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Abstract. The study of the power of a point with respect to a circle and
its application to orthogonal circles, bundles of circles, etc., has received
a lot of attention in the past. In this paper, we show how the concept
of conjugate ellipses generalizes the concept of orthogonal circles. It is
also shown that it is possible to design 3R serial regional robots whose
inverse kinematics can be reduced to the computation of the intersection
between two conjugate ellipses which, in turn, can be reduced to the
intersection of an ellipse and a line by relying on the concept of radical
conic. The relevance of these findings is illustrated through an example.
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1 Introduction

Some problems arising in geometry and kinematics can be reduced to computing
the intersection of two ellipses. This is the case of, for example, the position
analysis of quartically-solvable serial and parallel robots [1], the design of solvable
6R serial robots [2, 3], or the 3P3 problem [4].

Two ellipses intersect in up to four real points which can be obtained as
the roots of a quartic polynomial. Nevertheless, as already acknowledged in [2],
this algebrization of the problem (using, for example, Chrystal’s procedure [5,
6]) complicates the classification and interpretation of degenerate cases. As ex-
plained in [7], even when we simply have to compute the roots of a quartic
polynomial, it is advantageous to interpret the problem as the intersection of
two conics. The superiority of this “geometric approach” has already been ex-
ploited to identify cusps and nodes in the singularity locus of 3R serial spatial
robots by interpreting their inverse kinematics as the problem of computing the
intersection of two ellipses [2, 8].

The geometric approach to the computation of the intersection of two el-
lipses requires previously classifying their relative position. This operation can
be performed by the analysis of the lineal or the exponential pencil defined by
both ellipses (see [9,10] and the references therein). In this paper, we consider
only sets of conjugate ellipses; that is, sets of ellipses with parallel axes and the
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same eccentricity. We show how the intersection between two such ellipses can
be simplified by extending concepts used in the area of Distance Geometry. We
then apply these results to identify a family of 3R robots whose quartic closure
polynomial simplifies to a quadratic polynomial.

Originally, Distance Geometry was a branch of geometry concerned with
characterizing and studying point sets described in terms of point pairwise
squared distances, and using the so-called Cayley-Menger determinants to char-
acterize the algebraic dependencies between these distances [11]. Different gen-
eralizations of this geometry have led to powerful tools to solve many problems
arising in geometry and kinematics. One straightforward generalization has con-
sisted in the incorporation of the relative orientations between simplices. This
generalization has permitted obtaining closure polynomials for multiloop link-
ages, both planar [12] and spatial [13], without relying, in many cases, on vari-
able eliminations. Another generalization has been the substitution of points for
spheres. In this case, the distance between points has been substituted with the
power between spheres, and Cayley-Menger determinants, with the Clifford’s
identity [14]. In this paper, we go a step further by considering the power of a
point with respect to an ellipse, and its application to the characterization of
the intersections between conjugate ellipses.

This paper is organized as follows. The power of a point with respect to an
ellipse is studied in Section 2. The concept of radical ellipses is introduced in
Section 3 where it is applied to the particular case of two conjugate ellipses. The
application of this result to the inverse kinematics of 3R robots is presented in
Section 4. An example is analyzed in Section 5. Finally, conclusions and prospects
for future research are presented in Section 6.

2 The power of a point with respect to an ellipse

Py .
Py

Fig. 1. Left: The power of point P with E?eci? the circle ¢ is defined as (¢, P) =
d? — r%. It can be proved that (¢, P) = PP; - PP,, independently of the chosen line
through P and intersecting the circle. Ri_g)ht: E}ve likewise try to define the power
of a point with respect to an ellipse as PP - PP> the result is not valid as it is not
independent of the line.

In 1826, Steiner defined the power of a point P with respect to a circle ¢ of
radius 7 to be (¢, P) = d?> —r2, where d is the distance between P and the center
O of the circle [15]. According to this definition, points inside the circle have
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Fig. 2. An ellipse can be characterized as
the locus of points P whose distances to

Y point F' (one of its two ellipse’s foci) and
line D (the corresponding directrix) are in a
fixed ratio (the ellipse’s eccentricity). This
property is often taken for a definition of

) ellipse.

O

negative power, points outside have positive power, and points on the circle
have zero power. Steiner proved that for any line through P intersecting c in
points P; and P», the power of P with respect to ¢ coincides with the inner
product P—P1> - PP; (see Fig. 1, left).

In 1865, Laguerre defined the power of a point with respect to an algebraic
curve of degree n to be the product of the distances from the point to the
intersections of a circle through the point with the curve, divided by the nth
power of the diameter d [16]. Laguerre showed that this number is independent
of the diameter, but when the algebraic curve is a circle this definition differs
from the one given above in a constant factor. This generalization has been
revisited at least in [17,18]. Nevertheless, we prefer a definition for the power of
a point with respect to an ellipse from which the above definition of the power
of a point with respect to a circle follows as a particular case.

Observe that, if we define f(x,y) = (z—20)*+(y—y0)>—r?, then f(z,y) =0
is the implicit equation of a circle centered at (xg, yo) and radius r, and f(z,y) is
the power of the point, with coordinates (z,y), with respect to this circle. Then,
as explained in [17], if g(x,y) = 0 is the implicit equation of a conic and we
want to attach a geometrical significance to the value of g(z,y) at an arbitrary
point of the plane, it is necessary to impose a condition which has the effect of
standardizing the function g(z,y) by means of some divisor independent of the
variables. Several approaches have been proposed to this end which essentially
differ in the chosen parameters defining the ellipse and the chosen divisor [19,
17,20, 21].

Among all the cited possibilities, the implicit function used by de Biasi in
[21] is the one adopted in this paper because the power of a point with respect
to a circle derives from it as a limiting case. Moreover, it is embedded with
geometric significance which will be fundamental in Section 4 for the analysis of
3D regional robots.

According to Fig 2, let us define the ellipse I" by one of its foci, say F', and the
orthogonal projection of an arbitrary point, say P, onto the associated directrix,
say M. Then, the ellipse can be defined as:

I'={P|PF - &PM =0}, (1)

where e denotes the eccentricity of the ellipse. That is, e = ¢/a where a is the
length of semi-major axis and c is the distance from center to the foci. It is a
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measure of how much the ellipse deviates from a circle. It is a number between 0
and 1, with values closer to 0 indicating a more circular shape and values closer
to 1 indicating a more ellongated shape.

The power of point P with respect to I" can be simply defined as

2

(I P) = PF" — ¢*P0". (2)

To translate this definition into an algebraic expression in terms of the coordi-

nates of P, let us define («, 5) = O? and h = OH, then the equation of D (see
Fig. 2) can be expressed as xcosf + ysinf — h = 0, and (2) can be rewritten as

1—€%cos?f —e?sinficosd —a+e?hcosh\ [z
I(z,y) = (zyl) | —e?sinfcosf 1—e?sin®f —p+ehsing | [y]. (3)
—a+e2hcos —pB+e?hsind a?4p3%2—e?h? 1

)

If 6 stands for the 2x2 upper left submatrix of F, it can be verified that det(d) =
1—e2. Thus, the quadratic form in (3) indeed represents an ellipse provided that
1 —e2 > 0. It can also be verified that

det(F) = —e*(acosf + Bsinf — h)?, (4)

which is zero for e = 0. Apparently, this formulation is not valid for representing
circles. The problem is that the eccentricity of a circle is zero and its directrix
is the line at infinity. Then, we have to treat circles as limiting cases in which
e — 0 and h — oo. To deal with this circumstance, it is convenient to define
R = eh and treat it as an independent variable. Then, £ can be rewritten as

1—e2cos?f —e?sinfcosfd —a+eRcosb

E = | —e?sinflcos 1—e?sin®’@ —pB+eRsind |, (5)
—a+eRcos® —B+eRsinf o?+5%>—R?

which, for a circle, reduces to

1 0 —a
E=10 1 -3
—a —f o?+p*—R?

; (6)

which, when substituted in (3), leads to Steiner’s definition of the power of a
point with respect to a circle centered at (a, 8) and radius R.

The power of a point with respect to an ellipse has many interesting geomet-
ric interpretations. Nevertheless, space limitations prevent us from giving more
details on this respect. The interested reader is addressed to [20, 21].

3 The radical conic

The set of points of the plane with the same power with respect to two ellipses,
say Iy and I%, is the curve defined by (I, P) = (I2, P). This is another conic
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Fig. 3. Configurations of two ellipses in which one of their foci and its associated
directrix are depicted in the same color as that of the corresponding ellipse. The radical

conic appears in green. The directrices of both ellipses are parallel, but in one case their
eccentricities are different (left), and in the other case they coincide (right).

N\
N

that belongs to the pencil defined by Iy and Iy [20,21]. As any other element
of the pencil, the radical conic contains the intersections of I} and I%.

Now, let us consider two conjugate ellipses. That is, two ellipses with par-
allel focal axes (or, parallel directrices) and the same eccentricity. In this case,
the entries of the 2x2 upper left submatrix of the matrix defining the radical
conic vanish. As a consequence, it can be easily proved that the radical conic
degenerates into the line with equation

2 [(042—041) — (hg—hl)ez COS 9] T+ 2 [(ﬂQ—ﬂl) — (h2—h1)62 sin@] Yy
+e*(h3=hi) + af—ab + f{—6; = 0. (7)

The intersection of this line with either Iy or I'; gives us the points of intersection
between I'7 or I. As a clarifying example, consider the two ellipse pairs in Fig. 3.
One of its foci and associated directrix are depicted in the same color as that of
the corresponding ellipse. On the left hand side, the directrices of both ellipses
are parallel, but their eccentricities are different. In this case the radical conic,
shown in green, is another ellipse. On the right hand side, when they also have
the same eccentricity, the radical conic degenerates into a line (Fig. 3-right).
We conclude that two conjugate ellipses can have no more than two intersection
points.

4 Application to the design of 3R robots

The analysis of the inverse kinematics of 3R robots using Distance Geometry
has been extensively treated in [8,6]. Next, we summarize the main points of
this formulation needed to apply the previous results to the kinematic analysis
and design of 3R robots.

Consider the 3R regional robot depicted in Fig. 4, left. Each revolute axis is
defined by two points on it. Their exact location along the axes is irrelevant as
long as they are far apart to avoid numerical instabilities. Let us denote these
points P, ..., Ps, and Pr, the location of the robot’s end-effector. Since the dis-
tances between the points in two consecutive axes do not depend on the robots’
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Ps,

o P5

Fig. 4. A general 3R robot (left), and its associated bar-and-joint framework consisting
of two tetrahedra —in green and red— and two triangles —in gray and blue— (right).

configurations, we can associate with this robot the bar-and-joint framework
appearing in Fig. 4-right. In most distance-based formulation, it is necessary to
incorporate in the problem formulation the orientations of the tetrahedra ap-
pearing in the corresponding bar-and-joint framework, but this is not necessary
in this particular problem [8].

If the z-axis of the world reference frame is aligned with the first revolute
joint axis, then it is convenient to express the robot’s end-effector location in
cylindrical coordinates (¢, p, z). As a result, the inverse kinematics of this robot
boils down to obtaining the rotation angles 6> and 63 from z and p, and trivially
obtaining 61 from ¢. Therefore, the inverse kinematics of this robot is essentially
equivalent to derive s7 3 and s74 from si7 and so 7, where s; ; stands for the
squared distance between P; and P;. To this end, observe that the sets of points
{P1, Py, P3, Py, P;} and {P3, Py, Ps, Ps, P;} define a simplex in R*. Nevertheless,
since we are in R3, their volume is zero. This translates, using the theory of
Cayley-Menger determinants, into the following algebraic conditions:

0 1 1 1 1 1 0 1 1 1 1 1
1 0 s12 51,3 81,4 81,7 1 0 s34 535 53,6 S3,7
1 s01 0 823 824 527 ~0 1s43 0 s45 Sa6 Sa7|
=0 and =0. (8)
15371 832 0 s34 837 1 s53 s54 0 s56 857
1 5471 S42 523 0 sa7 1 563 864 s65 0 s67
1 s71 s72 s73 s74 O 1 s73 s74 s75 s76 O

The above two equations are quadratic forms in the unknown distances s3 7 and
s4,7. They actually represent two real ellipses, A : 27 Az =0 and B: 2Bz =0,
where z = (s3,7,84,7,1) and

a1 ¢1 dp az c2 da
A= C1 bl €1 and B = (6] bz €2 . (9)
di e1 f1 da ea f2

The entries of A and B can, in turn, be expressed as follows:
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01 1 1 01 1 1 01 1 1
10 S1,2 S1,4 10 81,2 81,3 10 81,2 81,3
a1=— s bi=— s 1= 5
1512 0 s24 1512 0 s23 1512 0 s23
1514524 0 1513823 0 151,4 52,4 53,4
0 1 1 1 1 1
01 1 1 1 01 1 1 1 1 0 $10 8148 43
1,2 51,3 51,4 [51,7
10 51251417 10 512 51957 FL]
d 1si2 0 s e 1si2 0 s f Loz O 823 804 [F2]
1=— 1,2 2,4[52,7 1=— 1,2 2,3[52,7 1=
’ ’ 181,3 52,3 0 53,4 0 ’
1s1,4824 0 0 1s13823 0 0
1 0 1 0 1s14 82,4834 0 0
51,3 52,3 53,4 51,4 52,4 53,4
IpAEz 0 0 0
01 1 1 01 1 1 01 1 1
a 10 S5,6 S5,4 b 10 S$5,6 5,3 c 10 S$5,6 55,3
2 = — o = — o =
185,5 0 S6,4 ’ 185,5 0 56,3 ’ 155,6 0 56,3 ’
1554864 0 1553563 0 1 55,4 56,4 53,4
o1 1 1 1 1
o1 1 1 1 o1 1 1 1
1 0 5568538554857
1 0 s5,6854857 1 0 556853857
1s56 0 56,3 86,4 86,7
do=—|1s56 0 S6,456,7,e2=—|1556 0 S6,386,7|, fr=
1553563 0 s34 0
185,4 56,4 0 0 185,3 56,3 0 0
1854864834 0 0
1553563834 0 1554564834 0

1 S$5,7 $6,7 0 0 0

Since s1,7 and sg 7 —the boxed entries in the above determinants— depend
on the robot pose, only dy, e;, and f; are variable. This has a very important
consequence: the ellipses A and B have constant eccentricity and their directrices
keep constant orientation, independently of the robot pose.

Without loss of generality, we can assume that si 2 = s5 . If, in addition by
design, 81,4 = S4,5, 524 = 54,6, 51,3 = 83,5, and $2,3 = 53,6, then a; = ag, bl = bg,
and ¢ = c1. As a result, the ellipses A and B become conjugate: they have
the same eccentricity and parallel directrices, independently of the robot pose.
Therefore, the maximum number of intersection points between them is two. It
can be verified that these constraints make the first and the third revolute axes
intersect. The intersection point changes as the second revolute angle varies. This
result allows us to identify a family of 3R robots with simple inverse kinematics.
A member of this family is analyzed in the next section.

5 Example

According to (8), let us suppose a 3R robot whose associated bar-and-joint
framework leads to the following closure algebraic conditions:

1 1 1 1 1 1 1 111
0 9 13 4 S1,7 0 9 1331 83,7
9 0 31 13 sa7 9 0 4 13s47|

=0 and 13 4 09 81

31 13 9 0 90
83,7 S4,7 8190 0

’

13 31 0 9 s3r
4 13 9 0 Sa,7
1s1,78278378547 0
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Fig. 5. Singularity locus of the analyzed 3R robot in the distance space defined by
(81,7, s2,7). Inside the region determined by this curve locus, there are two solutions for
s3,7 and s4,7, one solution just on it, and none outside the region.

The location of the robot’s end-effector determines s; 7 and s 7. Once they
are set, s3 7 and s47 can be obtained as the intersections of A and B. In gen-
eral, two ellipses intersect in up to four points. Nevertheless, since this design
satisfies the conditions needed for both ellipses being conjugate, they intersect
in no more than two points. Considering that a singularity arises when any two
solutions coincide, the singularities of this robot necessarily correspond to those
configurations in which both ellipses are tangent (or, equivalently, to those con-
figurations in which the radical line is tangent to any of the two ellipses). This
tangency condition leads to the curve shown in Fig. 5, top-right. Each point in
this plane defined by (s1,7,$2,7) determines a configuration of the two ellipses
in the plane defined by (ss,7,s4,7). The configurations for five points along the
line s1,7 = 79 are also shown in Fig. 5. The points inside the singularity locus
correspond to configurations of the two ellipses intersecting at two points; and
outside this region, to non-intersecting ellipses.
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We conclude that, while a gen- 155y
eral 3R is quartically-solvable, the an-
alyzed robot class is quadratically- /,/”‘Zi’\\\
solvable. Nevertheless, this result /:/T ; \\

comes with a final twist that arises
when translating the obtained singu-
larity locus in the distance domain

. A\

(s1,7, S2,7) into the robot’s workspace b \ | /

. . . . . \\ N /
described in cylindrical coordinates N L7 ‘ /

. 7
(¢, p,z). To this end, we have to ob- S~ \\7&(,////
serve that
S12 — So7+ 817 15 -10 -5 0 5 10 15
—sazmrkar ) g

2~ /81.2
' Fig. 6. The result of mapping the singular-

p= :t\/52 7— (/512 —2)%2. (11) ity locus in Fig. 5 onto the xz cross section
of the robot’s workspace.

This one-to-two mapping is invari-

ant in ¢. Due to this invariance, the

robot’s singularity locus is axisymmetric with respect to the z axis. Fig. 6
presents the outcome of mapping the singularity locus in Fig. 5 onto the zz
cross section of the robot’s workspace. The resulting plot can be imagined as
two overlapping crescent-like shapes. These two symmetric shapes arise due to
the duplication resulting from the + sign in (11). As a result of this overlapping,
all the points of the singularity locus in Fig. 5 are not translated into boundaries
of the robot’s workspace, some appear as internal singularities and four higher-
order singularities show up at p = 0. Moreover, every point in the overlapping
region has four solutions for the inverse kinematics problem despite the analyzed
robot is quadratically-solvable.

6 Conclusion

A wrist-partitioned 6R robot consist of a 3R regional robot and a spherical wrist.
The 3R regional robot is usually designed so that its inverse kinematics can be
simplified to compute the roots of two quadratic polynomials thus leading to up
to four solutions. This is accomplished by including orthogonal or parallel con-
secutive joint axes. We have shown that it is possible to implement 3R regional
robots with simple kinematics without relying on this kind of simplifications.
The study of the power of a point with respect to an ellipse allowed us to inter-
pret geometrically the symmetric matrix entries associated with the quadratic
form defining an ellipse. This, together with the use of a distance-based formu-
lation, has been fundamental to identify this family of 3R robots. We conjecture
that other families with equally interesting properties can be identified using the
presented approach. Our current efforts concentrate in finding them.
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