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ABSTRACT
InHuman-Robot Collaboration (HRC) tasks, the classical Perception-
Action cycle can not fully explain the collaborative behaviour of
the human-robot pair until it is extended to Perception-Intention-
Action (PIA) cycle, giving to the human’s intention a key role at the
same level of the robot’s perception and not as a subblock of this.
Although part of the human’s intention can be perceived or inferred
by the other agent, this is prone to misunderstandings so the true
intention has to be explicitly informed in some cases to fulfill the
task. Here, we explore both types of intention and we combine
them with the robot’s perception through the concept of Situation
Awareness (SA). We validate the PIA cycle and its acceptance by
the user with a preliminary experiment in an object transportation
task showing that its usage can increase trust in the robot.
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1 INTRODUCTION
The Perception-Action (PA) cycle has served as a framework for the
development and understanding of artificial intelligence systems as
well as robotics. Early works in robotics, assume that a traditional
decomposition of functionalities starts from perception and finalize
in a sequence of robotic actions [3]. This means that the perception
and understanding of the environment in which a robot operates
is essential for it to be able to navigate, select the right tool or, in
general, to perform its task effectively by making the right decisions
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at the right time [14]. However, when this task must be performed
collaboratively with one or more humans, it is no longer sufficient
to perceive and understand the environment. It is necessary to
know the human’s intention.

It can be argued that it is possible to interpret the human’s
intention by perceiving their actions. However, the myriad of mis-
understandings which we humans make when we try to interpret
the intention of our fellow humans from their actions, demonstrates
the need to directly elicit this intention for the correct development
of multiple tasks and consider it as another element of the decision-
making cycle. Especially if the agents have different representations
of the world which may hinder the interpretation process, as occurs
in a human-robot pair due to the multifaceted ways [19] a human
can model the perceived information.

With this inmind, we propose a revision of the Perception-Action
cycle by incorporating the human’s intention (both the inferable
and the directly expressed) at the same level as the perception
stage. To combine both, we use the concept of Situation Aware-
ness [10] (SA). To validate our proposal, we use as a first use case a
human-robot collaborative transportation task designing for that
a force-based model based on the Social Force Model [15] whose
formulation is outside the scope of this article. Finally, we perform a
series of human-robot object transportation experiments to validate
the proposal, check that the human accepts to give their intention
explicitly and that this can increase the trust in the robot.

In the remaining of the paper, we start describing the relevant
related works in Section 2. In Section 3 we present the Perception-
Intention-Action Cycle as an extended framework to tackle col-
laborative tasks. Finally, Section 4 and 5 present the conducted
experiments and the conclusions.

2 RELATEDWORK
Early works in robotics use the Perception-Action cycle to decom-
pose the functional modules of the robot control [1–3]. This allowed
the design and development of more complex robots [28] and con-
trol architectures based on how the human brain processes [5] to
improve robotic capabilities to perform specific tasks. However,
when it comes to include the human in-the-loop, authors recognize
that it is not enough to obtain human-like robots [22]. That is why
we extended it including the human’s intention.

Situation Awareness [10], [9] is according to the author the
knowledge of what is going on around you. In other words, to
sift all the irrelevant stimuli and understand which information is
important to attend. Originally used in aviation, it has long been
recognized as a core competence for intelligent behavior and correct
decision-making, specially in critical combat environments. It has

https://doi.org/10.1145/3568294.3580149
https://doi.org/10.1145/3568294.3580149
https://doi.org/10.1145/3568294.3580149


HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden J. E. Domínguez-Vidal, Nicolás Rodríguez, & Alberto Sanfeliu

Figure 1: General information flow from agent 1’s point of view in a collaborative task. Available information is obtained by
both agents. Agent 1 uses this information to perceive their environment and to inference other agent’s intention. Agent 2
uses their information to expresses their intention explicitly to avoid misunderstandings. The SA comprehends the current
situation and projects into the future. This projection allows each agent to establish a collaborative plan according to the role
each agent is showing at the moment. This plan generates the following actions which are perceived initiating a new cycle.

three levels [33] going from (1) just perceiving the surrounding
information and (2) integrating the different information sources
according to their relevance to (3) make future predictions based
on the comprehension of the current situation. Despite the power
of this concept, to the best of our knowledge, it was only used in
robotics to design user interfaces [29, 31, 32], but not as a core
component in the robot’s reasoning to understand the intention of
its human partner as in our work.

Speaking of intention, [16, 17, 24, 26] are examples of trying to
infer it using different mathematical models.They blame the un-
certainty in their experiments on the fact that their models are
not perfect yet, when interacting with the human or simply allow-
ing them to indicate their intention explicitly would simplify the
problem. This second approach is rarely addressed in the literature
but in user interfaces [7]. Specifically applied to physical HRI, [23]
makes a review of measuring intent and its interpretation by the
robot to establish a shared-control policy, which is named as role
allocation. The concept of shared-control has been widely studied
in the literature [8, 25, 30]. Likewise, the concept of role is also
known going from the classical master-slave (leader-follower) and
collaborative options [27] to the less known adversarial or antago-
nistic case [18]. Applied to object transportation, [4] and [20] are
common examples of trying to make the robot to adapt to the hu-
man in the best possible way, but always considering the robot as
a perfect follower which can not propose actions to the human.

About the usage of a force-based model (based on [15]) to rep-
resent the scenario in which a robot should perform its task, this
idea has not been considered only in [6] but in several works in-
volving navigation in urban environments where it is common
for the robot to share spaces with humans either by collaborating
with them or simply avoiding collision with them. Examples of
this are [11–13, 34], being the first three works cases of socially-
acceptable urban navigation and the forth one an implementation
of this model with aerial robots.

3 PERCEPTION-INTENTION-ACTION CYCLE
When a robot is navigating in an urban environment surrounded by
humans, it can interpret each human as a moving obstacle, estimate
their velocity and acceleration, and with this information make
an estimate of the human’s movement, typically with increasing

uncertainty over time. However, if the robot knew the human’s
intention, i.e. where they want to go, the above calculation would
be greatly simplified and the uncertainty would be much lower.

As mentioned in the introduction, this intention may not always
be perceived. Imagine the reader two humans collaboratively carry-
ing an object "side-by-side", for example, a table. If one of them (e.g.
agent 1) sees that the other one (e.g. agent 2) starts to turn, the first
one does not know whether they are doing so because they actually
want to change direction or because they are turning sideways in
order to pass through a narrow passage. In other words, agent 2’s
intention seen from agent 1’s point of view is unclear. If the object
to be transported is so bulky that the human in the back can not see
what is in front of them (they have partial information), they will
have to rely on the force exerted by their partner to know towards
which direction they are moving making an extra mental effort
so react as soon as possible in case the partner in front decides to
stop or change direction abruptly. In both cases it is necessary to
explicitly state what they want to do to eliminate uncertainties,
reduce the mental load and allow the task to proceed correctly.

The adversarial case is also of special interest despite being
typically ignored in robotics due to its almost infinite casuistry.
This occurs when one of the agents not only does not collaborate
with the task, but the goal of their task is contrary to that of the other
agent’s task. Let us consider a professional tennis match. Trying to
estimate the opponent’s next shot based on their positioning may
not be enough as they may be resorting to deception, while having
studied their playstyle, allows us to know their real intention, which
can make the difference between winning and losing.

All of the above (including the possibility of being able to con-
sider the human as an adversary if they are behaving as such)
motivates us to extend the classical Perception-Action cycle by in-
cluding the human’s intention according to the framework shown
in Fig. 1.

The initial assumptions are that there are a minimum of two
agents and that there is a collaborative task in which both agents
need to participate. Each agent possesses their own knowledge of
the task to be performed including the goal and the constraints. The
constraints include the task (i.e. time and the number of attempts)
and the agents (i.e. height, available limbs/actuators and skills). In
turn, there is also a knowledge about the scenario in which the task
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takes place whichmay already be known by each agent or perceived
through their sensors (sight, hearing, RGB camera, LiDAR...). This
same perception is also responsible for making each agent to detect
the changes occurring in the environment, the constraints or even
the goal of the task. However, each agent can receive partial and,
therefore, different information aswell as represent this information
differently. This is why the intention of the other agent must be
taken into accountwhenmaking any decision, since each agent does
not usually have access to the representation of the information that
the other agent is making. Note that this intention can be expressed
implicitly (through the actions performed by the other agent and,
therefore, inferable using the own knowledge) or explicitly and
independently of the action which moves the task forward (saying
out loud to your partner that you want to get behind them to pass
through a narrow passage).

Note that it is this intention the one that allows us humans (and
consequently a robot) to act proactively, i.e., to not only adapt
ourselves to our partner’s actions but to propose a better plan when
our partner is acting sub-optimally.

With one’s own perception of the world and the intention of the
other agent, SA comes into play. This concept, presented by Endsley
and Garland in [10], is originated in the field of aviation and is used
to explain the mental process of a pilot in a combat situation. In
general, it implies knowing and understanding what is going on
around oneself. With this concept we can, from the information
received and using the previous own knowledge, understand the
current situation and make a projection of the future one. This
projection should be understood not as a single prediction, but as a
probability distribution of the possible future situations.

This projection is used in a decision making process firstly to
know the role which each agent intends to exercise based on their
intention. For example, if the other agent intends to follow the plan
proposed by the first one, they will be assigned a follower role
while, if their intention goes against the development of the task,
they will be assigned an adversarial role. Once the role assigned
to each agent is known, a joint plan to be executed by both agents
can be planned. This process can be executed several times if we
are analyzing every possible prediction trying to find an action to
make the other agent to act on a different way or just once if we
are trying to adapt ourselves to the most probable future situation.
Finally, this collaborative plan is converted into specific actions to
be executed by each agent which result is perceived to initiate a
new cycle.

Applied to robotics, both the SA block and the role allocation can
be performed with a rudimentary state machine, a classical Markov
decision process or more recent architectures based on artificial
neural networks. In this way, this framework allows us to extend
the classic Perception-Action cycle to unify it with Theory-of-Mind
concepts as well as works based on understanding the roles which
arise between a human and a robot when performing collaborative
tasks through the concept of SA.

4 EXPERIMENTS
A preliminary round of experiments should be done to prove the
previous considerations. For that, twenty seven volunteers (age:
𝜇 = 28.29, 𝜎 = 6.58; most common ongoing or finished studies:

Figure 2: Human-robot pair transporting an object. Left - Both
agents must navigate through a complex environment with
multiple walls and some forbidden pass signs that only the
human can detect. The robot only detects a discrepancy be-
tween the human’s expected force to perform the experiment
and the one performed. The transported object is a steel bar.
Right - Environmental force in blue, human force in orange,
both referenced to the centroid of the human-robot pair. Last
global path calculated by the robot up to the goal in green.

M.Sc.) performed up to 108 experiments (4 each one) in which the
robot and the human perform a collaborative transportation task
through different scenarios with multiples obstacles.

To combine the robot’s efforts and the human’s we designed a
force-based model derived from [15] and inspired in other physical
HRI approaches [21], which allows us to represent the robot’s world
with repulsive (for every detected obstacle) and attractive (for the
task’s goal) forces. This lets us to calculate the total force applied,
𝑭𝑻𝒂𝒔𝒌 as the addition of the calculated environmental force, 𝑭𝑬 and
the human exerted force, 𝑭𝑯 and, then, use this force to calculate
the desired movement of the robot.

𝑭𝑻𝒂𝒔𝒌 = 𝑤𝐸 · 𝑭𝑬 +𝑤𝐻 · 𝑭𝑯 (1)
This system allows us to infer the intention of the human accord-

ing to their force and assign them a collaborative role if their are
collaborating with the task (and, therefore, magnify the importance
of their force in the robot’s movement calculations increasing𝑤𝐻 )
or an adversary role if they are opposing to the task (and reduce
the importance of that force reducing 𝑤𝐻 ). Likewise, it accepts
external inputs that can change both weights or the environment
force calculation. As commented, the technical subtleties of this
model are outside the scope of this article.

4.1 Experiments Setup
The first two experiments are for the human to learn the robot’s
capabilities: in the first, the robot constantly assumes the role of
leader (ignoring the intention exerted by the human) so that the
human learns the robot’s navigation capabilities. In the second,
the robot assumes the role of follower throughout the experiment
(it overrides the goal force and avoids colliding with obstacles) so
that the human discovers how to operate the robot as well as its
response speed. In the third and fourth, along the shortest route to
the goal there is a hidden forbidden path sign that only the human
can recognize. Thus the human must force the robot to follow
another route. In the third experiment, they will only have their
own strength to do so, while in the fourth experiment they will be
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Figure 3: Comparison of measured force and perceived dif-
ficulty. Left - Evolution of the average force exerted by the
voluntaries in in exp. 3 and 4. Extra force needed in exp. 3
once the forbidden path sign is seen to make the robot to
go backwards until it replans using other route. No extra
force needed in exp. 4. Right - Comparison of the difficulty
perceived by the human to impose their intention in exp.
3 and 4. Statistical significance marked with *: 𝑝 < 0.05, **:
𝑝 < 0.01, ***: 𝑝 < 0.001.

given the possibility to explicitly express their intention. Therefore,
these two experiments allow us to compare our approach with a
classical one1. Fig. 2 shows a case of the third experiment, in which
the human has extra information that must be explicitly indicated
to the robot to prevent it from misinterpreting the human’s efforts.

To allow the human to explicitly indicate their intention, we have
designed a handle with 5 buttons, one for each finger, allowing the
first two to (1) take control of the robot (robot as follower, increase
in𝑤𝐻 ) and (2) indicate that the current route is not allowed (change
in 𝑭𝑬 calculation). The other buttons have no assigned functionality.

As for the robot used, it is a TIAGo++2 manufactured by PAL
Robotics. After each experiment, the human fills out a questionnaire
to thus obtain objective and subjective data. All the experiments
have been performed under the approval of the ethics committee
of the Universitat Politècnica de Catalunya (UPC) in accordance
with all the relevant guidelines and regulations (ID: 2021.10).

4.2 Validation
The first two experiments are to give the user a certain minimum
skill, so for the sake of brevity they will not be analyzed here. If we
analyze the third and fourth experiments which serve as a direct
comparison between having and not having a way of explicitly
expressing the human’s intention, the evolution of the force exerted
can be seen in Fig. 3 - Left. Each force was calculated by resampling
the measured force in the third and fourth experiments to make all
of them to have the same duration and then averaging the samples at
the same experiment percentage. While the human has to increase
considerably their exerted force to force the robot to go through
other route in the third experiment, in the forth one, they can avoid
this extra effort just telling the robot to do not follow that route.
Notice that the user still makes an extra effort once the robot has
already replanned in the third experiment.

This difference is also perceived by the human as reflected in the
questionnaires completed at the end of each experiment (Fig. 3 -
Right), indicating from 1 to 7 that it is easier for them to express
what they want in the fourth experiment and that the force they
1Experiments example: https://youtu.be/MzXanjD2cb8
2https://pal-robotics.com/robots/tiago/

Figure 4: User study. Left - General evaluation of the utility of
the explicit intention after exp. 4. Right - Evolution of the trust
in the robot for the four experiments. Statistical significance
marked with *: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001.

have to exert is much lower. Checking that the dependent variables
are normally distributed with the Shapiro-Wilk test and applying
an ANOVA test, in both cases, there is a statistically significant
difference using the criterion of 𝑝 < 0.01. The last questionnaire
completed by the volunteers confirms that they understand that it
is necessary to explicitly indicate their intention in order to avoid
misunderstandings and to solve situations which would be difficult
to solve otherwise (Fig. 4 - Left). In turn, they also find it safer to
collaborate with the robot.

Finally, the questionnaires completed at the end of each experi-
ment also asked the volunteers to rate their degree of trust in the
robot from 1 to 7. The result is shown in Fig. 4 - Right. There is a
subjective increase in trust in the robot when the human becomes
the leader taking control of the task although not statistically sig-
nificant according to the criteria of 𝑝 < 0.01: robot leader 𝜇=4.93,
𝜎=1.53; human leader 𝜇=5.63, 𝜎=1.01; 𝑡 (27)=−2.30, 𝑝=0.030. At the
same time, there is a remarkably significant drop in trust when
faced with the third experiment (human leader 𝜇=5.63, 𝜎=1.01; col-
laborative (without options) 𝜇=4.00, 𝜎=2.92; 𝑡 (27)=5.08, 𝑝 < 0.001),
which is partially recovered when the human can explicitly indicate
their intention. In other words, explicit intention makes it possible
to increase the trust that the human feels in their robot partner by
giving them back some of their ability to control the task.

5 CONCLUSIONS AND FUTUREWORK
We have reviewed the perception-action cycle including the hu-
man’s intention to it at the same level of perception instead of as
a subblock of it and combining all the information using for that
the concept of situational awareness. To check its utility, we have
carried out a preliminary round of experiments to prove that the
human understand the necessity of telling their explicit intention
to the robot. Analysis of the post-experiment questionnaires gives
insight about how this explicit intention can increase the feeling of
safety and trust in the robot. More complex architectures to gener-
ate future projections like neural networks and extra information
inputs like the human’s gaze could be explored.
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