

0 −0. 0200 −0. 2150 0. 0546

⎤
⎥⎥ ⎦ 

, M 3 =

⎡
⎢ ⎢ ⎣

0. 0200 0. 0140 −0. 0036
−0. 0200 −0. 0140 0. 0036
0. 0200 0. 0746 0. 2350
0. 0200 0. 2150 0. 9454

⎤
⎥⎥⎦

he optimal correction switched matrix �σ(k) is designed by solving the optimization problem
n Theorem 6 for a reduction operator q = 40. The optimal solution is given by

1 =

⎡ 

⎢⎢⎣ 

−0. 0116 −0. 0052 −0. 0040
0. 4104 0. 0007 −0. 0006 

−0. 3159 0. 1211 −0. 6489 

−0. 0075 −0. 0004 0. 9969

⎤
⎥⎥ ⎦ 

, �2 =

⎡ 

⎢⎢⎣
−0. 0500 −0. 0116 −0. 0018
0. 6279 −0. 0001 −0. 0262 

0. 1061 0. 4455 −1 . 3249 

0. 0159 −0. 0030 0. 9928

⎤
⎥⎥⎦

3 =

⎡ 

⎢⎢ ⎣ 

−0. 0154 −0. 0142 0. 0024
0. 9368 0. 0236 0. 0967

−0. 0289 0. 9374 −0. 2064 

−0. 0013 0. 0005 1 . 0018 

⎤
⎥⎥⎦

or α1 = α2 = α3 = 0. 99 . The results of interval estimation are depicted in Figs. 21–24 which
hows that the proposed method allows to obtain a very accurate interval estimation of vehicle
tate variables. 



Fig. 22. Interval estimation of yaw rate. 

Fig. 23. Interval estimation of offset displacement. 

Fig. 24. Interval estimation of angular displacement. 
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. Conclusion

This paper has presented a new zonotopic set-membership estimation approach for uncer-
ain switched systems. As it has been demonstrated by application example, Theorem 2 pro-
ides much simpler and less conservative conditions than the traditional guaranteed state
stimation based on W i -radius minimization. The synthesized solution has less complexity
nd requires shorter computational time. It has been shown that the proposed set-membership
s equivalent to a zonotopic observer. An extension to set-membership state estimation of
witched systems subject to both unknown and bounded inputs is presented. This extension
llows to deal with several limitations. Namely, the relaxation of the strong unknown input
ecoupling assumption (defined as rank constraint, i.e. rank(CE i ) = rank(E i ) , ∀ i ∈ I ). In ad-
ition, the proposed method can also be considered to deal with unknown and unbounded
isturbances which present one of the weakness in the set-based approaches. The suggested
ethods are efficiently applied to estimate the vehicle sideslip angle. Performance of the

roposed algorithms are illustrated through simulations and comparisons with experimental
ata. 
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