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• A complete review of the most important leak detection/localization methodologies in water distribution
networks is presented.

• State-of-the-art model-based and data-driven approaches are applied to the BattLeDIM2020 benchmark.
• Several general conclusions about the current state of the leak management field are extracted.
• Various guidelines are provided, considering the practical applicability of the methods and the interest of water

utilities.
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A B S T R A C T
In this paper, leak detection and localization in water distribution networks will be reviewed.
In particular, the paper presents the evolution of the methods from model-based towards data-
based approaches, listing, describing and comparing the main and/or most recent methods of
both categories. Besides, the practical applicability in real water utilities of different existing
methods is discussed, outlining the advantages and limitations of model-based and data-driven
methods for this task. A well-known case study is used to compare some of the more promising
methods and illustrate their performances. Perspectives of the future evolution of the current
existing methods are also provided.

1. Introduction
Clean water is one of the most vital resources for humans to survive. Its supply is essential for the daily life of the

world-wide population, as well as for the operation of the most important sectors of the economy: agriculture, industry,
services, etc.

Nevertheless, the availability of water is reaching an alarming situation:
• Nowadays, around 4 billion people experience severe water scarcity during at least one month of the year,

according to Mekonnen and Hoekstra (2016).
• On top of that, the world-wide population has been continuously growing, augmenting from 1 billion in 1800 to

7.9 billion today (Roser et al., 2013).
• This development will be mostly focused on cities, considering that a 83% of the developed world and a 53% of

the developing countries inhabitants would be living in urban areas by 2030, according to Cohen (2004).
• Therefore, it is not surprising that the worldwide demand of water is estimated to grow by a 55% between 2000

and 2050 (Leflaive, 2012).
Thus, the efficient and effective management of water distribution networks (WDNs), which are in charge of

conveying water to the final consumption points, is crucial for the development and sustainability of urban areas
in modern society. However, from the total amount of distributed water, a 30% is estimated to be lost due to the
appearance of leaks (Puust et al., 2010). This estimation has been refined to 126 billion cubic meters of water per
year worldwide (expressed as non-revenue water) in Liemberger and Wyatt (2019). These estimations illustrate the
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high economical, operational and social costs of water leaks (Gupta et al., 2017), which are even more aggravated by
the associated increase of the risk of contamination (Xu et al., 2014) and health problems (LeChevallier et al., 2003).
Therefore, water utilities pursue the aim of minimizing the impact of these adverse effects of leaks. This goal justifies
their interest in the development of methodologies for the detection and/or localization of leaks in WDNs. Moreover,
this motivates the studies on the field, so that several research groups continuously work on the design of new leak
management approaches.

Recently, important reviews about this topic have been published, with Wan et al. (2022) and Islam et al. (2022)
standing out. Our review is a valuable addition to the state of the art of the leak management field and completes
the previous works due to several contributions. First, we include in our review a complete scope of the literature
in the leak management topic with over 90 articles, widening the perspective about the state of the art. These
articles are exhaustively categorized, dividing the different families of methods by considering their core algorithm.
Moreover, the included tables are designed to be useful to water companies when selecting a leak management strategy,
comparing a set of crucial articles from a practical and implementation-based perspective, complementing the design
and performance information detailed through the text. Additionally, our review contributes with something new in
comparison to previous similar works, which is the inclusion of a performance comparison of two opposite types of
leak localization strategies, applying them to a common benchmark from the BattLeDIM2020 competition, in order to
justify and support the conclusions extracted during the review of the state of the art. See Vrachimis et al. (2022) for
all the details about the competition preparation, participants and results.

The rest of the article is structured as follows. Section 2 introduces the main characteristics and key parts of the
leak management problem, as well as providing some clues about the mathematical modelling of the involved water
system. Section 3 clearly defines what leak detection and localization imply, limiting the kind of methodologies that are
considered, depending on the nature of the method and the ease of application; proceeding to classify the considered
methods into categories depending on the philosophy behind them, their requirements, etc. A discussion about the
evolution, characteristics and advantages/limitations of each category is included, and a comparison table regarding
the point of view of the interests of water utilities is presented. Section 4 provides the application of two methods to a
well-known case study, allowing to extract more solid conclusions about how this families of methods operate. Finally,
Section 5 exposes several conclusions about the review and some future work lines that can be interesting to pursue.

2. Problem statement
The general scheme of the journey of water from the available sources to the end consumer points/water receiving

bodies is known as the urban water cycle (Ocampo-Martinez et al., 2013). Among its phases, let us highlight the
delivery of clean water to consumers and industries through pressurized pipe networks, which is performed by water
distribution networks (WDNs) through the exploitation of intermediate or booster tanks, pressure and flow control
elements such as pumps and valves, etc. Typically, these WDNs are organized in different Pressure Management
Zones (PMZs), i.e., areas that maintain a common pressure level, benefiting both water utilities and consumers by
guaranteeing an adequate service to the customers during the day and avoiding background leaks during the night
(Vicente et al., 2016). Additionally, these PMZs are normally segmented using boundary valves, yielding a set of
smaller, loosely connected areas with flow meters at their water inlet, called district metered areas (DMAs) (Water
Authorities Association, 1980). This division has been reported to help in pressure control and flow monitoring of
tasks in the DMA, increasing the accuracy in the consumption estimation and aiding with the leak management tasks
(Charalambous, 2008; Scarpa et al., 2016).

The water loss regulation accomplished by this stratification of the network is complemented by means of leak
management methodologies. Specifically, we will consider approaches defined by the following characteristics:

• Nowadays, the technological development has led to the operation of leak management methods automatically
from one or more control centres using a network of remote sensors (flow, pressure, etc) and actuators (pumps,
valves,etc) and a supervisory control and data acquisition system (SCADA). Thus, our work focuses on software-
based methods using models or algorithms to process the information received online at the control room
(extensive information about hardware-based methods can be consulted in Hamilton and Charalambous (2013);
Mutikanga et al. (2013)).

• The pressure/flow sensors typically deployed by water utilities for network control purposes are not prepared to
capture transient behaviours, due to the time scale of this kind of events in comparison to the usual sampling
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rates. Furthermore, transient-based techniques are normally costly in terms of data requirements (for calibration),
computation, sensors and IT systems. Therefore, our work will consider methods dealing with a steady-state
characterization of the network dynamics (see Colombo et al. (2009); Ayati et al. (2019) for extensive reviews
about transient-based leak management methods).

2.1. Mathematical modelling
Let us recall the steady-state behaviour governing equations for a water distribution system. In order to express the

necessary physical laws, several notation elements must be defined. An arbitrary node or junction of the network would
be denoted as 𝓋𝑖, with  standing for the set of junctions; whereas the pipe connecting junctions 𝓋𝑖 and 𝓋𝑖 would be
expressed as ℯ𝑘 = ℯ𝑖𝑗 , where  is the set of pipes. Reservoirs, tanks, pumps and valves are included in the sets ,  ,
 and  respectively.

The steady-state behaviour of water flowing through pipes is governed by the conservation of mass and the energy
balance. In pressurized systems, where the junction nodes can have an associated consumption, the mass conservation
implies that the inflow and outflow in a pipe or junction must balance:

𝑐𝑖 =
∑

𝑗∈𝑖

𝑞𝑖𝑗 (1)

where 𝑐𝑖 stands for the consumption or demand of node 𝓋𝑖, 𝑖 denotes the set of junctions connected to 𝓋𝑖 though
pipes, and 𝑞𝑖𝑗 is the water flow through pipe ℯ𝑖𝑗 . Note that 𝑞𝑖𝑗 = −𝑞𝑗𝑖, as inflows must be positive and outflows must
be negative for the mass conservation computation.

The nodal demands may be measured using Automated Metered Readings (AMRs) if available, as they would
provide this information with a high degree of accuracy. If not, they are typically estimated using a flow measurement
at the network or DMA inlet and a nodal proportion (based on billing metering):

𝑐𝑖 = 𝛼𝑖𝑞
𝑖𝑛 (2)

where 𝑐𝑖 is the approximated demand at node 𝓋𝑖, 𝛼𝑖 is the normalized proportional consumption of node 𝓋𝑖, with
∑

||
𝑖=1 𝛼𝑖 = 1; and 𝑞𝑖𝑛 is the total inflow to the network.

About the energy conservation, the difference in energy between two points is given by the energy provided to
the flow in the network components between these two points, subtracting the friction-related and minor losses. Thus,
the energy equilibrium can be computed for paths between all the different types of elements composing the network
(namely junctions, pipes, tanks, reservoirs, pumps and valves)

Δ𝐸 =
∑

𝑝∈
ℎ𝑝 −

∑

𝑘∈𝑝𝑎𝑡ℎ

ℎ𝐿𝑘 (3)

where Δ𝐸 is the energy difference, ℎ𝑝 denotes the hydraulic head (pressure plus geographical elevation) added by
pump 𝑝 and ℎ𝐿𝑘 is the head loss produced across the 𝑘-th component of the path 𝑝𝑎𝑡ℎ.

To complete the set of equations, the relation between the flow through a determined pipe and the head loss between
its endpoints can be expressed in general form as:

ℎ𝐿𝑘 = ℎ𝑖 − ℎ𝑗 = 𝜏𝑖𝑗𝑞
𝛼
𝑖𝑗 (4)

where ℎ𝑖, ℎ𝑗 are the hydraulic heads of nodes 𝓋𝑖,𝓋𝑗 respectively, 𝜏𝑖𝑗 denotes the pipe resistance coefficient of pipe
ℯ𝑖𝑗 that depends on the pipe length, diameter and roughness, and 𝛼 is the flow exponent. There exists several different
experimentally-obtained sets (𝜏, 𝛼), depending on the specific pressure drop model in the pipes (i.e. Darcy-Weisbach,
Hazen-Williams or Chezy-Manning). Let us consider the Hazen-Williams model, due to its widespread use. In this
case, the resistance coefficient 𝜏𝑖𝑗 would be given by:

Romero-Ben et al.: Preprint submitted to Elsevier Page 3 of 42



Leak detection/localization review and perspective

𝜏𝑖𝑗 = 𝛾
𝑙𝑖𝑗

𝜅𝛼
𝑖𝑗𝑑

4.87
𝑖𝑗

(5)

where 𝛾 is a parameter whose value depends on the units of the subsequent variables; 𝑙𝑖𝑗 , 𝜅𝑖𝑗 and 𝑑𝑖𝑗 are the length,
Hazen-Williams roughness coefficient and diameter of pipe ℯ𝑖𝑗 . The flow exponent 𝛼 in this case has a value of 1.852.

Additionally, let us define the characteristics of a leak and how they can be mathematically modeled. Normally,
leaks appear at pipes of the WDN due to malfunctions in the supplying service or aging of infrastructure. Nevertheless,
most methodologies have considered the approximation of leaks appearing in the nodes of the network, due to the nature
of the developed approaches and for computational advantages (virtual nodes can be defined at the pipes to merge both
approaches). Under this assumption, a leak in node 𝓋𝑗 can be regarded as an orifice that allows a leakage flow rate
𝑞𝑙𝑒𝑎𝑘𝑗 to be lost from the water network system. Thus, the flow leaving the system through the leak can be formulated
as:

𝑞𝑙𝑒𝑎𝑘𝑗 = 𝜆𝑝𝛾𝑗 (6)
where 𝜆 is the discharge coefficient, 𝛾 is the pressure exponent and 𝑝𝑗 stands for the pressure at node 𝓋𝑗 .This leak rate is usually modeled into the previously presented steady-state equations by considering the water loss
as an extra demand. Note that the effect of this outflow must be considered over the total inflow to the WDN. On the
one hand, if the leak is considered as an extra amount of water entering the network, its flow can be directly added to
the leaky node demand. On the other hand, if it is considered that the total inflow does not increase, i.e., the leak flow
is obtained by subtracting a certain amount of demand from the rest of nodes. This can be achieved by modifying the
demand pattern distribution (Soldevila, 2018):

𝛼𝑙𝑒𝑎𝑘𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛼𝑖 − 𝛼𝑖
𝑞𝑙𝑒𝑎𝑘𝑗
𝑞𝑖𝑛 , 𝑖 ≠ 𝑗;

𝛼𝑖 − 𝛼𝑖
𝑞𝑙𝑒𝑎𝑘𝑗
𝑞𝑖𝑛 +

𝑞𝑙𝑒𝑎𝑘𝑗
𝑞𝑖𝑛 , 𝑖 = 𝑗

(7)

Considering that this work refers to the problems of automatic leak detection and localization within WDNs using
the information received online at the control room, let us formally define both problems with regard to the presented
formulation (graphical support is provided in Fig. 1-2 for both leak management problems):
Leak detection The detection of leaks consists of the process of assessment of the existence of leaks in the
network/DMA using the inlet sensors (typically flow and/or pressure meters). Considering the exposed mathe-
matical modeling, let us consider an arbitrary WDN whose hydraulic state (in steady-state) is defined as 𝒙(𝑡) =
[𝒉(𝑡), 𝒒(𝑡),𝜶(𝑡)] ∈ ℝ𝑛𝑥 , where 𝑡 corresponds to the time instant and 𝑛𝑥 = 2𝑛 + 𝑚, with 𝑛 = || and 𝑚 = ||.

A leak occurs in node 𝓋𝑙 at time 𝑡0. Before the leak appearance (𝑡 < 𝑡0), the network is considered to be leak-
free or working under nominal conditions. Then, the leak detection process would determine the appearance of the
leak by means of the evaluation of the available measurements from the current state 𝒙(𝑡), i.e., �̂�(𝑡) = 𝑫𝒙(𝑡), where
𝑫 ∈ ℝ𝑛𝑠×𝑛𝑥 is the measurements matrix, that encodes which are the known variables (measured pressures, flows and
demand patterns). Thus, the detection operation can be expressed by 𝛿(𝑡) = 𝑔(�̂�(𝑡)), with 𝑔 ∶ ℝ𝑛𝑠 → 𝔹 denoting the
detection function, and 𝛿(𝑡) stands for a Boolean variable that indicates if the leak is detected or not. Once the leak
has appeared in the WDN (𝑡 ≥ 𝑡0), the detection operation should yield 𝛿(𝑡) = 1, whereas it must produce 𝛿(𝑡) = 0 if
𝑡 < 𝑡0. However, note that in real applications, a certain delay would exist between 𝑡0 and the actual detection of the
leak, which would be produced at 𝑡 = 𝑡0 + 𝑡𝑑 . Thus, the aim of the detection stage would be to minimize 𝑡𝑑 . Moreover,
once the leak management operations have finished and the WDN state is considered to be nominal again (𝑡 ≥ 𝑡0+ 𝑡𝑅),
we require 𝛿(𝑡) = 0 from the methodology.
Leak localization The leak localization problem is defined as the problem of pinpointing the location of the leak over
the WDN using information coming from installed sensors. Let us consider that the leak detection process operates
effectively and the leak alarm has been raised, because the leak localization problem would only be solved once the
Romero-Ben et al.: Preprint submitted to Elsevier Page 4 of 42
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Figure 1: Graphical representation of the timeline of the leak management operation, using the value of the leak detection
function to show the workflow of the methodologies: the leak appears at 𝑡0, , it is detected at 𝑡0 + 𝑡𝑑 , located at 𝑡0 + 𝑡𝐿
and repaired at 𝑡0 + 𝑡𝑅.

presence of a leak is confirmed. The localization operation can be designed as a function 𝑓 ∶ ℝ𝑛𝑠 →  that receives
the data from the installed sensors and return a node/set of nodes from the network (note that the isolation methodology
can be designed to provide localization areas instead of single-nodes). Thus, the objective of the localization problem
would be the selection of the closest node/area to 𝓋𝑙 as possible.

Note that both the detection and localization processes can be designed to require several data instances over time,
i.e., �̂�(𝑡),∀𝑡 = 𝑡𝑘, 𝑡𝑘+1, ..., 𝑡𝑘+𝑇 , with 𝑇 denoting the required period of time. However, it is of upmost interest for water
utilities to reduce the time that leaks are losing water, so leak managenement methods are usually designed to minimize
𝑇 .

3. Classification of leak detection and localization methods
During the years, the monitoring of water distribution networks has been studied with the intention of minimizing

the effects of leakage. Early works were carried out regarding pipe breakage in WDNs. An analysis of the relation
between leakage appearance and pipe materials was proposed in Kettler and Goulter (1985). The reduction of leaks by
optimizing valve control was studied in Sterling and Bargiela (1984). A method to evaluate and determine water losses
is introduced in Arreguín-Cortes and Ochoa-Alejo (1997).

From these initial works, the leak management research field has grown and it currently covers a wide range of
problems.
3.1. Leak detection and localization

The methods that tackle the detection and localization problems can be classified as model-based, data-driven or
mixed model-based/data-driven, according to their dependence on a hydraulic model of the network:

• Model-based: these methodologies use a hydraulic model, implemented in a simulation software, as a high-
fidelity representative of the WDN hydraulic behaviour, basing the localization task in the comparison
between incoming real-world hydraulic data and simulated information. During the years, the development
of the modeling and simulation software tools (Sonaje and Joshi, 2015) increased the interest in this kind of
methodologies, leading to a wide range of works throughout the literature.

• Mixed model-based/data-driven: these approaches intend to mitigate the disadvantages of the inclusion of the
hydraulic model in the application of the methodology, i.e., the difficulty in the selection and calibration of the
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Figure 2: Graphical representation of the evolution of the network status during the complete leak management cycle: the
leak appears at 𝑡0, , it is detected at 𝑡0 + 𝑡𝑑 , located at 𝑡0 + 𝑡𝐿 and repaired at 𝑡0 + 𝑡𝑅.

corresponding mathematical models (Menapace et al., 2018), the diversity and complexity of WDNs (Kim et al.,
2016), and the presence of modeling errors such as nodal demand uncertainties and measurement noise (Blesa
and Pérez, 2018). To this end, the usage of the model is reduced to offline processes, e.g., training; additionally
leading to the application of machine learning techniques (Ferrandez-Gamot et al., 2015).

• Data-driven: these approaches process the measurements from monitoring devices placed within the network,
mining knowledge to address the leak detection/localization problem. Therefore, the hydraulic model is not
required, i.e., hydraulic information from simulations is not necessary to apply the methods. Moreover, some
methods from this category remove the importance of the availability of individual nodal demand data online,
as is difficult to obtain it in most water utilities.

Then, the exposition of the considered methodologies is structured and organized considering this division. To
complete the exposition of the different articles and categories, a hierarchical tree summarizing the classification of
the methods is presented in Fig. 3.
3.2. Model-based leak detection and localization methods

If the leak management literature is traversed, it is noticeable how there is a majority of model-based leak
detection/localization methods in comparison to the rest of the categories (see Fig. 3). During the years, a variety
of methods have been proposed, and they can be classified depending on how they use the hydraulic model to address
the localization problem.
3.2.1. Inverse problem approaches

The network hydraulic model was initially conceived to solve the direct problem of computing the flows and
pressures in all the element of the network, given a set of network parameters, demands and initial conditions. This
involves the solution of a set of linear and nonlinear equations. Conversely, the concept of inverse hydraulic problem
refers to deriving the network parameters, demands or initial conditions from the values of flows and pressure in the
network elements. Clearly, the direct hydraulic problem does not have, in general, an explicit inverse and the inverse
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Figure 3: Hierarchical tree of the classification of the leak localization methodologies reviewed in this article.

problem may not have unique solutions. Therefore, finding a solution of the inverse hydraulic problem usually requires
the use of optimization techniques as in a parameter calibration process.

One of the first works considering the management of leaks in WDNs was Pudar and Liggett (1992). They posed
the leak localization task as an inverse problem, considering the features of the network and the node demands to be
given, whereas other variables, i.e., leaks; are unknown. The problem is studied analytically, considering the case
of having more measurements and equations than suspected leak points (overdetermined) as well as the opposite
(underdetermined). In the former, the primary solution criteria is the minimization of the quadratic difference between
measured and calculated hydraulic heads solved (using the Levenberg-Marquardt (LM) method (Moré, 1978)), whereas
the latter is solved by means of a minimization problem of the 𝐿2-norm of a vector of orifice areas (one element per
leak). Two examples are used to show the capabilities of the methodology, leading to conclude that the underdetermined
problem is difficult to solve and provides little help, while the overdetermined problem can be posed to accurately
pinpoint the leaks. Thus, the number of measurements is crucial for the performance of the method.

Years later, Puust et al. (2006) presented a leak localization method that is defined as an optimization-based inverse
problem seeking the minimization of the total calibration error, which is derived from the quadratic sum of the residuals
between measured and modeled hydraulic variables. In this approach, the leak areas are assumed to be random variables
following a joint posterior probability density function (PDF). The prior PDFs capture probabilistic beliefs about these
areas before solving the inverse problem, while the posterior PDFs encode the beliefs about parameter values when the
observed data are known. The problem is solved by means of the SCEM-UA - Shuffled Complex Evolution algorithm
(Vrugt et al., 2003), which implements a global optimization scheme to determine the values of calibration parameters.
Two case studies are used to assess the performance of the method, exploring single-leak and multi-leak cases. First,
the classical aforementioned benchmark is used, and the localization results are comparable to those of the original
article. Then, another artificial network is employed, considering noisy measurements. In this case, the results are
interesting but deteriorated due to the presence of errors and the high sensitivity of certain nodes to the leaks, which
cause the method to select the wrong nodes as candidates.

Similarly, Wu et al. (2010) used inverse analysis to detect and localize leaks, including the leakage locations and
flows in an optimization that solves the model calibration problem. A dimensionality reduction process is performed,
in which the maximum number of possible leaks is specified, considering that the nodes of the network are divided into
several demand groups. The optimization is carried out by means of competent genetic algorithms (GAs), together with
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a parameter optimization tool. The method is applied in two case studies. The first is based on the typical benchmark
from Pudar and Liggett (1992), and the results are excellent for perfect and noisy pipe roughness.The second case study
is based on a real network from UK, in which field experiments were performed to emulate leaks, as well as testing
with historical leak data. Solid results were achieved, showing the method to be promising. Note that a conceptually
similar approach is proposed in Lijuan et al. (2012), so that GAs are used to obtain the optimal leak-related parameters,
i.e., leak location and magnitude, for a hydraulic model that is calibrated. The results for a simple benchmark show
that the method works for small leaks but struggles when the leak size increases.

In Fusco and Ba (2012), the nodal demands are considered to represent the steady-state of the network, and they
are estimated using the hydraulic model and the available measurements, solving an implicit inverse problem. The
fault detection and isolation is attained by performing a Z-test over those demand estimations, using historical demand
values, billing information, domain expertise, etc., to build a statistical expectation of the demand of each user category.
A threshold is used to decide if a demand in a node is large enough to indicate a leak. An example case study is used to
assess the method’s performance, achieving good results for the tested case with three simultaneous leaks, and analyse
the effects of parametric variations with respect to the model. Note that several simplifications are considered, like full
availability of nodal pressures, a simple network and noise-free measurements.

Years later, Ribeiro et al. (2015) presented a methodology solving the inverse problem by means of Simulated
Annealing (SA) algorithm (Bertsimas and Tsitsiklis, 1993). This method is based on the annealing process, i.e., process
of heating up a solid and then slowly cooling it down to reduce its defects. From this analogy, a mechanism to prevent
local optimum traps is derived. The information of all possible leaks is gathered through a hydraulic simulator, and
the SA scheme attempts to minimize the difference between measured and simulated pressures while deciding the leak
size and location. A set of 240 case studies is generated with the aim to illustrate the performance of the method, all of
them using the same WDN but using two different pipe lengths sets, two leakage sizes, ten random leak locations and
six possible sets of sensor places. The results showed a leeway for action to improve the method, although sufficiently
good results could be obtained for most of the leaks.

In Sanz et al. (2016), the leak detection and localization problems were combined with the network model
calibration. To achieve this calibration, node demands are composed of geographically distributed demand components,
which are used to check the existence and location of leaks. First, anomalies are detected by comparing the values
of a set of indicators with corresponding thresholds, derived from the normal functioning of the network (Pearson
correlation, conditional overlapping, unit norm, relative increment in mean component values, relative increment in
mean consumption and relative residual coefficient). The localization is achieved by two possible methods: the direct
one, which assigns the leak regarding the membership of each node to the abnormal demand component; and the leak
membership method, which considers the Pearson correlation between the pressure sensitivities to changes in demands
for all nodes and the projection of the residuals onto them. The methodology is applied to a real WDN using synthetic
data, correctly localizing the leak at almost all the considered scenarios.

Furthermore, Steffelbauer et al. (2017) revisited the inverse problem for leak localization, using the differential
evolution (Price, 2013) algorithm in its standard implementation. Several distance metrics are used to calculate the
objective function of the optimization problem: Minkowski distance metrics, cosine distance, Pearson’s correlation
coefficient, the Sorensen metric and the Canberra metric; as well as different ordering schemes of the nodes (rearranging
of the search space): alphabetical, random, Cuthill-Mckee algorithm (Cuthill, 1972), and depth-first search (DFS). A
case study based on a real-world network from Austria is used to assess the different configurations, regarding the
topological distance from leak to candidate and the computational cost. The results shown that the correlation metrics
and the Cuthill-Mckee algorithm provided the best results for the considered example leak.

The same year, Berglund et al. (2017) proposed a mathematical programming-based methodology using a
simulation-optimization scheme to locate and estimate leaks, solving the multi-leak problem. First, the approach
optimizes a linear programming (LP) model to find the linear combination of single simulated leaks that best explain
the pressure drop between the leaky and nominal cases, pursuing the minimization of the sum of absolute differences
between simulated and measured pressures. The solution also yields the leak estimations, which are included in the
network model to perform new simulations. Then, a mixed integer linear programming (MILP) model is used to control
the solutions by constraining the total number of searched leaks. To evaluate the methodology, four case studies among
three networks are considered: two synthetic benchmarks, Hanoi and Net3 (Diao et al., 2016), and a real network from
North Carolina, with simulated data. The synthetic benchmarks yielded acceptable results, which deteriorated for
several simultaneous leaks, while the realistic case was successful for up to 4 leaks (note that all nodal pressures are
measured in most scenarios).
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Moreover, Sophocleous et al. (2019) presented a leak detection/localization approach based on search space
reduction and a simulation-based technique similar to Pérez et al. (2011). First, the search space is reduced in three
stages: a deletion of nodes from the leak candidate list when they are not demand ones, a minimal detectable node
leakage (MDNL) analysis and a search space optimization. The latter aims first to detect the total water losses by
minimizing the difference between observed and simulated flows through GAs, to then use several emitter coefficients
to find the fittest leak size, and finally execute a simulation per possible leak scenario to find the maximum number of
leaks through the minimization of the difference between simulated and observed flows/pressures. The leak location is
achieved by solving another inverse problem that searches for the maximum of number of possible leaks based on the
fittest scenario from the previous stage. The method is applied in two real-world case studies: the first uses simulated
observations while the second employs field data. In the former, the results showed that it was possible to locate the
leaks if the pressure drop was larger than the sensor noise. The latter case provided acceptable results considering the
size of the network the promising search space reduction and the final localization result.

Quiñones-Grueiro et al. (2021) proposed a model-based leak localization approach based on the solution of
an inverse problem using the leak magnitude range derived from the detection/estimation stage. These phases are
respectively performed by a deep neural network and a Gaussian process regression, using residuals generated from
the comparison between measured and simulated pressures. Localization is achieved through a variant of the differential
evolution algorithm, considering the topological information of the network to modify the search space and including a
temporal analysis. The Modena benchmark (Bragalli et al., 2012) is used to assess the performance of the methodology,
which is satisfactory when considering several possible leak candidates as solution, but reduced when considering
node-level localization and for small sets of observations.

One of the most recent works of this kind is presented in Daniel et al. (2022), which tackles the leak detection
and localization problems. The former is solved through a semi-supervised linear regression process, operating in a
model-free way, while the latter uses a calibrated hydraulic model and a simulation-optimization scheme based on the
ideas of Berglund et al. (2017), referred to as Succesive Linear Approximation (SLA). The localization process starts
calibrating the node demands by comparing simulated and observed values, to then compute pressure residuals in order
to find the most affected sensor for each leak. Finally, SLA estimates the leak and find its location. The methodology
was tested over the L-TOWN benchmark from BattLeDIM2020, presenting an improved version with respect to the
one whose results were presented to actual competition. The aim of the contest was the detection and localization of a
set of unknown leaks from a provided measurements dataset (the network model was also provided) from the year 2019
(a dataset from 2018 was provided for calibration purposes, with several known leaks). The detection and localization
performances were excellent, outperforming the BattLeDIM2020 result.
3.2.2. Sensitivity-based methods

Recalling the method in Pudar and Liggett (1992), an early application of sensitivity theory for leak management
is provided. In that work, the concept of fault sensitivity matrix (FSM) was introduced as a tool to decide the
measurements sites. The FSM stores the effect of each possible leak on every node of the network, and it is obtained by
means of hydraulic simulations. This concept evolved, appearing as a fundamental part of the leak localization scheme
in coming years, leading to a variety of model-based approaches based on pressure sensitivity analysis, i.e., they study
the effect of the possible leaks, that may appear across the network, over gathered pressure measurements.

In Gertler et al. (2010), a two-phase method based on principal components analysis - PCA (Abdi and Williams,
2010), is proposed. First, this technique is used to develop a fault-free model of the system, whose behaviour is
compared to fault data from a sensitivity analysis that generates a FSM, used to compute a set of structured residuals
from the PCA model. The localization online phase implies the computation of residuals and their comparison against
a threshold to indicate the existence of a leak. A simple example was used to show the promising performance of
the method, although some simplifications were considered, e.g., all pressures are measured. They conclude that PCA
shows its suitability for the task, although the problem characteristics hinder its exploitation.

The use of the FSM in the leak localization process is also presented in Blesa et al. (2010), considering a different
approach. First, a detection scheme is proposed, based on the comparison between the behaviour of a Linear Varying
Parameter (LPV) model (Bokor et al., 2002), whose structure is obtained from the non-linear mathematical network
model, with respect to the behaviour of the real network (considering the sensor measurements); with a zonotope-
based (Puig et al., 2001) approach to deal with uncertainty. Then, for the localization, a sensitivity analysis of pressure
residuals is performed, computing a FSM that stores the effect of every leak on the generated pressure residuals. The
method considers single-leak events, and pursues the argument node of the minimization of the difference between

Romero-Ben et al.: Preprint submitted to Elsevier Page 9 of 42



Leak detection/localization review and perspective

the actual leaky residual and the columns of the fault sensitivity matrix. A simple case study is employed to test the
method, yielding satisfactory results.

This FSM strategy is considered again in Pérez et al. (2011). To this end, a binary signature matrix is generated
from the FSM, approximated by simulation (using increments of pressure and keeping a constant leak magnitude)
due to the difficulty of an analytic calculation (this implies that the FSM would depend on the network demand and
boundary conditions). The binarization is performed by assigning a value of 1 to the entries whose associated leakage
affects their associated node, and 0 otherwise. Thus, a definition of a binarization threshold is crucial for the success of
the localization process. Several real case studies are considered to assess the performance, working in both simulated
and real scenarios. The results were interesting and good under ideal conditions, but further work was necessary to
enhance the methodology, as the performance decreased due to nodal demand uncertainty and measurement noise.

The usage of sensitivity matrices is considered in Escalera et al. (2012) too. In this work, once the sensitivity
matrices are derived, a wavelet analysis method and a phase demodulation process are applied to binarize them. The
former provides a more accurate local description and separation of signal features, while the latter is used to extract
the information phase of the complex-valued binarized residues (after the wavelet analysis). Finally, the location of
the leak is obtained by performing the Boolean Exclusive-OR (XOR) operator to the binarized residues, obtaining a
binary matrix whose columns are summed (each row represents a node), to then apply a voting method so that the
less-voted node is selected as the leak origin. The methodology is further extended to allow multi-leak localization.
Two case studies are used to assess the method: Hanoi and the Quebra network. In both cases, the method is compared
with the angle-between-vectors approach (Casillas et al., 2014), and the wavelet analysis method mostly outperforms
the other. However, the results are largely degraded when considering measurement and/or demand noise.

The concept of binary fault sensitivity analysis was dismissed by Perez et al. (2014), enhancing the leak isolation
process by considering residual fault sensitivity analysis. Moreover, the requirement of defining a threshold to achieve
a correct location process is removed. To this end, the residual vector is compared to the theoretical fault signatures
of all potential leaks, i.e., columns of the residual-based FSM. This comparison is performed through a correlation
function, so that the node associated to the highest correlation value is chosen as the leak origin. The methodology
is tested by means of a real leak scenario at a case study DMA from the Barcelona WDN. The results were sound,
showing the improvement of the methodology.

In Casillas et al. (2014), five leak localization strategies based on the fault sensitivity matrix are compiled, i.e.,
sensitivity matrix binarization, correlation comparison, Euclidean distance comparison, angle-between-vectors test
and least-squares optimization; and combined with an extended-horizon analysis procedure that makes the localization
process less sensitive to demand uncertainty and measurement noise. Their performances are compared for two
academic case studies, Hanoi (Fujiwara and Khang, 1990) and Quebra (from EPANET (Rossman, 2000) examples);
to then apply the three best methods (discarding binarization and Euclidean distance) to the previously mentioned
Barcelona DMA case study. Experiments for different number of sensors are performed with synthetic data, achieving
the best performance with the angle-based method, that is then tested over a real leak scenario from the same network.

A similar approach is proposed in Kang and Lansey (2014), i.e., a burst sensitivity matrix is derived from a hydraulic
model/simulator of the WDN, using it to place meters and locate bursts. Additionally, this work analyses the control
limits of the hydraulic variables, using Monte Carlo (MC) simulations to quantify the variations in pressures and flows
depending on demand and roughness uncertainties. These control limits are used during the FSM generation to discard
outliers, as well as during the leak location operation. A small example was used to apply the methodology and show
is capabilities. The network is interesting due to the existence of multiple tanks, whose filling/emptying varies the flow
directions over time. Little results were provided from the leak localization experiments, although they were promising.

In Okeya et al. (2015), sensitivity is used to identify the most appropriate hydraulic locations for pressure sensors.
Then, once a leak is detected, the obtained sensorized points are ranked in descending order based on a burst detection
metric obtained by using the online burst detection model proposed in their previous work (Okeya et al., 2014). The
high-ranked sensors constitute a list of likely leak locations. Then, the DMA demand and leak size are estimated through
multiple hydraulic simulations and data analysis techniques, and this information is used to calibrate the hydraulic
model, inducing at each run a leak in a high-ranked node, deriving the leak probability through the difference between
simulated and measured flow and pressure data. The case study is based on a real-life DMA from England, using real
data from the network to generate realistic simulated leak scenarios. The localization results are satisfactory considering
the size of the network, and the method performs better at night than during daytime.

Years later, Jensen et al. (2018) extended the method presented in Perez et al. (2014) by considering a preliminary
stage to derive a reduced model of the network. To this end, the underlying graph of the network is divided into inlet and
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inner nodes to derive a expression of the pressure in a certain node of the network that depends on the total flow inlet to
the network and a time-varying parameter related to the head at the inlets. This model generates pressure predictions,
exploited to derive pressure residuals which are then fed to the FSM generation process. Note that detection is achieved
from the computed residuals, by means of a statistical analysis with a test random variable Anderson (2003). A real
network is employed, with actual hydraulic data, to assess the performance of the methodology. Promising results are
obtained, although some variability of the solution appears when considering a wide range of time slots to apply the
method. Also, better results were obtained for larger flows in the system.

Li et al. (2022b) proposed a model-based leak localization methodology based on three steps (detection is handled
by an external algorithm from Shao et al. (2019)). A leak simulation stage exploits the concept of dominant sensor
sequence, developed from sensitivity analysis, to only consider highly-correlated sensors to the leak. Then, leak
scenarios are simulated under varied conditions, calculating the similarity between measured and simulated variables
to locate the leak, using metrics like cosine distance, Pearson/Spearman/Kendall correlation coefficient, Euclidean
distance, Manhattan distance and Chebysev distance. The localization analysis allows ranking the probability of being
the leak origin of a set of network areas, as well as ranking the nodes within those areas. The method is applied to a
realistic WDN to evalute its performance. Interesting results were obtained regarding the network area localization,
although the performance got deteriorated when considering the node-level uncertainty.

Recently, Steffelbauer et al. (2022) presented an approach combining model calibration, detection and localization
of leaks. The iterative calibration of demands and pipe roughness is performed using network measurements, including
automatic meter readings (AMRs). The leaks are detected through the CUmulative SUM control chart - CUSUM
algorithm and the likelihood ratio test (Basseville et al., 1993), to monitor the virtual leak flow values from a dual
model, generated from the network model by including additional virtual reservoirs/valves to transform the hydraulic
heads at the sensors into virtual leakage flows. The localization is achieved by a residual projection strategy, similar to
the scheme presented in Perez et al. (2014), that computes the Pearson correlation for pressure and flow residuals and
the first-order sensitivities. The derived model is updated with the information of managed leaks to allow multi-leak
solutions. The method was tested on the L-TOWN benchmark during the BattLeDIM2020 competition, demonstrating
its suitability by leading the competition in terms of true positives.
3.2.3. Bayesian-based strategies

Bayesian-based approaches have been derived and implemented during years too. First, Poulakis et al. (2003)
proposed a leak localization and estimation scheme based on a Bayesian methodology, coupled with an hydraulic
simulator, for the update of hydraulic models whose parameters are the leakage locations and sizes. To this end, flow
and pressure measurements are compared with model estimations. The uncertainty of the parameter set is quantified
using PDFs measuring the plausibility of the different models. The leak locations are obtained by a set of optimizations
that seek the maximization of the corresponding PDFs with respect to the leak size parameters. These optimizations
are solved by GAs. The methodology is applied to an example network, considering several scenarios regarding
uncertainty, sensor locations and type, single or multiple leaks, etc. The result is sound and the location of the leaks is
found when the errors are not excessively high. Besides, the methodology is limited to a certain threshold of leak flow.

Years later, Zhang and Wang (2011) presented a model-based leak detection/localization approach based on
Bayesian theory and Fisher’s law. The former updates the randomness of the values of leak-related parameters (location
and amount) from a hydraulic model (these parameters are quantified through PDFs), whereas the latter is used to
estimate the parameter values. Finally, the amount of leaks is estimated by a back propagation neural network, while
their location is estimated from the flow characteristics of the WDN. Thus, the methodology works with pressure
and flow measurements. A case study is presented to show the performance of the method. A single-leak scenario
is considered, successfully locating the leak, despite the existence of large errors when comparing simulated and
measured data. Thus, further work is required to improve the methodology.

A Bayesian-statistical approach is also exploited in Costanzo et al. (2014) with the application of a model calibration
algorithm known as UNINET (using the SCEM-UA methodology) to solve the optimization problem. The method
estimates the roughness in pipes and demands at nodes while considering the parameters as random variables. An
index measures the difference between the calibrated pipe roughness before and after the leak, using its information to
identify where the leak is located. A real case study from the city of Amantea is used. A set of roughness classes was
defined, so the index is computed for all the classes, and the correct roughness class has the maximum index when the
number of measurements is high.
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In the same year, Qi et al. (2014) proposed a leakage localization method that addresses the problem by means
of a combination of GAs and Bayesian Decision Theory (BDT). It pursues the high efficiency and strong robustness
of GAs, while using the Bayesian theory to consider both hydraulic model and measurement errors. The BDT model
uses a method of exhaustion to gain probabilities of all leakage accidents, and the optimizations are solved by the GA
scheme. A sample network is used to evaluate the method, and the results show that despite the node-level localization
is difficult, a localization area can be successfully derived.
3.2.4. Fuzzy logic model-based methods

The concepts of fuzzy logic have also been exploited to derive leak management strategies. A methodology is
proposed in Zhang et al. (2009) to locate leaks through hydraulic simulations, as well as the generation of a matrix
of burst features and the method of fuzzy similarity ratio based on the Hamming distance as a measuring expression.
This ratio is compared for the different simulated scenarios and several fuzzy similarity matrices are obtained. These
matrices yield a similarity serial number that can be compared to a given threshold. When a leak is detected, the
pipe with the smallest serial number is the burst location. The method was applied to a real network, achieving good
performance results for different leak sizes.

Fuzzy set theory was used in Islam et al. (2011) as part of a leak detection/localization technique.This approach
simulates the minimum and maximum values of dependent parameters (flows and pressures) for an extended period,
using this information to fuzzify independent parameters (pipe coefficients, nodal demands, water levels, etc.). They
are used to calibrate a hydraulic model and estimate an array of dependent parameters, finally achieving three sets
of solutions. Then, monitoring data is evaluated with respect to the fuzzy numbers from these solutions, raising a
detection alarm if the pressure is lower than the most likely value. The location process is based on the concept of
index of leakage propensity (ILP): if the monitored values are beyond the derived extreme values, then the ILP will
be higher than 1, and the highest ILP would indicate the leaky node/pipe. A simple case study is used to implement
and demonstrate the methodology performance. Several results are provided, showing promising performance, even
though several issues are left to be tackled in the future.

A year later, Sanz et al. (2012) proposed a leak localization method based on Fuzzy Inductive Reasoning - FIR
(Nebot and Mugica, 2012). It finds relations between qualitative and causal variables of the system by observing their
behaviour for a certain period, using these relations to predict future behaviours. First, leaks are detected by comparing
real measurements with fuzzified predicted values, checking if the former lies within the envelope of the latter, and
raising an alarm if this is not the case. To locate the leaks, a fuzzy model for all possible combinations of simulated
leaks and available sensors is computed, as well as a fuzzy leak-free model for each sensor. These models are used to
perform leakage classification, identifying which predicted pressure fits best with the real one. A real-based network
from the Barcelona WDN is used to evaluate the performance of the methodology. It is compared with the correlation-
based sensitivity method, and the results show that while both method are able to correctly locate leaks, the FIR-based
approach is more precise, as the localization areas are smaller.
3.2.5. Other model-based methods

Apart from the mentioned families of methods, approaches which do not fit any of the above-mentioned model-
based categories have been developed over the years. In Andersen and Powell (2000), a new implicit formulation of
the standard weighted least squares (WLS) state-estimation problem is derived for WDNs. Graph theory is exploited
by means of the consideration of loop equations, and the state variables are chosen to be the nodal demands, which are
modeled by demand pattern factors that divide the total water consumption among the network nodes. A Lagrangian
approach is considered to formulate the optimization problem, and the Netwton-Raphson method is applied to solve
it. This formulation is modified to solve the leak localization problem: a test node is selected and the state estimator is
altered to ignore the cost of accepting possible excessive demand for that node. This idea was tested over a case study
network, and promising results were obtained, even if the scenario is idealized with noise-free conditions.

Years later, Misiunas et al. (2006) proposed a leak localization algorithm based on the comparison of measured and
simulated pressure values, after a detection phase based on the CUSUM algorithm is performed and a leak is detected.
The comparison is used to evaluate an objective function, for every possible leak location in the network, so that the
node with the smallest objective function value is selected as the burst position. An example network is used to verify
the methodology. Two kinds of experiments were performed: location of leaks that occur at nodes that are considered
as candidate locations, and the opposite case. The former case yielded satisfactory node-level accuracy, whereas the
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latter required two or more nodes to clearly identified the leak location area, normally selecting adjacent locations to
the leaky nodes.

Another different leak localization technique was presented in Bicik et al. (2011), considering the information
fusion of the output of several models, i.e., a Pipe Burst Prediction Model (PBPM), a Hydraulic Model (HM) and
a Customer Contacts Model (CCM). PBPM computes expected burst frequencies for every pipe during the current
month, CCM uses a weighted linear criterion to assign a leak probability to each pipe based on the confidence on the
reports of every customer, and HM simulates the effects of leaks over the different pipes, comparing the estimated and
measured pressures. The information fusion is carried out using the Dempster-Shafer Theory of Evidence (Gordon
and Shortliffe, 1984), which generates a result that encompasses the varying credibility of the individual models, and
derives the spatial distribution of Belief and Plausibility of leakage of any pipe in the network. The method was applied
using data from a real system of North Yorkshire, UK. The obtained results are not satisfying for the individual models,
but improvements can be found when fusing their information. However, the authors find limitations due to the lack
of information of the state of the network.

A methodology based on the concept of model falsification is presented in Goulet et al. (2013). Leak scenarios are
generated by simulating extra demands at every node of the network alternatively. The method exploits flow velocity
information. Thus, the scenario is considered falsified (and discarded) when the difference between simulated and
measured values is outside computed bounds, which depend on the model and measurement errors, and the proposed
method employs the Šidák correction technique to ensure that the methodology does not wrongly discard scenarios. A
case study based on a network from Lausanne is presented, showing results for different leak events, and considering
different levels of uncertainty. Its advantages are demonstrated mostly for large-size leaks.

In Rosich et al. (2014), a methodology based on the generation of structured residuals is presented. This class of
residuals presents suitable structural properties for leak localization, avoiding the dependence on the leak magnitude
that normally affects residual sensitivity analysis through a leak decoupling technique. Additionally, these residuals
are numerically computed, so no explicit solution is required to compute them. A case study from the Limassol water
network is used to assess the methodology. It is compared to the classic directional residuals method and the results
show an improvement in consistency. Additionally, the combination of both residuals types yielded better results.

Recently, a model invalidation approach was presented by Vrachimis et al. (2021). Leak detection is handlded via
identification of inconsistencies between a healthy interval model and sensor measurements by iteratively checking
the feasibility of an LP problem. The leak is localized by identifying the locations that accomplish the constraints of
a re-formulated interval model and the measurements during multiple time instants, computing bounds for unknown
leak emitters, so that those with a non-zero upper bound become feasible leak candidates. These candidates are ranked
by a localization priority index (LPI), indicating the minimum percentage of nodes that are excluded from the node
search space before the leak is found. The method is tested first in the classical Hanoi benchmark considering two leaks
and achieving excellent performance. Second, the Leakage Diagnosis Benchmark (Vrachimis et al., 2018) is used to
compare the proposed method with a previous work, yielding an improvement regarding the true positive rate.

The BattLeDIM2020 challenge was faced by Li et al. (2022c), presenting a leak management framework dealing
with three stages: model calibration, leak detection and leak localization. The first is performed to get a nominal
hydraulic model, which is required to estimate the overall yearly leak flows and approximate the pressure at the nodes
in nominal conditions. Then, the Loess decomposition (STL) (Cleveland et al., 1990) method and 𝑘-means clustering
are applied to the pressure residuals from the comparison between nominal (simulated) and leaky (measured) data to
identify the existence of leaks. By updating the model at each detection of non-repaired leaks, the localization stage can
be performed, selecting the pipe with the highest probability based on the simulated and actual leaks. The application
of the method to the BattLeDIM2020 challenge was successful, obtaining the first place in the competition.

Another BattLeDIM2020 approach was proposed by Wang et al. (2022), which exploits both statistical methods
and hydraulic modeling to detect and localize leaks. First, the expected flows and pressures in leak-free conditions are
retrieved by means of empirical model decomposition (EMD) and vector autoregressive models. From these values
and the measured ones, residuals can be computed and used to identify leak appearances and sizes. To locate them,
a comparison between observed and simulated pressures is performed at both the week of the detected leak and the
week before. The method performed well in terms of true positives, although it also caused several false positives. It
finally obtained the fourth position in terms of economic score.

Another BattLeDIM2020 method was presented in Marzola et al. (2022). This approach considers model calibration
to adjust the hydraulic model to realistically behave as the network (considering demands to have similar profiles
in the complete WDN, using the measurements from the area with AMRs), to then identify leaks through an
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engineering judgment process of the measured inflows and water demands. The localization is performed by carrying
out simulations of every possible leak, and computing the error between each obtained pressures set ans the actual
ones from the network, selecting the pipe that yields the lowest error. This method was among the top-performers,
achieving the fifth place in the competition.
3.3. Mixed model-based/data-driven leak detection and localization methods

In recent years, the development of machine learning and data analysis methods helped increasing the usage of
these kind of techniques to develop new leak localization schemes, as well as complement previously existing ones.
3.3.1. Neural networks approaches

As shown previously, the use of artificial neural networks (ANN) has been widely considered to address the leak
detection task, due to the possibility of training the ANN to discern between leak and leak-free states. Nevertheless,
this kind of techniques have also been applied to solve the leak localization problem.

In Caputo and Pelagagge (2003), ANNs are used to monitor the states of pipe networks in order to locate leakage.
Specifically, a multilayer perceptron ANN - MLP-ANN (Delashmit et al., 2005) with sigmoidal activation function
(Rasamoelina et al., 2020) is exploited and trained with pressure and flow data from a set of sensors scattered through
the network. The neural network is trained on different sets of leak and leak-free scenarios from hydraulic simulations,
with a wide range of operating conditions. To this end, a two-level architecture is considered: a main ANN identifies
the branch that contains the leak, whereas the second level is formed by several ANNs, in cascade to the main one,
that estimate the leak size and location in the selected branch. An example is considered first to compare the two-level
approach with a single ANN scheme, obtaining results that illustrate the advantages of the former. Then, a realistic
case study is used to test the performance of the two-level strategy. The trained ANN was able to identify the correct
branch in all test cases, and satisfactory performance was reached for the second-level ANNs.

Years later, Rojek and Studziński (2014) followed a similar scheme to test different kinds of neural network
structures, trained with datasets of leak- and leak-free scenarios for different operating conditions from a a hydraulic
model. In this case, apart from the MLP architecture, Kohonen networks (Kohonen, 2013) were also tested. The latter
are self-organizing nets with the capability of adapting to input data that was not previously known. A water network
was considered to test the performance of both ANN schemes. Their comparison shown that the MLP outperformed
the Kohonen net, although no sources of noise or uncertainty were considered.

Another work dealing with neural networks and classification is presented in Sun et al. (2019). Pressure data from
sensors is interpolated using the Kriging spatial interpolation approach (Oliver and Webster, 1990), that allows to obtain
approximate values at not measured nodes from the measured ones, additionally considering the network topology.
Then, two different types of classifiers are considered: ANNs and linear discriminant analysis or LDA. The former
fits a single hidden-layer neural network, while the latter is a method to find a linear combination of features that
divides two or more classes of data. They are trained to be ready to be applied to locate leaks from incoming data,
using hydraulic information from the possible leak scenarios. The case study of Hanoi is considered to evaluate the
performance of both classifiers, considering different sensor configurations. A ANN-scheme with Bayes reasoning led
to the best results. However, the sensorization analysis shows that the Kriging method can introduce errors for some
sensor configurations, worsening the localization.

In Shekofteh et al. (2020), ANNs techniques and graph theory, combined with pressure sensor measurements were
applied for the leak detection/localization problem. A network division/clustering algorithm is used to iteratively split
the network, to then identify where the leak is located using information from pressure loggers and ANNs. A hydraulic
model is required to obtain the pressure data for the ANN training. The Balerma benchmark (Reca and Martínez, 2006)
is used as a case study to test the method. Several scenarios are considered regarding uncertainty sources and number
of simultaneous leaks.The results show a perfect functioning for the cases without uncertainty, and a degradation of
performance in the presence of uncertainty.

In the same year, Cantos et al. (2020) proposed a machine-learning-based methodology for leak detection and
localization based on risk assessment. The approach makes profit of a hydraulic database generated through hydraulic
simulations, to then proceed with a risk assessment strategy that establishes a spatial time series of leak likelihood
indicators through a statistical data analysis of the measured flows. The localization is performed by both ANNs and
SVMs, which are trained to geolocate the leak in the source with a higher risk of occurrence. The campus of the Lille
University was used as case study. In this case, ANNs provided a significantly higher accuracy than SVMs for detection,
whereas they yielded similar high accuracies regarding localization.
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Capelo et al. (2021) recalled again the multilayer perceptron ANN strategy, using the explained scheme to generate
hydraulic data for a wide range of leak scenarios, train and test the decided ANN architecture (it depends on a sensitivity
analysis) and apply it to a realistic scenario. The LM algorithm is considered as the core optimization mechanism for
the ANN. A case study about a real WDN from Portugal is used in order to assess the performance of the method. The
ANN is structured to have as input the pressure heads of the sensorized nodes, and as output the leaky node location
in Cartesian coordinates. Several possible configurations within the ANN are considered, as well as different analysis
regarding number and location of sensors, and number of considered leak scenarios for training. All the results for the
different studies are satisfactory and logical, despite the distance uncertainty between the selected leak locations and
the real ones may be high.
3.3.2. Support vector machine methods

Support vector machine or SVM is a technique that has been applied to solve a wide range of problems since
its development (Pisner and Schnyer, 2020), including leak management tasks. In Mashford et al. (2012), the data
gathered from sensors is used to feed SVMs, trained to predict the leak magnitude and location. In this case, EPANET
is used to generate a large number of leak scenarios for the SVM training. A WDN from Melbourne is selected as
case study to assess the performance of the method. First, SVMs were used as regressors to predict the leak emitter
coefficient values when a predefined node is leaking. In this experiment, the results were notably good, with minimal
error. Second, SVMs were used as classifiers to locate leaks. The results showed that a satisfactory node-level accuracy,
although it decreased when the number of possible leaky nodes increased. However, the area-level localization was
quite successful. Finally, advice is provided for the application of the method with low leak rates, although the accuracy
results were not satisfactory.

A SVM-based approach is combined with a clustering strategy in Candelieri et al. (2014) to handle the leak
localization operation. Hydraulic data is generated using a simulator, achieving information for all possible leaks (in
pipes) in the network. Then, the leak-scenario data are clustered in order to divide the possible leaks into different
groups, so that the leaks within a cluster produce a similar effect over the network. Specifically, five clustering methods
are tested: simple K-means or SKM (Shukla and Naganna, 2014), Farthest-First or FF (Kumar et al., 2013), the Spectral
Clustering (Von Luxburg, 2007) versions of both previous methods, and Partitioning Around Medoids or PAM (Van der
Laan et al., 2003). Moreover, two metrics are derived and calculated for each cluster to assess their validity, so that a
global clustering index can be achieved by their multiplication. Additionally, SVM is utilized to enhance the reliability
of the localization operation, due to the non-linear transformation derived from the Spectral Clustering approaches.
The methodology was tested by means of two case studies, comparing the different clustering options through the
mentioned indices, and Spectral Clustering SKM ended up being the best. Regarding leak localization, it achieved
notably high accuracy, although there is not information about the inclusion of noise and uncertainty.

A similar scheme is exploited in Zhang et al. (2016), considering both SKM and SVM to perform leak localization.
First SKM is used to divide the network into areas with a similar leak behaviour; then a multiclass SVM (M-SVM) is
trained to discern the cluster that best fits the incoming leak data in. The generation of training samples is performed
by means of a Monte Carlo strategy, so that this algorithm creates leakage events for each leakage zone, to then run the
hydraulic simulator and compute the difference between leak and leak-free scenarios. Two case studies are considered
to evaluate the performance of the method. The first example showed that the classification accuracy decreases as
the number of zones increases. Similarly, a better performance of radial basis function (RBF) kernel in comparison to
polynomial and sigmoid ones is reported. In the second realistic case study, a high accuracy was achieved, although the
localization target was a reduced set of WDN areas, and no noise or uncertainty are included during the data generation.

Recently, Ares-Milián et al. (2021) presented a leak localization scheme combining model-based and data-driven
methods. First, the network is partitioned using agglomerative clustering (Kaufman and Rousseeuw, 2009), considering
its topological characteristics instead of hydraulic data. The localization starts through a leak zone selection performed
by means of a trained SVM classifier combined with Bayes temporal reasoning. Then, the inverse problem is formulated
and solved using topological differential evolution (TDE), constrained to consider the leak zone selected in the
previous step. The Modena benchmark is considered, deriving several metrics to compare the methodology with
other techniques, i.e., the SVM and TDE techniques applied standalone. The results show that the hybrid strategy
outperforms the other two when the demand uncertainty increases.Additionally, the computational cost of TDE and
the hybrid schemes are compared, demonstrating that the search space reduction of the latter speeds up its operation.
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3.3.3. Fuzzy logic mixed model-based/data-driven strategies
Fuzzy logic theory has also been used to develop novel neural network schemes, which have been tested to play

the role of pattern recognition agents for the leak management tasks. An early work in this line is presented in Li and
Li (2010). Cluster analysis is used to determine virtual partitions, and then fuzzy recognition is used to define the leak
that is attributable to each specific virtual partition. Once hydraulic data from nominal and abnormal behaviour (for all
possible leaks) is generated, the cluster analysis is performed over this data, by means of the system clustering method.
Then, the process starts to merge classes depending on their inter-similarity, until there is only one class, hierarchically
organizing the clusters, generating a standard model library. The fuzzy recognition process then calculates the closeness
of an incoming sample and the ones of the library to determine to which class the sample belongs. A water network
from China is used to assess the performance of the methodology. The presented leak localization result is correct,
showing the feasibility of the method, despite it may be insufficient to demonstrate its full performance.

Years later, another fuzzy-based method was proposed in Wachla et al. (2015), which is composed of two stages.
First, residue signals are generated by means of water flow models, and then neuro-fuzzy classifiers are used to locate
the leak at predefined network areas. SVM was selected to implement these models, which were trained by means of
flow data collected at the real network that was used as case study. These models learn the nominal behaviour of the
network and aid to generate residuals from incoming leaky data. Regarding the training of the neuro-fuzzy classifiers,
an EPANET model is utilized to derive hydraulic data for their training. Specifically, the neuro-fuzzy system ANFIS
(Jang, 1993) is used for data classification. The previously-mentioned case study was used to assess the method and its
capabilities. The results show that the method is able to locate the leaks in the correct WDN partitions in most cases,
although some specific pipes are found to be sensitive to leaks at other pipes.
3.3.4. Deep learning approaches

Since its appearance, deep learning (DL) has been successfully applied to numerous pattern recognition problems
in a wide range of fields. In the specific case of leak management, several recent works have considered this technique.
In Zhou et al. (2019), a hydraulic simulator is necessary to emulate the behaviour of the network in the presence of leaks
to obtain a training dataset for the DL scheme, which is based on a Fully-linear DenseNet (FL-DenseNet). Two case
studies are used to show the reliability of the approach. First, the method is tested over the Anytown network (Walski
et al., 1987), yielding excellent performance for both node-level and 5-top-candidates accuracy for low uncertainty
values on the roughness and demands, while a decrease of performance is observed for higher values, although the
results are still satisfactory. Then, a real-based network is used to test the performance of the approach. In this case,
the method is compared to other three strategies, with the proposed FL-DenseNet yielding the best results.

In the same year, Javadiha et al. (2019) proposed a leak localization method based on DL for image classification.
A hydraulic model is required to generate hydraulic information for every possible leak scenario, to then compute
pressure residuals. However, only information at the sensors is considered, and the Kriging interpolation method is
used to retrieve the complete vector of residuals, achieving a residual map of the WDN, which can be converted into
2-D images by considering a specific image resolution. Finally, a DL Convolutional Neural Network - CNN (Albawi
et al., 2017) is trained with the images and the labels of the leaks, preparing it to be used for incoming leak scenarios.
A Bayesian reasoning strategy is used to enhance the results by integrating consecutive time instants. The case study of
Hanoi is considered to assess the performance, considering uncertainty in sensor measurements and nodal demands.
The testing results showed that the performance improved when the number of sensors increases.

A novel leak localization scheme was presented in Hu et al. (2021), based two complementary stages. First,
the network pipes are divided into groups by means of density-based spatial clustering of applications with noise -
DBSCAN (Ester et al., 1996). The clusters are continuously expanded due to the continuous sampling, until final
clustering results are obtained. Then, each zone is used as a label for multiscale fully convolutional networks (MFCN),
which introduces the idea of multiscale decomposition based on Fourier transform (MDFT) to generate a new layer of
a CNN. An example network is used to test the methodology, generating hydraulic data for all possible leaks in order
to train the MFCN. The leak localization is compared to other three algorithms, achieving the proposed method the
best results, i.e., minimum mean per-class error.

Recently, Romero et al. (2022) proposed a clustering-learning approach to solve the leak localization problem.
Pressure vectors for all possible leaks is generated using a hydraulic simulator, and converted into 2-D images (of the
size of the number of sensors) by Gramian Angular Field - GAF (Wang and Oates, 2015). Then, a recursive clustering-
learning scheme is used to divide the network (or subnetwork if it is not the first iteration) into two clusters by means
of Graph Agglomerative Clustering - GAC (Zhang et al., 2013), training a DL net to discern the leak location between
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the generated clusters. The process is repeated until the desired level of division, and the trained DL networks are
hierarchically organized, yielding a classification tree. A case study of a real network is used to assess the method
performance, feeding actual data to a trained classification tree, leading to a localization result that qualitatively and
quantitatively outperforms a compared state-of-the-art model-based approach.

Furthermore, Li et al. (2022a) proposed a ResNet-based (He et al., 2016) leak localization scheme based on four
stages: dataset generation, training, classification and regression. A hydraulic model generates hydraulic information
for every possible leak scenario, providing data of the selected sensors as input to the ResNet network. Once trained,
the classification process provides as output the probability of each pipe to be the origin of the leak, using the regression
process to determine the exact location of the leak over the pipe with maximum probability. Two benchmarks are used
to demonstrate the capabilities of the presented framework, namely the Anytown example and the Net3 network. The
accuracy results showed a good performance in both cases,with the regression stage demonstrating reliability for the
precise leak location over the specific pipes in Net3, although uncertainty was not considered for this benchmark.
3.3.5. Other classifiers for mixed model-based/data-driven methods

During the years, other techniques and algorithms have been exploited to solve leak management problems. In Tao
et al. (2014), an artificial immune system - AIS (Galeano et al., 2005) network is used to identify the position of bursts
in WDNs. This method, inspired by the immune system, is a stochastic optimization algorithm, similar to evolutionary
algorithms. Data for the considered leak scenarios is obtained through EPANET to train and calibrate the AIS for
pattern recognition, finally locating the leak by means of a nearest-neighbour approach. Three case studies of growing
complexity are used to test the methodology. Excellent accuracy was achieved for an example network considering no
uncertainty, as well as for a bigger network where the leak localization result worked at area-level. Finally, data from
a real leak on a real-world network was analysed by the method, yielding satisfactory results although the localization
failed for certain data sets.

The classical mixed model-based/data-driven scheme is used in Soldevila et al. (2016), using a hydraulic model to
generate pressure residuals for the possible leak scenarios and conditions (magnitudes, noise...) in order to then supply
them to a classifier, based on k-Nearest Neighbours - k-NN (Alpaydin, 2010). Nodes whose leak induce a similar WDN
behaviour are grouped before training, reducing the number of labels. A temporal reasoning scheme is also included
to reduce the effect of uncertainty and noise. Three case studies are considered to show the capabilities of the method.
The proposed approach is compared with the angle method from Casillas et al. (2014) in the Hanoi example, showing
the superiority of the former despite the performance degradation caused by noise. A larger network from Limassol is
used to show the importance of temporal reasoning to achieve a sound accuracy result. Finally, the method is applied
over a real-based network, training with artificial data and testing with measurements from two real leaks. The results
showed promising performance although the leaks were not exactly located.

Subsequently, Soldevila et al. (2017) proposed a leak localization scheme based on the exploitation of Bayesian
classifiers. They are fed with residuals from the difference between measured and estimated pressures, computed by
means of a hydraulic simulator. With every sample, the probability of each leak can be estimated by applying the
Bayes theorem. The prior probabilities are estimated to be equal for every leak at first, and the likelihood of a residual,
considering that a certain leak is obtained through a calibration process. The method performance is tested over two
case studies. First, it is compared to the angle method (Casillas et al., 2014) and k-NN (Soldevila et al., 2016) in Hanoi,
considering several sources of uncertainty. The Bayesian approach outperformed the other methodologies. Then, the
comparison with k-NN and the correlation method from Casillas et al. (2014) was performed over a real pilot from
Barcelona considering a real leak. Again, the Bayesian approach yielded a better performance.

Sensitivity analysis and classifiers are combined in Romero-Tapia et al. (2018) to perform leak localization. Pressure
data is obtained from simulations for the different leak scenarios, obtaining pressure residuals and then the sensitivity
matrices. From these matrices, the within-class-scatter and the between-class-scatter matrices are computed. This
works uses a Fisher Discriminant Analysis - FDA (Mai, 2013) classifier, whose aim is to maximize the scatter between
classes and minimize the scatter within classes. To this end, perpendicular FDA vectors achieving these goals are
iteratively computed to derive the eigenvectors of a discriminant matrix, which allows to generate a discriminant
function for each class. This function can be evaluated to locate the leak of incoming data. The FDA method is compared
to the angle strategy in Casillas et al. (2014) over the Hanoi example, leading to a smaller localization error for two
and three sensors (no uncertainty is considered).

Some years later, Lučin et al. (2021) presented another localization scheme based on classifiers. As usual, a
hydraulic simulator was used to generate leak scenarios, randomly selecting the locations, magnitude and demands.
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The classifier considered in this work is the random forest algorithm (Breiman, 2001). It consists of multiple decision
trees where each tree is trained independently on a random subset of the dataset. During the application stage, the
classification with more occurrences is chosen by the random forest and considered as the class prediction. The Hanoi
and Net3 benchmarks are used to evaluate the methodology, analysing several factors that may affect the performance.
The results showed that the demand variation was the responsible of the larger errors, greatly reducing the localization
accuracy. Overall, the method works well for small and medium sized networks, but starts to fail for large-scale ones.

In (Soldevila et al., 2021) a novel integrated solution is presented to address both leak detection and localization.
Detection is handled by a sequential monitoring algorithm that analyzes the inlet flow, to then validate each detection
through an ad hoc statistical test. Localization is tackled by means of a classification problem, training the classifiers
through leak data obtained by means of a hydraulic model. A customized clustering scheme links areas of the WDN
where accurate localization is not possible due to the lack of sensors. The integrated solution is evaluated over synthetic
data from the Limassol DMA and real data from a DMA in Barcelona, by means of a comparison to other state-of-
the-art methods. The proposed approach outperforms the others for the synthetic case in detection and localization
using flow sensors, but the localization results are poor for pressure sensors. About the real case, the detection by the
proposed method is in a middle tier among the compared ones, but it outperforms them when considering localization.
3.4. Data-driven detection and localization methods

The development of purely data-driven methods started recently, in comparison to the previous two families of
methods. This was caused by the boom in the usage of calibrated models. Thus, more and more data-driven schemes
are derived, effectively reducing the dependence on the hydraulic model that not always available or well-calibrated.
3.4.1. Statistical analysis approaches

During the years, many leak detection techniques have made the most of statistical-based techniques to analyse the
network behaviour in abnormal scenarios.

In Buchberger and Nadimpalli (2004), the historic data of the flow measurements at the DMA inlet is analyzed; the
largest value of the hourly mean and standard deviation is searched. Then, it is checked if the new measurements exceed
those two indicators to detect a leak. The leak size is estimated when the leak is detected by computing the difference
in both means. Several examples based on simulated and measured flows were used to test the method, considering
constant and variable leaks.

Years later, a detection method based on Kernel PCA (KPCA) was presented in Nowicki and Grochowski (2011),
which extends the linear PCA method and extends it to the non-linear case. The main idea behind the method is
to construct the KPCA model by means of data from nominal operation of the network, and then use the model to
determine the state of the network by means of real-time measurements. The method performance was assessed with
simulations from the Chojnice town case study. The experiments showed a different quality of solution depending on
factors like the relative position of sensors and leaks, their size and time of appearance.

The next year, Palau et al. (2012) proposed a PCA-based method to detect leaks in WDNs. The approach uses flow
measurements, which are mean centered and scaled, to train a nominal PCA model that will be then used to detect
outliers by means of statistical metrics like T2-Hotelling and Distance to Model (DMOD) (Eriksson et al., 2001). The
model training is iterative, as outliers are extracted from the input data when the matrix updates the PCA model. Data
from a real Spanish WDN was used to evaluate the suitability of the methodology. The results showed that DMOD is
the best out of the two metrics, although its results were satisfactory at most.

An abnormal-event detection technique was presented in Romano et al. (2014). An ANN is created using Normal
Operating Patterns - NOP data for training and testing. From the discrepancies between the training and testing data,
the mean and standard deviation are computed to evaluate statistical tests. The outputs of three test indicators feed two
inference systems based on Bayesian Networks (BNs). One assesses the probability of an event occurrence by means of
these outputs and the daily average difference between the NOP values and the current ones (which can also be used to
estimate the leak size). The other BN is used for event detection by taking into account the outputs of the subsystems
of the DMA, and also the signals from others DMAs in the same WDN. Finally, the BN result is compared with a
threshold to decide whether or not to raise an alarm. The method was tested using real data from pressure/flow sensors
deployed in a UK network, using both synthetic and real leak events. The method reported satisfactory results, despite
long delays occurred at some engineered tests, and several false alarms were raised during the real events testing.

In Ye and Fenner (2014), polynomial models were proposed to predict the total weekly water consumption for
each measurement using the latest week data. The parameter estimation for these models uses an EM algorithm and
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weighed least squares. The residual obtained using the real measurement is compared with a threshold calculated
using the standard deviation of the leak-free case. Once the leak is detected, the difference between prediction and
measurement is computed to estimate the leak size. The method was evaluated using data from several actual water
networks, leading to a high rate of true positives and a reduced ratio of false positives, although the uncertainty in the
demand dynamics may hinder the operation of the method.

In Jung and Lansey (2015), a Non-linear Kalman Filter (NKF) was used in combination with pressure and flow
measurements inside the network to estimate the nodal demands, which are compared with historic data. The difference
is analyzed using Statistical Process Control (SPC) techniques like CUSUM and Hotelling 𝑇 2 (Aparisi, 1996) technique
and a threshold for leak detection purposes. The study uses the Austin benchmark with synthetic simulated scenarios,
considering flow and pressure measurements, as well as several simplifications like perfectly known pipe roughness
coefficients and other parameters or a perfect hydraulic model representation of the reality for the benchmark. The
detection results were acceptable, with high detectability and reduced detection times.

A similar approach was presented in Anjana et al. (2015), where a Particle Filter - PF (Djuric et al., 2003) is used
to model the dynamics of the network and retrieve the WDN state, given by the flows and pressures, and then the
SPC-CUSUM method is applied to detect abnormal consumption. The strategy was tested in a reduced version of a
real-world network in Mandya, India. The method was able to detect the simulated leaks, but the pressure estimation
by the PF was oscillating and hence not satisfactory, as well as the case study size was quite small and the flow sensors
density was high.

In Romano et al. (2017), three SPC control charts were used to compare, on a daily basis, descriptive statistics
gathered from pressure meters for the analysed night with the corresponding values computed for the previous nights,
in order to find unexpected variations that can be caused by a leak. The outputs of the three tests are then unified in one
indicator used to rank the sensors from the most affected to the least affected. The area surrounding the most affected
sensor is the leak area candidate. The method was tested using data from a set of real DMAs, selecting both pressure-
manasged and gravity-fed ones, through historical datasets of real-life burst events. The tests showed a satisfactory
performance for pressure-managed DMAs, but the performance for gravity-fed ones was poor. Additionally, note that
the sensorization density was high and large leak sizes were considered.

In Quiñones et al. (2018), an unsupervised leak detection and localization approach was presented, based on the
combination of a pre-processing operation and PCA. The pre-processing operation is used to avoid the difficulty of
segmenting the demand temporally and the lack of consideration of dynamic network characteristics. This process
is based on determining the periodic expected value and standard deviation of each measured variable. Then, PCA
can be used to estimate the contribution of each variable in the localization of the potential leak zone, deriving
a reconstruction-based contribution index. The approach was evaluated over the Hanoi case study, performinf
localization over pre-defined network areas. The achieved results are satisfactory and superior to the comparison
methods, which are the Bayesian and k-NN methods from Soldevila et al. (2017, 2016) respectively.

A correlation-based methodology was proposed in Gomes et al. (2021) for leak detection purposes. The method
tries to describe the network dynamics through the spatiotemporal correlation of pressure and flow measurements,
analysing outliers appearing in the expected correlation due to leaks. The well-known Pearson Cross-Correlation
coefficient - PCC and the Detrended Cross-Correlation Analysis - DCCA (Podobnik and Stanley, 2008) are considered
to perform the correlation-based feature space construction. The features of the identified leaks are used to provide
assist to leak localization tasks. The method is evaluated over the WDN of Infraquinta, Portugal, considering both
simulated scenarios and real data from the network. As expected, the detection was performing better for the synthetic
scenarios, and DCCA generally performed better in both types of events (synthetic and real).
3.4.2. Learning techniques

Most of learning-based methods fit in the mixed model-based/data-driven category due to the necessity of labelled
data from a hydraulic model, covering the complete set of possible scenarios. However, additional application methods
or learning philosophies helped to derive purely data-driven detection approaches, e.g., online learning (the samples
are gathered from historical datasets or the method learns while an additional leak detection approach operates),
unsupervised learning...

Burst detection using pressure and flow measurements data from DMAs with artificial neural networks was
proposed in Mounce and Machell (2006). Results were presented using data from an experimental setup in a real
WDN from UK, where leaks were forced by means of hydrant flushing. Despite the satisfactory performance, the study
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revealed the difficulty of detecting leaks when other abnormal events occur at the network, e.g., unusual demands or
system changes. The difficulty of obtaining labelled samples for training is also discussed.

This method was improved in Mounce et al. (2008) by combining the ANN scheme with a Fuzzy Inference System
(FIS), as well as reducing the required data to only flow measurements. The ANN model is trained by means of
a continuously updated historical datasets that construct a probability density model, which the FIS compares with
observed flows to link confidence intervals to alerts, helping to even supply a precise estimation of the leak size. The
method was tested in a real WDN from UK, running together with an existing leak detection method. Despite the
performance was satisfactory, improving the overall detection solution, several false alarms were raised at events that
were not correlated to bursts repairs or reports.

A leak detection scheme based on an unsupervised learning technique was presented in Aksela et al. (2009).
Specifically, Self Organizing Maps or SOMs (Kohonen, 1990) were exploited. This kind of techniques have the
advantage of not needing information about all the possible leaks, as the SOMs are trained so that the vectors of the
model represent training flows so that they are independent on the detected leaks, i.e., similar flows would be mapped
into the same or close model vectors. The method is evaluated through a realistic case study, using actual flow data
from the studied WDN. The performance on the tested events was excellent, highly reducing the appearance of false
positives, although more events would be required to fully assess the method’s performance.

A typically exploited technique in mixed model-based/data-driven methods like SVM was used in Mounce et al.
(2011) in an online training fashion, complemented with the necessity of historical datasets. Specifically, Support
Vectors Regression (SVR) is considered, and the method is tested over a real WDN in UK, working in parallel to
the method explained in Mounce et al. (2008). Although the SVM-based technique seemed to perform faster than the
AI/FIS one, several non-leak abnormal events (like unusual demands) raised the alarm of the SVM method, increasing
the ratio of false notifications.

Years later, Laucelli et al. (2016) proposed an Evolutionary Polynomial Regression (EPR) paradigm to model
the behaviour of WDNs for leak detection purposes. EPR is based on a multi-objective optimization problem, solved
using GAs, that aims to maximize the fitness of prediction to data and minimize the number of required explanatory
variables and polynomial terms. It is trained using pressure and flow data from datasets covering a week, to then test the
obtained model with another set of datasets. The achieved nominal EPR model would be used for comparison with the
entering hydraulic measurements, raising alarms when thresholds are surpassed. A case study with available real data
was proposed to test the method. In average, the results were acceptable, although smaller leaks became undetectable
when another large leak was occurring.

A CNN-based method was proposed in Fang et al. (2019), with the aim to solve the multi-leak detection problem.
The CNN-scheme is able to extract features from a historic leak dataset and then predict if there exist a new leak in
the network by considering the learned features. An experimental setup was constructed to test the method, leading to
high true positive rates even for three leaks. However, several simplifications are considered, like the simplicity of the
experimental setup (only 21 nodes), a high density of sensors (all the nodes in one case and 8 in the other)... Moreover,
the data gathering stage is possible due to the size of the network, but in larger and real-based ones, the methodology
may be need to be conceived as mixed model-based/data-driven, using a model to generate the samples/labels.

In Wang et al. (2020), a burst detection algorithm based on deep learning was presented. Its operation starts by
predicting the inlet flow through a Recurrent Neural Network - RNN (Medsker and Jain, 1999) trained to learn the
nominal behaviour of the network. Residuals are computed then from these predictions and the observed values,
using a dynamic multithreshold strategy to identify outliers. A final phase of outlier feedback correction is applied
to transform the leak-influenced flow into its corresponding leak-free flow, in order to be able to detect new outliers.
The methodology was tested with both simulated scenarios and engineered experiments over a real DMA from China,
yielding high true positive rates and low false positives ones, although the burst sizes were large for several scenarios.
3.4.3. Interpolation & graph-based techniques

Several fully data-driven methods are based on geostatistical techniques, which focus on the relationship between
the values of variables at certain geographical locations and those at othe locations at some distance. Therefore,
considering the availability of measured values in the network, the aim of these methods consists of interpolating
the values at locations that are not measured.

An early work dealing with this kind of techniques is Romano et al. (2013). Detection is handled by multivariate
Gaussian mixtures-based graphical models, which learn to distinguish between two classes (alarm on, alarm off).Leak
localization is performed by four different geostatistical techniques, which interpolate the probability values of a burst
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event at every node of the network.These techniques are Inverse Distance Weighted interpolation - IDW (Shepard,
1968), Local Polynomial interpolation - LP (Cleveland and Devlin, 1988), Ordinary Kriging - OK (Krige, 1951) and
Ordinary Co-Kriging (OC) (Myers, 1982). On the one hand, IDW and LP are deterministic methods. The former
estimates the value of a variable at unmeasured locations by using a linear combination of the measured values
surrounding these unmeasured locations, while the latter assumes that each measured value is the sum of a polynomial
function of the coordinates and a random error. On the contrary, OK and OC are stochastic methods that quantify the
spatial correlation structure of measured variable’s values to estimate the unmeasured values, wit OC being an update
of OK that can work and benefit over several variables. A real network was employed to generate real fault data by the
opening of hydrants. The detection performance was quite successful and fast, with no false alarms. The localization
of the four geostatistical methods was compared, with OC being the best one.

Years later, in Rajeswaran et al. (2017), a graph partitioning algorithm is proposed to locate leaks in WDNs.
The method uses a repeated water balance strategy and minimal additional flow measurements. The water balance
considers an envelope encompassing a set of nodes and edges, so that in steady state and under leak-free conditions,
the balance must be satisfied around the envelope. The additional flow measuring sites are obtained by the multi-stage
graph partitioning algorithm, posing the problem as a multi-objective mixed integer linear program (MILP) trying
to minimize the size disparity of the clusters and the cut-cost.To solve the multi-objective minimization problem, a
lexicographic solution and goal programming are considered. The methodology was evaluated over five case study
networks, obtaining results that show that a small fraction of pipes needs to be queried for measurements in order to
correctly locate the leaks.

Later, Soldevila et al. (2020) proposed a leak localization method based on Kriging interpolation. First, a data-
driven adjusted model is generated to estimate the leak-free expected pressure according to the operating conditions of
the network. Kriging is then used to estimate the pressure values at the network nodes that are not equipped with sensors.
The leaky node is selected as the one whose residual value is the maximum. To improve this approach, the Dempster-
Shafer - DS theory (Sentz and Ferson, 2002) for reasoning under uncertainty is used to analyze the differences between
the leak and leak-free scenarios, fusing information from various sources, as well as from a single source at different
time instants. The method is tested using data from two real-world networks from Madrid, and compared with two
approaches, i.e., the same approach but using Bayesian reasoning instead of DS, and the angle method of Casillas et al.
(2014). For both DMAs, the DS approach clearly outperformed the other two methods, yielding reduced results of
linear and topological distance from the candidate to the leak.

In Alves et al. (2021), a leak localization method based on hydraulic measurements and the network topology
was presented. A reduced-order model structure estimates leak-free pressures at sensorized inner nodes, generating
residuals from the comparison with leak pressure values. Leaks can be located in area-level by determining the most
affected sensor in terms of residual value. To perform node-level localization, the relative incidence of the leak in a
node is determined by means of the network underlying graph and the correlation between the probable leaky nodes and
the residuals. The shortest path from the inlets to a node is regarded as the most probable path for extra flows induced
by a leak at this node, so the effect in a sensor of a certain leak would depend on the path intersection from the inlets
to the node and the sensor respectively. Thus, each node-sensor pair yields an incidence coefficient, which combined
with the residual information, allows to derive a likelihood index to determine the most probable leak location.The
performance of the method is compared to that of a Kriging-based one in Hanoi, with the first outperforming the
second. Additionally, the Modena benchmark is considered, showing satisfactory results.

Recently, Romero-Ben et al. (2022) presented several approaches to solve the BattLeDIM2020 problem. Detection
was handled through a leak estimation algorithm, based on applying maximum likelihood estimation to the joint
probability distribution of a set of leak estimates over a time window, raising an alarm if a limit is surpassed. The
localization is handled by two methods, due to the different features of the network areas. On the one hand, localization
in Areas B and C is operated through a model-based method, based on the comparison between actual pressure residuals
and simulated ones, updating the model when a leak is found/fixed. On the other hand, the localization problem at Area
A is solved by a fully data-driven approach (the article is located in this category due to the novelty of this method),
based on two stages. First, the complete set of WDN hydraulic head values is interpolated by means of measured
ones and the network topology through a quadratic programming problem posing the state of a node as a weighted
linear function of the states of neighbouring nodes.Additionally, the preservation of the directionality of the flows in
the network is pursued. The second stage consists of a geometry-based comparison between leak and leak-free state
vectors, allowing to automatically select a set of nodes as leak candidates. As previously mentioned, the method was
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evaluated in the BattLeDIM2020 competition, achieving satisfactory results for most of the detected leaks (it was
applied to undetected leaks too, showing that it was capable of finding those leaks).
3.4.4. Other data-driven techniques

During the years, several other methods have been derived and tested, which may not fit the categories presented
above. In Ye and Fenner (2011), a Kalman Filter (KF) was used to model the nominal behaviour of the network
and estimate the normal flow or pressure in the system, generating residuals when comparing with flow or pressure
measurements. If the residual exceeds a threshold, then a leak is detected. The methodology was tested by means of
data obtained at both caused leaks at engineered tests and natural leaks that were considered from records of the water
utlity (from users complains and/or repair works). This method was able to detect new leaks even if there were already
other leaks in the network. Also, this work concluded that measuring flow is better variable to detect leaks as compared
to the measuring pressure.

Historical flow measurements at the inlet were used in Eliades and Polycarpou (2012) to perform leak detection.
The methodology adapts to the unknown and time-varying inflow dynamics through an approximation technique based
on the update of the coefficients of a Fourier series. Then, the bias term of the generated series is considered, analysing
changes in its value through the CUSUM technique. Finally, the features are compared with a threshold for the leak
detection purposes. The leak size estimation is done by comparing the actual flow consumption and the Fourier series
prediction. The methodology is compared to a night-flow analysis method, applying both to historical data from a DMA
in Limassol, Cyprus. The comparison showed the superiority of the new method for detecting small leaks, leading to
less false negatives, although additional work was necessary to reduce the false positives and the detection time.

In van Thienen (2013), a method to compare the current inlet flow measurements with the historical ones, called
Comparison of Flow Pattern Distribution (CFPD), is used to create a plot with the aim of facilitating the decision
for an expert about the detection of a leak and their size estimation. Although it is not an automated method, it is not
computationally expensive, easily implemented and independent on a hydraulic model. The method is tested in datasets
provided by actual water companies, analysing several cases of leakage, unusual demand events, as well as theoretical
experiments. The results show the usefulness of the methodology, despite the necessity of the decision from a human
operator reduces the impact of its advantages.

A heuristic burst detection method was proposed in Bakker et al. (2014). Using flow and pressure measurements as
input information, the approach continuously compares observed and predicted values for nodal demands and pressures.
The prediction for the demands is obtained through an adaptive water demand forecasting model, whereas the expected
pressures are achieved by means of a dynamic pressure drop - demand relation estimator. The former method learns
the nominal demand patterns, considering week characteristics and other possible sources of outliers related to special
dates. The pressure estimator analyses the relation between the pressure at the inlet and the pressures at other locations.
Leak detection is achieved through the deviation with respect to a threshold. To evaluate the method, data from three
supply areas at Netherlands were collected from a historic dataset. The method performed adequately for one of the
areas, but poorly of the other two, as well as it yielded a low false positive ratio.

In Narayanan et al. (2014), the current flow betweeness centrality measure concept from electric networks is adapted
to water networks and used to estimate burst flows. The adaptations are related to the non-linear relation between flows
and pressures in WDNs. The leak candidates are obtained by computing the difference between the excess of leak flow
from actual measurement at the water inlet and the one obtained as leak signature from the current centrality measure.
Note that detection is achieved by calibrating ARIMA models of the inlet flow, and checking changes in its behaviour
(the leak size can be estimated too). This methodology was tested using a network from the Battle of Water Calibration
Networks (BWCN). The virtual tests, with data for all the possible leaks, showed that for most leak scenarios the
correct node was included in the high probability set. Besides, data from actual leaks from a real-world network was
considered, and the method was able to include the correct node in the high probability set for 2 out of 3 leaks. Thus,
the method showed satisfactory results considering that it only uses information from the inlet of the network.

In Hutton and Kapelan (2015), a polynomial model is calibrated with past measurements of the network water
consumption and is used to predict the actual water consumption. Also, the mismatches from the past data (residuals)
without leaks are used to create two probabilistic models (one Gaussian, the other heavy tailed, heteroscedastic
quantification) for checking (by means of thresholds) if the actual residuals fall into these two models without leaks.
The case study is a DMA from a UK WDN. The results showed that both probabilistic models perform better at night
times, increasing the rate of true positives and diminishing the false positive ratio, and for bursts greater to a 5% of the
average daily inflow.
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A clustering approach is used in Wu et al. (2016) to detect outliers in a set of transformed data matrices, obtained
by arranging flow measurement vectors by flow-meter and day (each matrix correspond to a 5-minutal window of the
day). The clustering is based on the idea of detecting low density points that are separated from high density points,
by means of vector distance computations. Then, the leak events are extracted from the complete set of outliers by
considering the x-mean of the temporal flow information at the outlier data vectors, so that only "large" outliers are
regarded as leaks. A DMA of China is used as case study, using real data from the network, gathered at engineered
experiments. The method detected all leaks in short time, although the leak sized were quite high, considering that the
minimum one was around a 13.3% of the inflow.
3.5. Discussion

An extensive set of articles dealing with leak detection and localization has been presented in the previous
subsections. From this information, a discussion about leak management strategies is carried out with the aim of
establishing solid conclusions about this field. Table 1 summarizes the characteristics of these approaches with a
selection of representative examples of each category of methods, in order to make it easier to compare them. They
are chronologically ordered so that the evolution of the trends in each of those categories can be reviewed. The table
has been organized to focus on issues that may be relevant for water utilities. Specifically:

• Problem: this entry indicates the leak management problem or problems that are faced, distinguishing between
localization (L), detection (D), and the methods solving both problems. The latter can be divided into approaches
that solve both problems using the same technique (D+L) and methods that exploit a different technique for each
problem (D-L). Additionally, the consideration of the leak size estimation (SE) problem is also indicated.

• M-Leak?: several works in the literature consider the assumption of single leaks occurring in the network, i.e.,
there are not simultaneous leaks. However, this feature is not assured in real-world networks, where leaks can
appear while other bursts are already occurring. Thus, we highlight those methods that consider the multi-leak
problem in this table entry.

• Sensorization properties: this category encompasses two of the main sensor-related characteristics of interest for
water companies when analysing leak management methods:

– Type: the physical magnitudes measured by the deployed are stated here for each method, considering
the information provided about sensorization requirements in their methodology explanation, as well as
the actual usage at the presented case studies. The considered sensor types are demand (D), flow (F) and
pressure (P). Note that in real networks, the inlet flow and pressure are almost always measured for DMA
control purposes, so they are not explicitly indicated in the table, except for detection-only methods which
only use them as data sources).

– Density: the sensorization density is of great importance, as it needs to be considered along the method
performance to understand if realistic conditions were applied in its evaluation. This density is indicated as
𝑥/𝑋, with 𝑥 denoting the number of sensors and 𝑋 indicating the number of network elements (nodes for
P and D; pipes for F). The notation 𝑥1/𝑋1;𝑥2/𝑋2; ... is used if there are multiple case studies with different
sensor configurations. Moreover, an "A" symbol is used to indicate works that analyse the effect of different
sensor configurations.

• Validated in: this entry analyses the properties of the case studies that have been used to assess the performance
of each methodology:

– Case: indicates the type of case study that was used to test the method (if several types are used, only
the most realistic one is indicated). We distinguish between synthethic networks (SN), which are mostly
academic examples of reduced complexity; real-based networks with synthetic data (RN(SD)), which are
more complex networks or based on real-life WDNs, where artificial data are generated through a simulator;
and real networks with real data (RN(RD)), when the method was applied to actual data gathered at a
real-world WDN (if both synthetic and real data is applied, it is marked as RN(SD+RD)).

– U: in the case of the usage of artificial data (SN or RN(SD)), the inclusion of uncertainty is crucial to
perform realistic tests that are really useful to water utilities. Here we indicate the uncertainty sources that
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are considered in each article dealing with synthetic data (note that all of them are already present in real
data): model (M), sensor (S), demand (D) and leak characteristics, including variable/varios sizes (V).

– Benchmark?: finally, if the article includes a benchmark that allows to reproduce the results, it is indicated
in this entry.

Table 1: Summarizing table of model-based methods

Article Problem M-Leak? Sensorization properties Validated in

Type Density Case U Benchmark?

Model-based

Pudar and Liggett (1992) L (SE) ✓ P A SN — Pudar
Andersen and Powell (2000) L ✗ (P,D) (4/36,36/36) SN — —
Poulakis et al. (2003) L(SE) ✓ (P,F) A (7/31,7/50) SN M, S, D —
Misiunas et al. (2006) D-L(SE) ✗ P 3/79 SN D, V —
Wu et al. (2010) L(SE) ✓ P 28/841 RN(RD) M Pudar
Islam et al. (2011) D+L(SE) ✗ (P,F) (5/27, ?/40) SN M, D —
Casillas et al. (2014) D-L(SE) ✗ P A (6&15/3377) RN(SD) S, D, V Hanoi; Quebra
Perez et al. (2014) L ✗ P 6/3377 RN(RD) — —
Sanz et al. (2016) D-L ✗ P 5/3377 RN(SD) S, D, V —
Berglund et al. (2017) L(SE) ✓ P 45/26986 RN(SD) — Hanoi; Net3
Sophocleous et al. (2019) D+L(SE) ✓ P 8/202; 10/1000 RN(SD+RD) S, V —
Vrachimis et al. (2021) D-L ✗ P A (4/31) SN M, S, D, V Hanoi (LeakDB)
Li et al. (2022b) L ✗ P 20/491 RN(SD) M, S, V —
Steffelbauer et al. (2022) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M, S, D, V BattleDIM2020
Daniel et al. (2022) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M, S, D, V BattleDIM2020
Li et al. (2022c) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M, S, D, V BattleDIM2020
Marzola et al. (2022) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M, S, D, V BattleDIM2020
Wang et al. (2022) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M, S, D, V BattleDIM2020

Mixed model-based/data-driven

Caputo and Pelagagge (2003) L (SE) ✗ (P,F) (28/29, 1/29) RN(SD) V —
Mashford et al. (2012) L(SE) ✗ P 6/73 RN(SD) V —
Candelieri et al. (2014) L ✗ (P,F) A (7-16/1212,3-6/1385) RN(SD) V —
Tao et al. (2014) L ✗ P 26/600 RN(RD) D,V —
Wachla et al. (2015) L ✗ F 6/+2600 RN(SD+RD) — —
Soldevila et al. (2016) L ✗ P 5/1520 RN(RD) S,D,V Hanoi
Zhang et al. (2016) L ✓ P 30/2189 RN(RD) S,V —
Soldevila et al. (2017) L ✗ P 5/1520 RN(RD) S,D,V Hanoi
Sun et al. (2019) L ✗ P A SN — Hanoi
Zhou et al. (2019) L ✗ P 4/∼50 RN(SD) M,D,V Anytown
Shekofteh et al. (2020) L(SE) ✓ P A (6&19/443) RN(SD) S, D Balerma
Cantos et al. (2020) D-L ✗ (F,D) (93/398, 80/412) RN(SD) V —
Capelo et al. (2021) L(SE) ✗ P A (7&14&21/4448) RN(SD) V —
Lučin et al. (2021) L ✗ P 2/31; 4/92 SN D,V Hanoi; Net3
Hu et al. (2021) L ✗ P 14/49 SN V —
Soldevila et al. (2021) D-L(SE) ✗ (P,F) (5/1520,2/1664) RN(RD) S,D,V Hanoi
Romero et al. (2022) L ✗ P 8/120 RN(SD) M,S,D —
Li et al. (2022a) L ✗ P A (2-4/19); 4/92 SN S,V Anytown; Net3

Data-driven

Buchberger and Nadimpalli
(2004)

D(SE) ✗ F 1/+21 RN(SD) V —
Aksela et al. (2009) D ✗ F 3/+660 RN(RD) — —
Ye and Fenner (2011) D(SE) ✓ (P,F) (?/925,1/+925) RN(RD) — —
Mounce et al. (2011) D(SE) ✓ (P,F) (5/?,4/?) RN(RD) — —
Eliades and Polycarpou (2012) D(SE) ✗ F (1/236) RN(SD) M,S,D,V —
Palau et al. (2012) D ✗ F 1/+2900 RN(SD+RD) — —
Romano et al. (2013) D-L ✗ P 13/925 RN(RD) — —
Ye and Fenner (2014) D(SE) ✓ F 1/∼1000 RN(RD) — —
Romano et al. (2014) D(SE) ✗ (P,F) A (2/2940,1/+2940) RN(RD) — —
Wu et al. (2016) D ✗ F 5/∼60 RN(RD) — —
Laucelli et al. (2016) D(SE) ✓ (P,F) (3/2940,2/2940) RN(RD) — —
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Rajeswaran et al. (2017) L ✓ (F,D) A RN(SD) EXNET, DTown...
Quiñones et al. (2018) D-L(SE) ✗ P 3/31 SN D,V Hanoi
Soldevila et al. (2020) L ✗ P 10/169; 10/1031 RN(RD) — —
Wang et al. (2020) D ✓ F 2/∼60 RN(SD+RD) M,S,D,V —
Alves et al. (2021) L ✗ P 5&10/268 RN(SD) S,D,V Hanoi; Modena
Gomes et al. (2021) D ✗ (P,F) (21&6/4448,7/4494) RN(SD+RD) V —
Romero-Ben et al. (2022) D-L(SE) ✓ (P,D) (33,82)/785 RN(SD) M,S,D,V BattLeDIM2020

3.5.1. Considered leak management problem
Regarding the families of methods, we can conclude that methodologies dealing with both detection and

localization are mainly model-based, whereas mixed model-based/data-driven methods are mostly focused on leak
localization tasks, and data-driven approaches normally examine one of the two problems.

This situation is explained by the availability and dependence on the hydraulic model. Model-based schemes fully
exploit the advantages of the network model, having access to an incredibly useful source of information about the
network dynamics. This facilitates the integration of both detection and localization into a common method (Islam
et al., 2011; Sophocleous et al., 2019), as well as the design of independent detection and localization schemes that
profit from the model-generated information (Sanz et al., 2016; Steffelbauer et al., 2022).

On the contrary, mixed model-based/data-driven methods focus on the localization problem because they try to
reduce the dependence on the hydraulic model, which is mainly used to simulate all the leak scenarios to train a set of
classifiers (Zhou et al., 2019; Romero et al., 2022). These classifiers need to separate as much as possible the different
classes, with each class corresponding to a different leak. Therefore, the inclusion of detection in this kind of approaches
would imply the generation of a new class that labels leak-free data. This could cause problems in the separation of
low leak rates.

Data-driven approaches deal with the detection and localization problems separately because they normally
use different sensors for each task. Moreover, it can be highlighted that pure leak detection methods, i.e., without
considering localization; are mainly considered from a data-driven perspective (Aksela et al., 2009; Wu et al., 2016).
This is justified by the different natures of leak detection and localization. The former implies the assessment of the
behaviour of the network in order to distinguish between leak and leak-free states, so this task is perfectly feasible
when only leak-free data is available, which is the case in most real-world networks. On the contrary, data from every
possible fault has been historically needed by leak localization methods, because this tasks implies the differentiation
among leaks. Thus, the relative importance of the hydraulic model is higher for leak localization methods than for
detection strategies.

Finally, note that leak size estimation is usually linked to methods solving the detection problem (Mounce et al.,
2011; Casillas et al., 2014). This is caused by the extended use of inflow information to perform leak detection, which
makes it easier to estimate the leak by comparing the inlet flow at leak and leak-free conditions.
3.5.2. Multi-leak problem

The solution to the leak detection and/or localization of multiple simultaneous leaks in WDNs is not trivial. The
items in Table 1 show that a majority of methods consider the assumption of single leaks, which is not realistic from
the point of view of the actual operation of water utilities.

Note that the proportion of single-leak methodologies in the mixed model-based/data-driven case is higher. This
is caused by the nature of these methods, which are usually learning-based. Considering single leaks, a label must
be included for every possible leak, which would imply a maximum number of labels that is equal to the number of
possible leak locations (nodes or pipes, depending on the article). However, the consideration of multiple leaks would
imply a number of labels corresponding to all possible combinations of multiple-leak locations.

This problem may affect model-based strategies too, although their exploitation of the network model allows them
to study how the effects of leaks are added, searching for the best combination of leaks to explain the network behaviour,
leading to feasible multi-leak solutions (Berglund et al., 2017; Sophocleous et al., 2019). Data-driven strategies may
be affected by this issue, although normally they can be easily extended to solve multi-leak cases, considering that they
do not depend on the possible leak scenarios for their operation (Rajeswaran et al., 2017; Wang et al., 2020).

Some relevant examples of multi-leak methods are those taking part in the BattLeDIM2020 competition
(Vrachimis et al., 2022), which were required to solve the multi-leak problem due to the characteristics of the proposed
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benchmark and the provided datasets, containing several overlapping leaks of different nature and magnitude (Daniel
et al., 2022; Steffelbauer et al., 2022; Romero et al., 2022; Marzola et al., 2022; Wang et al., 2022; Li et al., 2022c).
3.5.3. Sensorization properties

The type of sensors required for implementing a certain methodology can be of great importance for water utilities,
as they have normally sensor nets deployed over the WDN for control and monitoring purposes, and hence they may
be interested on exploiting techniques that fit their actual sensorization characteristics.

A clear division between detection and localization schemes can be appreciated in Table 1. Most model-based and
mixed model-based/data-driven methods require pressure information from a set of sensors scattered through the inner
nodes of the network. This is justified by the consideration of the localization problem in all the presented works of
these categories (Perez et al., 2014; Soldevila et al., 2017), which is normally tackled by means of this kind of sensors
due to their lower cost in terms of price and installation with regards to the flow sensors. Note that leak localization
methods normally need multiple sensors to be distributed over the network, to be able to capture the leak effect (pressure
drop) independently on its location. This can be appreciated in the density of these pressure sensor networks. Let us
highlight several points regarding this property:

• Methods dealing with real-world networks normally present low sensorization densities (considering the large
scale of those systems in terms of junctions and pipes), so their performance, which is provided through the text,
must be analysed considering this realistic property.

• Additionally, it is interesting to appreciate how early works of each category considered small networks, leading
to high sensorization densities although the number of sensors may be small.

• Several methodologies include analysis about the number of sensors, which can be useful to demonstrate the
necessity of a higher degree of sensorization in actual water networks to effectively solve the leak detection and
localization problems.

Flow sensors are typically used in detection schemes, mostly installed in the DMA inlets in order to detect changes
on the overall consumption (Buchberger and Nadimpalli, 2004; Palau et al., 2012). Until recently, online demand
data using AMR has not usuallly been considered in the literature, as their installation on real WDNs is not currently
extended. To remark the usage of this kind of meters in the BattLeDIM2020 articles, as the facilitated benchmark
included them in one area of the WDN. It is interesting to remark that the BattleDIM2020 case study did involve a
section with AMRs, so that the methods in this contest also use this information.
3.6. Methodology validation

Finally, it is interesting to study how the different methods are evaluated, considering that water companies would
have great interest on approaches which have been tested on realistic scenarios.

The performance assessment of model-based approaches has evolved during the years, as indicated by Table 1.
Early methods were tested over synthetic and example networks, leading to solutions that behaved satisfactorily from
an academic point of view, but which were not checked to be usable for real scenarios (Pudar and Liggett, 1992;
Andersen and Powell, 2000). The trend started changing and real-based case studies were considered, with a majority
of works using synthetic data generated from a hydraulic simulator. The inclusion of different sources of uncertainty
was also considered, with a special focus on measurements noise and demand uncertainty, replicating more realistic
conditions on the data (Sanz et al., 2016; Berglund et al., 2017). Additionally, analysis about the effect of different leak
sized and profiles were conducted in most works, leading to a richer study of the limits of the methods (Casillas et al.,
2014; Vrachimis et al., 2021).

Mixed model-based/data-driven methods have been mostly tested on real-based networks, although several
evaluations over real-world data can be found (Zhang et al., 2016; Soldevila et al., 2017). The focus on synthetic
data over real-based WDNs is explained by the common usage of hydraulic models to generate training data, so that
the additional generation of testing data was easy (Capelo et al., 2021; Romero et al., 2022). A higher proportion
of methods tested with real-world data is found within the data-driven category. This is caused by the abundance of
data-driven leak detection strategies (Ye and Fenner, 2011; Wu et al., 2016), which mainly require data from the DMA
inflows. This data is normally already gathered by water utilities for control purposes, so the availability of historical
datasets is more common. Besides, these techniques are usually trained and calibrated with leak-free data, which is
easier to obtain.
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Finally, let us highlight the existence of several benchmarks that have been used through the literature. They allow to
reproduce the results and compare previous methodologies with new ones. In this category, it is necessary to highlight
the recent L-TOWN benchmark from the BattLeDIM2020 competition. The top-performing methods from this contest
have been described through the text and table.

4. Case study: a comparison between model-based and data-driven methods
To complete the discussion, a practical comparison between a model-based and a data-driven technique is presented

is presented, using the BattleDIM2020 benchmark (see (Vrachimis et al., 2022) to complete the information about the
BattLeDIM2020 characteristics). The network is represented in Fig. 4. The dataset of 2018 is used for the comparison
of both methodologies, because the 2019 dataset is composed of numerous overlapping leaks that would hinder the
extraction of conclusions. The features of the leaks appeared during 2018 are summarised in Table 2.

Figure 4: Graphical representation of the BattLeDIM2020 L-TOWN network. The nodes are divided into Areas (A,B and
C) as shown in the legend. Reservoirs, sensors and tank are also marked. The location of the different leaks is indicated
with a wider edge line, as well as a label.

The compared methodologies have different requirements and philosophies:
• The model-based approach requires a calibrated model of the WDN to be implemented into a hydraulic simulator,

as well as pressure and demand measurements from a set of distributed sensors. The hydraulic simulator
computes head estimations at sensor nodes for all the possible leak scenarios, in order to compare them to
the heads in the nodes where the pressure is measured, obtaining the most probable leak location as a result.

• The data-driven strategy uses topological information of the network and pressure data from a set of sensors
installed over inner nodes of the WDN. It is based on two stages: first the complete network state (hydraulic
head) is estimated through a graph-based interpolation technique, to then compare leak and leak-free data to
obtain a set of possible leak candidates.

Both methods were proposed in Romero-Ben et al. (2022), in which the model-based approach was applied to Area
B and Area C, whereas the data-driven approach was applied to Area A. This was justified on the assumption that these
methods were more appropriate for specific areas, considering their specific features:
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Table 2
BattLeDIM2020 2018 leaks - Characteristics

Area Link ID Start time End time Leak diameter (m) Type

C p257 2018-01-08 10:30 2018-12-31 23:55 0.0118 Incipient
A p461 2018-01-23 04:25 2018-04-02 11:40 0.0213 Incipient
A p232 2018-01-31 02:35 2018-02-10 09:20 0.0201 Incipient
A p427 2018-02-13 08:25 2018-12-31 23:55 0.0090 Incipient
B p673 2018-03-05 15:45 2018-03-23 10:25 0.0229 Abrupt
A p810 2018-07-28 03:05 2018-12-31 23:55 0.0100 Incipient
A p628 2018-05-02 14:55 2018-05-29 21:20 0.0223 Incipient
A p538 2018-05-18 08:35 2018-06-02 06:05 0.0217 Abrupt
A p866 2018-06-01 09:05 2018-06-12 03:00 0.0181 Abrupt
C p31 2018-06-28 10:35 2018-08-12 17:30 0.0163 Incipient
A p654 2018-07-05 03:40 2018-12-31 23:55 0.0087 Incipient
A p183 2018-08-07 02:35 2018-09-01 17:10 0.0158 Abrupt
A p158 2018-10-06 02:35 2018-10-23 13:35 0.0193 Abrupt
A p369 2018-10-26 02:05 2018-11-08 20:25 0.0193 Abrupt

(A) This zone is characterized by the presence of numerous pressure sensors (29), which, in comparison with the
total number of nodes in the area (around 650), implies a high sensorization density.

(B) This area is separated from the rest of the network (Area A specifically) through a Pressure Reducing Valve
(PRV), so its hydraulic behaviour is relatively independent in terms of leak effects on sensors. Therefore, the
presence of only one pressure sensor largely hinders the data-driven localization.

(C) This zone is equipped with a set of AMRs, that allow estimating near real-time demand in most of the nodes,
highly benefiting model-based approaches. Additionally, the pressure of only three pressure sensors reduces the
possibilities of the data-driven approach.

In this work, the application of the model-based and data-driven approaches to the complete network is presented.
To this end, the results of both methodologies at Areas A, B and C are shown. The presented results are provided in a
graphical format, i.e., for both methodologies, the leak location is indicated on the network, and the localization results
are illustrated by means of a color map over the network nodes:

• For the model-based approach, the lighter shades of green indicate lower probability, while the higher
probabilities are indicated by increasingly dark shades of red.

• The data-driven approach is divided into two plots: the first represents the complete area of the network under
consideration, highlighting the candidate-to-leak nodes in light blue. The second plot is a zoomed version of the
first one, showing only the set of candidate nodes, and using a color map (again, green for low probability and
red for high probability). The leak is marked with a cross (if it is included in the set), and the top 5 candidates
are indicated with stars.

4.1. Area A
A total of 11 leaks occurred at Area A during 2018. Most of them were large leaks, with an outflow above 15

𝑚3∕ℎ, although there were 3 background leaks, i.e., a leak rate below 8 𝑚3∕ℎ. The comparison will be performed for
the large leaks, selecting a set of relevant leaks because their results are more instructive for the sake of extracting
solid conclusions about the advantages/limitations of both types of methods (leaving the analysis of the background
leaks for future works). The rest of results from the application of both methodologies to the remaining large leaks are
provided in Appendix A. Due to the large size of Area A, the leak location in the general plots (subfigures (a) and (b)
of each plot) is indicated by means of a coloured square (blue for the model-based and red for the data-driven, for a
better readability of the graph).

The first considered leak occurred at pipe 461. It was an incipient leak which did not reach its peak until the 27th of
March, despite starting the 23rd of January. Its localization result is presented in Fig. 5. In this case, both methodologies
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are capable of locating the leak by narrowing its possible area to a reduced zone. However, it can be appreciated how
the data-driven result is more consistent in topological terms, i.e., the transition between nodes with high probability
to nodes with low probability is smooth.

Figure 5: Localization result for leak 461: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

The second and third considered leaks occurred at pipes 628 and 538 respectively. The former is an incipient leak
with a relatively high growth rate (starts the 2nd of May and reaches its peak the 16th of May). The latter is an abrupt
leak that appears only two days after leak 628 reaches its peak, i.e., the 18th of May. Therefore, both leaks are almost
simultaneous. Regarding the first leak, the graphical result of applying the methodologies is represented in Fig. 6. In
this case, the effect of leak 538 is already affecting the localization results. The model-based approach is not capable
of finding the correct leak area, pinpointing the nodes near pipe 538 as the ones with the highest probability. On the
contrary, the data-driven approach selects both leaks as candidates, giving a higher probability to nodes near pipe 628
(this is caused by its higher flow rate, which affects its close sensors in a higher degree).

Figure 6: Localization result for leak 628 (leak 538 already appeared): (a) Model-based; (b) Data-driven - candidate
selection; (c) Data-driven - node-level (the exact leak locations are marked by blue crosses, together with the leak ID).

Considering that leak 628 ends before leak 538, the individual effect of the latter can also be analysed, achieving
the results presented in Fig. 7. In this case, both methodologies are able to successfully locate the leak in a reduced area.
The data-driven result is smoother, while the model-based approach highlights various points that can be considered
outliers.

To end with this couple of leaks, Fig. 8 shows the data-driven localization result for leak 628 when leak 538 has
not appeared yet. Comparing it to the data-driven results in Fig. 6, it can be appreciated how the zone near leak 538
(with the leak included) is not selected in the candidates set.
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Figure 7: Localization result for leak 538: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

Figure 8: Localization result for leak 628 (leak 538 has not appeared yet): (I) Data-driven - candidate selection; (II)
Data-driven - node-level (the exact leak location is marked by a blue cross).

Finally, the last considered leak that occurred in Area A is located in pipe 369. It is an abrupt leak, and again there
are not other main leaks occurring at the same time. However, the background leaks are already stable/reaching their
peak. The localization result is presented in Fig. 9. On the one hand, the model-based method provides a satisfactory
result, as the nodes with the highest probability are close to the leak. On the other hand, the data-driven approach fails
to select the leak in the candidate set, despite the area with the highest probability (subfigure (c)) is close to the actual
leak location.
4.2. Area B

A single leak occurred at Area B during 2018. Its localization results for both methodologies are illustrated in
Fig. 10. With the model-based approach, the localization result is almost perfect, with a difference of only one pipe
from the obtained result to the real leak. On the contrary, the data-driven method is not even capable of selecting the
proper nodes in the leak candidates. Note that the nodes with a higher probability (red stars) are scattered at a similar
distance from the sensor (n215). This occurs due to the lack of measurements and the availability of a model. Therefore,
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Figure 9: Localization result for leak 369: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

Figure 10: Localization result for leak 673: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

the superiority of the model-based approach with respect to the data-driven one is demonstrated in the case of Area B,
justifying the selection at Romero et al. (2022).
4.3. Area C

Finally, a couple of leaks appeared at Area C during 2018, at p257 and p31 specifically. Note that, as stated in Table
2, the leak at p257 occurred almost at the beginning of the year, and it was not fixed. The localization results for both
methodologies and both leaks are illustrated in Fig. 11 and Fig. 12 respectively.

First, regarding the leak at pipe 257, it can be appreciated how both methodologies are capable of finding it. In
the model-based case, the result is perfect, whereas in the data-driven case, the best candidates (red stars) are located
extremely close to the real leak.

For the localization of the leak at pipe 31, considering the model-based approach, the hydraulic model is updated to
include the leak at pipe 257 as an actual demand, considering that is was not fixed. The result is perfect again. Regarding
the data-driven approach, to take into account the presence of leak 257, the leak-free data for the comparison stage is
selected to be gathered from the previous week, so that leak 257 was already present. The result shows that the method
is not capable of completely selecting the leaky pipe in the set of candidates, although one of its endpoints is indeed
in the candidates set.

The results for the 2018 Area C leaks show that:
• The model-based approach, fed with the demand information from the AMRs, is capable of perfectly locating

the leaks.
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Figure 11: Localization result for leak 257: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

Figure 12: Localization result for leak 31: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

• The data-driven approach is capable of finding the first leak despite the low sensorization density, but it fails to
locate the second. This occurs because the first leak was properly placed (close to sensor 1 and far from the rest),
and no other leak was present in the network (ideal conditions). Regarding the second leak, it was placed at a
difficult location (far from the sensors), and leak 257 was already present.

All these facts allow us to confirm the selection of the model-based approach for its application in Area C.
4.4. Discussion

The presented results allow us to extract several conclusions about how the model-based and data-driven methods
perform the leak localization task in the BattLeDIM2020 benchmark:

• The presented results for Area A confirm the suitability of both methodologies. Nevertheless, several differences
must be highlighted in their performance:

– Regarding the model-based approach, the availability of a hydraulic model and the existence of numerous
pressure sensors generally yield a satisfactory performance. However, the differences between the provided
model and the one used to generate the leak information (explained in Vrachimis et al. (2022)), as well as the
lack of demand measurements in a large-scale subnetwork, cause the appearance of outliers and exceptional
unsatisfactory results.

– The data-driven approach is able to locate most of the leaks, except for leak 369. This is caused by several
background leaks hindering the localization, as demonstrated by the localization analysis in Fig. 13: the

Romero-Ben et al.: Preprint submitted to Elsevier Page 32 of 42



Leak detection/localization review and perspective

nominal leak is selected to be the week after the leak disappears, so that only the background leaks are
present. The successful localization confirms the effect of the background leaks over the results in Fig. 9.
Therefore, in general, the data-driven methods greatly reduces the searching area, and the distance-to-leak
from the top candidates is generally satisfactory.

– Additionally, the multi-leak problem is demonstrated to be solved by the data-driven approach, as shown
in Fig. 6.

• The presented results in Area B confirm that the lack of sensorization greatly affects the localization performance
of the data-driven approach, which yields unsatisfactory results. On the contrary, the model-based approach
produces an almost perfect result, demonstrating its capability to work with insufficient measurements when
considering small-sized networks (only with demand estimations).

• Finally, the results in Area C also corroborate the hypothesis of the availability of demand measurements boosting
the model-based performance, which locate the leaks perfectly. On the contrary, the data-driven approach
effectively locates one of the leaks, but mostly because it is quite close to one of the sensors and far from the
rest; and yields an unsatisfactory result on the other leak.

Figure 13: Localization result for leak 369 (the nominal week is selected to get rid of the background leakage): (a)
Model-based; (b) Data-driven - candidate selection; (c) Data-driven - node-level (the exact leak location is marked by a
blue cross).

All these observations help draw a few conclusions about the performance and practical utility of model-based and
data-driven methods in general:

1. On the one hand, the application of model-based approaches has yielded sound results during the years, but
their applicability was narrowed to the portion of WDN where a well-calibrated hydraulic model is available.
Moreover, the need for precise demand estimations and/or actual demand measurements is a hard constraint to
the water utilities, which may not have access to this kind of data. However, when all this information is available,
their performance can hardly be improved by that of data-driven methods.

2. On the other hand, the application of data-driven methods demonstrates to be promising due to the satisfactory
results that they produce when the networks are sufficiently metered. Moreover, the removal of the need for
a well-calibrated hydraulic model is of great interest for modern water utilities, due to the associated costs of
generation and/or continuous calibration of these models. However, the installation and maintenance of sensors
can be costly for some water utilities.

To sum up, the selection of one family of methods over the rest must be carried out considering a number of factors:
the availability of a hydraulic model, its degree of calibration, the physical characteristics of the network and the precise
knowledge about them, the number, type and placement of existing sensors, and the the investment constraints at each
water utility.
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5. Conclusions
This article presents a review of the main research items in the steady-state software-based leak detection/localization

field. An introduction about the motivation behind the study of these methods is provided, and the main characteristics
of water distribution networks, DMAs and the posed leak management problems are described. A complete review
of the majority of existing methodologies is provided, including a categorization into the main families: model-
based, mixed model-based/data-driven and data-driven. A discussion from the point of view of the interests of water
companies is presented and a comparative performance analysis of a model-based and a data-driven approach is
developed, based on the recent and well-known benchmark from the BattLeDIM2020 competition. This study allowed
to derive some conclusions about the implementation, advantages and limitations of a representative of each family.

About the classification of the reviewed works, a trend can be found in the evolution of the leak detec-
tion/localization strategies: from model-based schemes that typically require the hydraulic model of the network,
the development of machine learning and data mining algorithms motivated the interest on mixed model-based/data-
driven strategies, which learn the behavior of the network from different leak scenarios. However, the requirement
of the availability of a hydraulic model that allows to generate those leak scenarios motivated the research of purely
data-driven schemes that only require leak-free data and some topological information of the WDN.

Considering the performance yielded by the methods of the different families, larger differences start to appear
when considering leak localization methods, as the availability of an hydraulic model provides extremely useful
information about the effect of leaks and the behaviour of the WDN. Therefore, water utilities that have access to
a well-calibrated hydraulic model may select this kind of methods before others, due to the usually better performance.
Nevertheless, many utilities do not have well-calibrated models that can be used on-line for leak localization. Moreover,
they do not have data from all possible leak scenarios. Thus, data-driven approaches are very appealing to utilities
and have motivated new research efforts in the development of methods following this pure data-based paradigm.
Moreover, the continuous development of technology leads to a reduction in the costs associated to the deployment
of sensor networks over WDNs. Note that this may not only affect the amount of sensors, but the usage of new types
of metering devices. Therefore, leak management methods should be designed to be capable of exploiting all the
available sources of hydraulic measurements. Information fusion techniques that combine information from different
sensors (pressure, flow, AMRs, velocity...) can be coupled with existing techniques in order to solve this problem.
Additionally, this sensorization cost reduction can benefit data-driven methods over model-based ones, considering
that the current limitations of model-free strategies lie in the scarcity of hydraulic information from the network state.

New leak management techniques need to be developed to fit the requirements of a real-world application,
and therefore future research should avoid classical assumptions, which apply to academic works but hinder the
implementation and successful operation of the approach. Specifically, the multi-leak problem must be considered and
solved by the newly proposed methodologies, as the application of single-leak methods in a real water network could
lead to undesirable errors and false alarms, causing extra and unnecessary costs related to water losses and intervention-
crew organization. Additionally, the usage of realistic data is of upmost importance, and hence the different sources of
uncertainty must be considered if the method needs to be trained and tested.

A. Case study results
The presented case study is based on the L-TOWN benchmark of the BattLeDIM2020 competition. Despite the

results are exposed and commented in the main document, only a subset of the total set of leaks occurring in Area A
are reviewed. Thus, we present here the remaining results (see Table 2 to see the most important characteristics of the
leaks).

An incipient leak appeared at pipe 232 with a fast growth rate, reaching its peak the 3rd of March (only three days
after its start). Its localization result is illustrated in Fig. A.1. Both methodologies produce a satisfactory but improvable
performance. The model-based approach assigns a high probability to the correct nodes, although several areas of the
network are highlighted, hindering the selection of the correct leak area. The data-driven method includes the leak in
the candidates set, and although the leaky pipe is assigned a medium probability, the top candidates are far from the
leak. Nevertheless, the data-driven approach achieves a more reduced search area.

Another leak that appeared at Area A was located in pipe 866. It was an abrupt leak that started the day before leak
538 finished. However, leak 866 lasted long enough to be able to perform a single-leak localization. The associated
results are depicted in Fig. A.2. The localization performance is satisfactory with both methodologies, with the data-
driven one providing a smoother result.
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Figure A.1: Localization result for leak 232: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

Figure A.2: Localization result for leak 866: (a) Model-based; (b) Data-driven - candidate selection; (c) Data-driven -
node-level (the exact leak location is marked by a blue cross).

An abrupt leak with no other main leaks occurring close in time (despite some background leaks start to appear/are
already stable) occurred at pipe 183. The localization results for this leak are shown in Fig. A.3. On the one hand, the
model-based approach highlights the leaky pipe as a high probability one, but on the other hand several areas of the
network are indicated to have an equal or higher probability. On the contrary, the data-driven method properly narrows
the localization area, considering the selected candidates and the reduced distance from the leak to the top candidates.

Another abrupt burst, with other main simultaneous leaks, appeared in pipe 158. The localization result for this leak
event can be found in Fig. A.4. Both approaches are able to locate the area where the leak occurs, so the localization
result is satisfactory. About the model-based methodology, it highlights with high probability a medium-sized zone of
the network. Regarding the data-driven strategy, in this case it is capable of perfectly locating the leak, reducing the
searching area to the top candidates (considering the difference in probability between this candidates and the rest of
the candidate nodes).
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