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Abstract— Teaching complex manipulation skills, such as
folding garments, to a bi-manual robot is a very challenging
task, which is often tackled through learning from demon-
stration. The few datasets of garment-folding demonstrations
available nowadays to the robotics research community have
been either gathered from human demonstrations or generated
through simulation. The former have the great difficulty of
perceiving both cloth state and human action as well as
transferring them to the dynamic control of the robot, while the
latter require coding human motion into the simulator in open
loop, i.e., without incorporating the visual feedback naturally
used by people, resulting in far-from-realistic movements. In
this article, we present an accurate dataset of human cloth
folding demonstrations. The dataset is collected through our
novel virtual reality (VR) framework, based on Unity’s 3D
platform and the use of an HTC Vive Pro system. The
framework is capable of simulating realistic garments while
allowing users to interact with them in real time through
handheld controllers. By doing so, and thanks to the immersive
experience, our framework permits exploiting human visual
feedback in the demonstrations while at the same time getting
rid of the difficulties of capturing the state of cloth, thus
simplifying data acquisition and resulting in more realistic
demonstrations. We create and make public a dataset of cloth
manipulation sequences, whose cloth states are semantically
labeled in an automatic way by using a novel low-dimensional
cloth representation that yields a very good separation between
different cloth configurations.

I. INTRODUCTION

Research on versatile cloth manipulation by robots is gain-
ing momentum due to the increasing interest in automating
daily tasks in assistive contexts. This research is particularly
challenging because of the infinite-dimensional space of
cloth configurations, in contrast to the 6-dimensional space
of rigid object poses, as well as the difficulty of determining
how to manipulate a clothing item for fulfilling a given task.

Since full observability is impossible in a real scenario,
cloth state needs to be estimated. Whereas the pose of a rigid
object can be easily estimated once a portion of its body is
identified and located in 3D space, an accurate deformable
objects’ state is nearly impossible to infer with just partial
observability.
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Fig. 1: The manipulation is done on top of a real table that
has its virtual version inside of the framework. To make sure
that each pair of objects (real and virtual) are located in the
same place (in the real and virtual worlds), we used HTC
trackers for extrinsic calibration. (1a) Real setup showing
HTC’s tracker (top left), headset (middle) and controllers
(bottom). (1b) Virtual setup showing HTC’s tracker (top left),
controllers (bottom) and simulated garment (center).

Moreover, to decide what grasp to use or which actions
to perform to shape cloth in a particular way, several factors
need to be taken into account, such as friction, elasticity and
thickness of the fabrics or the weight, size and shape of the
garment.

The mentioned challenges are probably the reason why
there are not as many good datasets of deformable ob-
jects (and textiles, in particular) as there are of their rigid
counterparts. This fact is slowing down the development of
algorithms for the perception and manipulation of cloth-like
objects.

One of the main decisions when trying to build a dataset of
garment manipulation demonstrations is whether to use real
or simulated pieces of fabric. Currently, most of the available
datasets are based on RGB-D images coming from real
clothing data [1]–[7]. Despite the convenience of having real
data, it is very hard to extract the ground truth information
from garments and humans along a manipulation sequence.
Moreover, data tend to have noise and multiple occlusions,
and manual post-processing is always needed in order to have
good estimated labeling. Other approaches exploit the use
of simulation environments to easily obtain fully observable
ground truth data, although they must program the cloth ma-
nipulation behaviours with scripted trajectories. Therefore,
this type of data lacks human-like demonstrations, losing the
crucial variability and manipulation dexterity contributions
that would be provided by having the human perception into



the loop. For instance, imagine the movement followed by a
human hand previous to the prehension of a deformable ob-
ject. Having the human in the loop would permit determining
whether a grasping point is adequate and what subsequent
manipulations should be applied to fulfill the task.

In order to address these challenges, we propose a new
approach that combines the use of simulated garments with
human manipulation trajectories. Thanks to a virtual reality
(VR) framework, humans can interact in real time with
simulated pieces of cloth (see Fig. 1a). Using the proposed
framework we create a dataset of human cloth folding
demonstrations. The dataset can be found in the paper web-
site 1. In addition, we present a methodology to automatically
label cloth states using a novel low-dimensional representa-
tion introduced in a previous work by the authors [8]. The
labeling of the cloth deformation states during manipulation
enables to link high-level planning with low-level features
and trajectories of the cloth.

This work is an extension of the paper [9] where pre-
liminary testing of the framework was carried out using a
small dataset as a proof of concept. In the current work, we
collected an extensive dataset and introduced a new method
for labeling cloth states. Note that this automatic labeling
method is general and it not only can be used to label the
cloth states in the manipulation sequences of our dataset,
but it can also be applied to label all the frames collected by
means of our framework in future works by other researchers
and in other applications.

This article is structured as follows. Section II analyzes
the related work in the literature. In Section III we present
the different parts of our virtual reality set-up. Section IV
introduces the different manipulation sequences used to
collect all the data and the way we have organized them.
Section V introduces the methodology to automatically label
the cloth states, using a novel cloth representation. Finally,
Section VI summarizes our contributions and gives prospects
for future work.

II. RELATED WORK

In the last years the creation of cloth manipulation datasets
has enabled a lot of progress in cloth state estimation and
classification. Existing datasets use either real or simulated
fabrics in order to provide rich, and as accurate as possible,
data reservoirs of cloth types, manipulation actions and
garment states distribution.

In the context of garments, several attempts have been
made to create various datasets. Some of them classify the
garments by type [10]–[14], studying only static properties.
Therefore, they are not useful when trying to understand
manipulation processes. Others focus on the actions per-
formed by a human when manipulating garments with RGB
images [15], and they can learn semantic states as in [16]
but it is difficult to link them to low level features of the
cloth. RGB-D (or RGB) images are also used in [1]–[7], [17].

1http://www.iri.upc.edu/groups/perception/#VR_
Framework_Dataset

These approaches cannot deal with cloth self-occlusions and
ground truth information on cloth state is very expensive to
obtain, as manual labeling of the images is required.

Other works use reinforcement deep learning directly on
simulation [18]–[20], where a specific cloth configuration
is the target and the system learns to move a corner of
the garment to achieve that configuration. These approaches
have shown promising results, but only simple manipulations
have been learned, and dynamic motions are still problematic
to transfer to real because the simulators cannot accurately
estimate the dynamic behaviour of clothes. In addition,
such works do not generate datasets to be reused for other
applications.

At the time of writing, and despite the variety of proposed
approaches, the authors have no knowledge of any other
studies that provide both the actions performed by a human
while manipulating garments and, at the same time, tracking
the full evolution of the piece of fabric from an original state
(before manipulation) to an ending state (after manipulation).
Our approach aims to fill this void.

Actually, in the robot manipulation community there is
a long–standing general agreement that “low-complexity
representations for the deformable objects should be the
objective” [21] and some attempts to use topological con-
structs to this end have been made, using writhe matrices,
winding numbers, Laplacian coordinates or cell complexes
for topology-based representations [22]–[25]. In this work,
we will be using a novel low-dimensional representation, the
dGLI coordinates [8], which has proven to yield the adequate
discrimination granularity between cloth states required in
our context.

Similarly, to enable efficient planing of a sequence of
actions to take a deformable object from one state to another
one, we must also simplify the state-action representation.
For instance, classifying and reducing the infinite number
of cloth deformation states and possible manipulations that
can be applied to them. With this in mind, to build the
database we have segmented the executed manipulations in
intervals depending on the number of grippers used (one or
two), the type of contact (single point P, linear L, or planar
Π) following [26] and the part of the garment where the
contact is made, following [27] (See Fig. 2). This means
we perform tasks using different grasp types, opening the
door to study the influence of different grasp types when
manipulating cloth, and we reach final states following
diverse sequences of manipulations, providing data to learn
alternative manipulations to execute one same task.

The developed framework is general and other data-sets
could be easily recorded, providing the community with
a tool to test and compare different ways of organizing
and representing manipulation tasks, as depending on the
manipulation task performed different representations may
be required.

Finally, our study focuses on a simple piece of squared
cloth instead of other possible clothing items like T-shirts,
pants or jackets because we strongly believe we first need to
understand the fundamentals on how to model and classify



(a) 1 PPc +Πe (b) 1 LLm +Πe (c) 2 PPc+c +Πe (d) 2 PPm+m +Πe (e) 2 PPc+m +Πe

Fig. 2: Classification of the different types of garment manipulations studied in this work: (a) One corner double point grasp
(PPc) with extrinsic planar contact (Πe), (b) one middle edge double line grasp (LLm) with (Πe), (c) two corner double point
grasp (PPc+c) with (Πe), (d) two middle edge double point grasp (PPm+m), and (e) one corner, one middle edge double
point grasp (PPc+m) with (Πe).

deformation states for simple objects and learn to execute
actions to navigate through them before generalizing to other
shapes with more complex topologies.

III. FRAMEWORK DESCRIPTION

A. HTC Vive Pro

We wanted to design a framework allowing the visualiza-
tion and storing of the manipulated cloth but also allowing
to realize realistic recreations of garment manipulations in
an interactive experience. With that objective, we used HTC
Vive Pro in combination with HTC Tracker and the HTC
Controllers as shown in the setup Fig. 1. The tracker eases
the connection between the real and the virtual world,
making it possible to connect virtual objects with its real
counterpart, as long as they have the tracker attached. We are
already working on improving the virtual experience fusing
it with real world, enabling to provide contact feedback
with the environment. In addition, we are building simulated
grippers that can be attached to the controllers to provide an
interaction with the table similar to the one the robot will
have. This will open the door to learn more realistic but
robot friendly trajectories that use environmental constraints
[28] to achieve the tasks. Such environmental constraints are
essential in cloth manipulation, as analyzed in [26].

The controllers send their position and orientation from
the real to the virtual world. In addition, they can also
send information using their integrated buttons, including
one pressure-sensitive trigger and a trackpad. We use the
controllers to store grasp state information while recording
a manipulation, following the grasping and manipulation
framework introduced in [26], [27].

B. Unity

For the development of the framework, we decided to use
the Unity engine. The HTC hardware can easily be connected
to Unity. For detailed description of the software setup, we
refer to our previous work [9].

Unity is a cross-platform game engine that can also be used
for simulations, some examples found in [29]–[32]. Here,
Unity is used to build a framework where the information
coming from the HTC Vive Pro system is displayed in a 3D
environment. Moreover, the game engine will also work as a
data reading and processing tool. For simulating the cloth, we

use Obi [33], a particle-based physics plugin for deformable
objects such as cloth, fluids, ropes or soft-bodies. Compared
to the other physics systems available, we found Obi Cloth
allowed much more constraints per cloth. Overall, our Unity
framework is user-friendly and intuitive, allowing interested
research groups to easily reproduce our framework.

IV. DATA COLLECTION

For a better versatility of the collected data, the conducted
experiments have been divided into states. Each experiment
starts in one described state and ends into another. For each
experiment we keep track, in an XML file, of all the elements
involved in the cloth manipulation task at a sampling rate of
10Hz. The file contains the evolution of: the cloth mesh, the
coordinates of each particle of the cloth, the position and
orientation of each HTC controller, the state of its trigger,
the position and orientation of the possible grasping points,
eight in our example, and whether these grasping points are
being grasped by any of the controllers.

In order to keep the dataset to a reasonable size but as rich
as possible, we tried to just perform the most representative
garment manipulations. We use both single handed and
bi-manual interactions, and we used them over different
combinations of point, line and plane contact types to realize
different grasp types from [26]. Due to the data format, it
is easy to filter the manipulations by contact or interaction
types with the objective of applying learning algorithms. We
show all the manipulation sequences in the form of a graph
in Fig. 3. The color code shows the garment manipulations
that have been used following notation from [27], detailed
in Fig. 2.

As shown in the color legend in the graph, some states can
be achieved by performing different types of manipulation.
First, nineteen manipulation sequences have been performed,
with three repetitions each. These sequences correspond to
all of the possible combinations of manipulations that start
with the top-left state of Fig. 3 and end with one of the
states on the right of the image. Then, we executed 66
additional manipulation sequences using the most common
grasp types, mainly the PP and double PP, making sure we
achieve different shapes for each of the states, depending on
which corner is folded first or to which side is folded, left
to right and up to down. Some examples of this variability



Fig. 3: Graph of state sequences, following the manipulation
representation framework in [27]. The coloured dots indicate
the different types of grasp types and grasp locations that can
be performed to pass from the previous state to the next.

are shown in Table I.
We also performed a special case of a manipulation

performed with a big tablecloth following sizes reported
in [34]. The Tablecloth garment is hanging from a bar and
has to set on the table thanks to a bi-manual manipulation
and by taking advantage of the dynamics of the fabrics (see
Fig. 4). This task shows how the framework allows to interact
with different environmental objects.

V. SEMANTIC LABELING OF CLOTH STATES

In order to enable learning of trajectories and folding
sequences, it is very useful to have semantic labels that
identify different folding or deformation states of the cloth.
As each frame in the dataset has information on the grasping
state, we can easily group frame intervals of grasped-released
cloth states. We could automatically label the released states
following the state sequences shown in Fig.3, that have been
performed in the human demonstrations. However, due to

TABLE I: Cloth configurations per label

Fig. 4: Manipulation of Tablecloth: From initial hanging po-
sition (top-left) to set on the table (bottom-right). The images
in-between show frames from the two corner double point
grasp manipulation performed on the Tablecloth garment.

the nature of human demonstrations, the subject does some
extra manipulations to correct mistakes or repeat a grasp,
making impossible to automatically label all the dataset just
by following the graph of state sequences.

To overcome this issue, we selected only those elements
of the dataset that do follow the graph, and used them as a
subset from which we can automatically label ground truth
semantic labels of cloth state. This subset was used to train
a classifier that is then used to label all the rest of the
frames in the dataset. To train a good classifier, we need an
efficient low-dimensional cloth state representation. To this
end, we have used the dGLI Cloth Coordinates [8], following
a very recent development from the authors. The dGLI Cloth
Coordinates can be computed as a closed form formula that
depends on the coordinates of 4 pairs of segments of the
border of the cloth. In [8] we show how they can be used as
a low-dimensional cloth representation that enables a good
cluster separation between different cloth configurations.

A. Introduction to the dGLI cloth coordinates

The Gauss Linking Integral (GLI) of two 3D closed and
smooth curves is a topological invariant index that measures



the linking number between the curves, and when applied
twice to the same curve, it measures its writhe or writhing
number. Different versions for polygonal curves appeared in
the context of DNA protein structures [35] and have been
applied in many domains including robotics [23], [24], [36].
Our idea was to directly apply it to the curve formed by the
border of the cloth, but in many occasions, when the cloth is
on a surface like a table, the curve is planar and the GLI index
vanishes. In [8] we introduce the mathematical development
of the dGLI that can be applied to planar curves. In short, the
dGLI coordinates are computed using a derivative of the GLI
of pairs of segments that form the polygonal curve. Given
the border of the cloth φ , formed by segments φ = {Si}, we
select a subset φsel ⊂ φ with only 8 of the segments, those
close to the corners of the cloth. Then, the dGLI coordinates
are

CdGLI =
(
dGLI(Si,S j)

)
Si,S j∈φsel,i> j. (1)

The term dGLI(Si,S j) is a derivative of the GLI that
depends on a direction of perturbation of the points that
form the segments. We chose to perturb the points in the
e⃗3 = (0,0,1) direction, as it is orthogonal to the table and
the resulting representation will be invariant under rotations
and translations on the table. In other words, if a segment
is formed by two points Si = A⃗B, we denote the perturbed
segment as S∗i = A⃗B∗ where B∗ = B+ ε e⃗3. Then

dGLI(Si,S j) =
GLI(S∗i ,S

∗
j)−GLI(Si,S j)

ε
,

for a sufficiently small ε , that we have taken as ε = 10−5

in this work. We can now compute the GLI of a pair of
segments using the closed form formula introduced in [35].
Let the segments be Si = A⃗B and S j = C⃗D, then

GLI(Si,S j) = GLI(A⃗B,C⃗D) =arcsin(⃗nA⃗nD)+ arcsin(⃗nDn⃗B)

+arcsin(⃗nB⃗nC)+ arcsin(⃗nCn⃗A)

with

n⃗A = ∥A⃗C× A⃗D∥, n⃗B = ∥B⃗D× B⃗C∥,
n⃗C = ∥B⃗C× A⃗C∥, and n⃗D = ∥A⃗D× B⃗D∥.

Please, see [8] for extended details on the dGLI derivation.

B. Supervised classification

Given the cloth mesh border points, we can very easily
compute the dGLI coordinates of each cloth configuration
corresponding to each frame of the simulations. As shown
in [8], these coordinates separate very well configurations in
classes were the relative position of the selected segments
change. Note that each symmetric configuration, as the ones
shown in Table I, are separated by the dGLI coordinates in
different classes. According to this representation, folding
in half leads to configurations at the intersection of several
classes, since the relative position of almost all segments are
close to a change. That fact, together with the noisy data
coming from the simulator due to the human demonstra-
tions, did not lead to good results when applying the same
classification method used in [8].

TABLE II: Classifier testing results

Cloth representation used for training
Accuracy dGLI Norm. border Image
Test dataset 98.5%±0.6% 97.2%±1.0% 90.7%±1.3%
Rand. P&R dataset 88.3%±1.6% 60.3%±2.1% 16.0%±1.9%

To overcome this fact, we perform a supervised learning
classification. To obtain ground truth labeled data, we first
eliminated those intervals with very short manipulations
that correspond to corrections. Then, we selected those
demonstrations that do follow the number of state transitions
shown in Fig. 3. Our dataset contains 123 simulations. After
removing the short manipulations, a total of 104 simulations
follow the graph of state sequences in Fig. 3, containing
315 grasped-released cloth states intervals. As each interval
corresponds to a list of frames where the cloth is moving
very little after it has been released, many of them correspond
to the same cloth mesh. We discarded these frames, except
for the the initial ones, always corresponding to the flat
configuration ”FL”, for which we do take several equal
frames to avoid having very few samples for this class. This
results in a total set of 2135 frames of cloth configurations
with ground truth labels, using the labels shown under each
state in Fig. 3.

We trained 3 classifiers using different representations for
the cloth: the dGLI coordinates, the list of points of the
border normalized, that is B = {pi − p1, i = 1, . . .n} and an
image representation of the border, as the ones shown in
Table I. Each sample is labeled with the ground truth label
and we then train a random forest classifier method 30 times,
with random splits at 67% of the data for training and 33%
for testing. We used different classification methods and got
similar results. The mean accuracy’s from the 30 repetitions
for each representation used are reported in Table II. As
shown in the table, the accuracy for the trained dataset is
similar for all representations, because supervised learning is
very successful at learning mappings. However, we executed
a new set of 81 simulations with randomized positions and
rotations of the cloth. We processed the randomized set in
a similar way to obtain the ground truth labels, resulting
in a new set of 720 labeled samples. The classifier trained
with the dGLI representation, without any retraining, is able
to achieve more than an 88% of accuracy, the normalized
border performs 20% worse, and the image training does
not work. Results are reported in the second row of Table II.

We show the confusion matrices of the best obtained
classifiers on the test set and on the random Pos&Ori dataset
in Fig. 5. Results show how the dGLI coordinates are
more efficient to classify cloth states, and generalize better.
However, we think they could perform even better. Due to
the nature of the dGLI coordinates, all the states like folded
in half, folded twice in half, etc, are close to a singularity
of the dGLI, that is, close to a change of sign of one of
the coordinates. As a result, we need a lot of samples to
obtain a good variety of relative positions of those states
to ensure we have seen all the sides of the singularity. In
future work, we will study additional parameters we can add
to the representation to solve this issue. Preliminary results
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Fig. 5: Confusion matrices (CM) of the three classifiers trained with the three tested representations: the dGLI cloth
coordinates, the list of normalized border points and the image representation. In the first row, we show results on the
20% split test of our database. In the second row, we show results for the dataset gathered with random initial position and
orientation of the cloth. Our proposed representation clearly outperforms on the others on the second dataset.

on this direction show that if this is solved, a lot less data
is needed to archive similar accuracy. The dGLI coordinates
is a novel low dimensional representation that is based on
low level features of the cloth and can generalize better than
other representations like those based on images.

Note that thanks to the manipulation representation used,
following [27], we didn’t need to manually annotate any
data to obtain ground truth of a good percentage of the total
databas. The classifier with best accuracy was then used to
label the full database. The labeled dataset isavailable in the
paper website.

VI. CONCLUSIONS

In this work, we presented a Unity virtual reality frame-
work to perform cloth manipulation experiments. The ap-
proach differs from others in that we not only perform a
full-mesh tracking but we also keep track of the position,
rotation and interactions of other key features of the ma-
nipulation (like grippers or grasping points). Moreover, the
implementation of the virtual reality allows the creation of
an immersive experience that gets rid of the gap between the
human and robot perception-action loop.

We use the developed framework to create a rectangular
cloth manipulation dataset which is then labeled into high-
level semantic states to allow a more versatile study. The use
of a novel low-dimensional representation of the cloth allows
to train a classifier that outperforms others trained with other
usual representations like silhouettes or images.

As future work, we are planning on fusing real contact
feedback of the environment with the virtual world to obtain
even more realistic manipulations, and on further enhancing
the dGLI coordinates to improve the automatic labeling of
the high-level state of deformation of the cloth.

The presented fully labeled dataset aims to help the cloth
manipulation robotics research community by providing
more realistic human-like cloth manipulation data, which can
be used in different learning approaches.
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