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Abstract— As robots move from laboratories and industries
to the real world, they must develop new abilities to collab-
orate with humans in various aspects, including human-robot
collaborative navigation (HRCN) tasks. Then, it is required
to develop general methodologies to evaluate these robots’
behaviors. These methodologies should incorporate objective
and subjective measurements. Objective measurements for
evaluating a robot’s behavior while navigating with others can
be accomplished using social distances in conjunction with task
characteristics, people-robot relationships, and physical space.
Additionally, the objective evaluation of the task must consider
human behavior, which is influenced by changes and the
structure of their environment. Subjective evaluations of robot’s
behaviors can be conducted using surveys that address various
aspects of robot usability. This includes people’s perceptions
of their interaction during their collaborative task with the
robot, focusing on aspects such as sociability, comfort, and task-
intelligence. Moreover, the communicative interaction between
the agents (people and robots) involved in the collaborative
task should also be evaluated. Therefore, this paper presents
a comprehensive methodology for objectively and subjectively
evaluating HRCN tasks.

I. INTRODUCTION

If we plan to have robotics partners in the future, these
partners need to be embedded with human-like navigation
behaviors. Also, these behaviors need not only to focus
on accomplishing the task satisfactorily. These behaviors
must include those robots move predictably and socially to
increase the number of potential users for these robots and
the satisfaction to use the robots [1]–[3], as well as people’s
trust in robots [4], and people’s comfort [5], along with
people’s perception of safety [6].

Thinking on this objective, we need to evaluate any HRCN
(Examples in Fig. 1) in a way that includes the same social
norms that humans use. For example, by using works like
the proxemics’ rules of Hall [7] and other studies [3], [8]–
[10]. Proxemic rules are related to how humans use their
surrounding space. Suppose we focus only on human-human
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1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France. 7,
avenue du Colonel Roche BP 54200 31031 Toulouse cedex 4, France.

2The authors are Institut de Robòtica i Informàtica Industrial (CSIC-
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Fig. 1: Different types of HRCN tasks where authors have tested
the objective and subjective metrics presented. Up-left: Robot Side-
by-Side Accompaniment. Up-right: Robot V-Form Accompani-
ment. Middle: Robot Accompaniment Plus Approaching. Bottom:
Robot Approaching.

social interactions. In that case, this use of the space is
defined as several interpersonal distances to socially interact
between humans depending on their level of familiarity as
defined by Hall [7].

This use of the space can be translated to Human-Robot
Social Interactions and, more concretely, to Human-Robot
Collaborative Formations while navigating together or other
types of formations to perform different tasks. For example,
this work [3] includes several examples of other types of
proxemics. For example, when a person is looking at a
bulletin board, there are specific unwritten rules that humans
respect, such as not passing between that person and the
bulletin board that the person is looking at. The proxemic
rules include these rules because they are related to physical
distances around people. However, in this case, they refer to
interactions between humans and objects, not social interac-
tions between humans, that the robot should consider in its
behavior, just like the humans do.

Many recent works in Human-robot collaborative nav-
igation use proxemics [11]–[23]. Then, it is essential to
have some guidelines to develop metrics to evaluate the
robot behavior using proxemics. In addition, we can use
proxemics and the following guidelines in more situations
than only human-robot collaborative navigation, as several
works outside this field use proxemics [20], [24]–[39]. For
example, we can use them with a robot serving food at a
table, Fig.{3 and 4}-left.

Furthermore, we want these robots to be helpful to the
general population. In that case, we must evaluate the robot’s



behaviors regarding Usability, Social acceptance, User expe-
rience, and Societal impact (USUS) following some guide-
lines [40]–[45] to evaluate the everyday user experience
during the HRI. Consequently, it is critical to develop
methodologies to evaluate these behaviors concurrently with
the robot’s behaviors. Nonetheless, it is a challenging task
to create various generic metrics, which requires significant
effort and time. It may take several years to engineer diverse
collaborative robot navigation behaviors and corresponding
metrics for each of these behaviors.

This paper presents two main contributions. Firstly, a
comprehensive guide to develop objective metrics for any
human-robot collaborative navigation (HRCN) using prox-
emics, Sec. II. To ensure an objective assessment of the
robot’s behavior, the proxemic definitions should consider
various factors, such as the robot’s physical appearance, the
person’s social relationship with the robot, the social forma-
tions required to execute the task, and how the environment
and people’s behavior affect these formations.Secondly, a
general survey questionnaire is provided that can be adapted
to any HRCN to evaluate the robot’s behavior concerning
people’s emotional experience during interaction, Sec. III.
These questions assess the perceived comfort, sociability,
and intelligence of the robot’s behavior while performing
the collaborative task with the person. Additionally, some
questions are included to evaluate the communicative inter-
action between all the people and robots involved in the task,
which covers both verbal and nonverbal communication, as
these are formulated in a general sense.

II. OBJECTIVE METRICS

To obtain an objective evaluation of the robot’s social
behavior, various studies related to proxemics, social inter-
actions, and people’s comfort can be employed [3], [7]–[10],
[46]–[48] because humans use these behaviors in their social
relations between them. Then, it is logical to think that we
can use an adaptation of those proxemics works in our robot’s
behaviors. These robots’ proxemics rules will be slightly
different from those used with humans because these areas
of interaction differ depending on the robot’s type, task, and
relation with it. Also, the environment can influence these
interaction areas defined by proxemic rules to avoid obstacles
or people. So then, these guidelines should consider these
four aspects (type, task, relation, and environment) to easily
adapt the proxemic rules to the robot’s behaviors. Finally,
in several of our previous works, we have demonstrated that
we can use and adapt these proxemic rules in different tasks
of HRCN like approaching, accompaniment or both at the
same time [16], [49]–[52], Fig. 1. Then, the next metrics
allow evaluating the social formation to perform any robot’s
collaborative navigation task.

A. Consider the robot type & relation in proxemics

Robot’s physical (or ”personal”) area is determined by
their size and appearance. To consider the robot’s physical
size, we need to know the robot’s volume. Furthermore,
for each different task, the position where the robot must

Fig. 2: Personal space plotted for robots and humans.

be placed will change taking into account the formation
of said task (explained in Sec. II-B). Based on this, the
robot’s personal space can be defined and located within
the formation in the best area for the robot to perform
the task. Additionally, if the robot’s velocity is taken into
consideration, the area should be adjusted to include a safety
margin of free space to ensure the robot has enough distance
to stop before colliding with any obstacle. The robot’s
appearance can transform this physical area into a subjective
area, which will increase to make the person feel comfortable
during the interaction. This fact can be similar to the relation
with the robot. For people who feel familiar with the robot,
their personal distances between them and the robot can be
smaller, and for unfamiliar people, these distances should
be greater [53]. In addition, this area can be similar to a
person’s personal space considering her personality. These
last cases are more subjective than robot size. Then, there
is still much work to be done to know these distances.
Examples of different cases of a robot’s personal area to
account for its appearance and velocity can be seen in Fig. 2,
as well as how people’s personal space can change depending
on their personality.

Several works in the literature explore the physical space
around people depending on several aspects [3], for example,
different shapes of personal space, etc. Then, we recommend
that the readers explore the state-of-art works and find the
best person and robot’s personal space for their implementa-
tion. Also, we have explored these distances for different
velocities and positions between robot and person in our
previous work [47], and we confirmed through experiments
these findings [16], [54].

B. Consider the robot task in proxemics

In order to tailor the metrics for a specific task, it is
necessary to have an understanding of the physical formation
that individuals should adopt when carrying out the task, the
social relation between the members of the group, as well as
their preferred personal space. Then, these proxemics include
several areas with different meanings of interaction, and we
need some rules to create these different areas. These areas
are: the area where people can notice the interaction with the
robot (Interaction area) in Sec. II-B.1, the best area where
the robot should be located to perform in a good way the
task (the best area to perform the task) in Sec. II-B.2, and
the areas where the robot should not enter (forbidden areas)
in Sec. II-B.3.

1) Definition of the interaction area: The robot should
stay inside this area to allow people to notice that they are
socially interacting. This area delimits the area of interaction
between humans and robots, and it is from the human point



Fig. 3: People’s interaction areas and forbidden areas. Also, these forbidden areas should include areas around the objects.

of view. Then, it is centered on the human position. Outside
this area, people should not feel they are interacting with the
robot, which corresponds to one of the two types of forbidden
areas in red. However, it is not the best area for the robot to
perform the task. So within this area, the value of the robot’s
performance will be half of any scale. The forbidden areas
will be described in Sec. II-B.3, and the best area to perform
the task will be described in Sec. II-B.2.

For the interaction between one robot and one person,
we can look at Hall [7] studies for the social distances
between two people. We focus on these studies because some
researchers agree that proxemic rules between a person and
a robot should be similar to the ones among people [55], and
we have followed this idea among all our previous works.
Then, the area best suited for people’s social interactions
with robots is the area of social distances, as we currently
do not have an intimate or personal relationship with robots.
In addition, these types of robots are called social robots
because they are designed to maintain social interaction with
us. Therefore, it is logical that through real-life experiments
from our previous works [47], [54], we have found that the
area that best adapts to these interactions is the social area
defined by Hall [7].

In cases of one-person and one-robot interaction (or in-
teractions with more than one person but without other
obstacles or people between the robot and the person), this
area of social distances is the best one to delimit the inter-
action between people and robots. For example, this is the
case of the robot’s one-person accompaniment, the robot’s
group accompaniment when the robot is at the center of
the formation that can interact equally with both people, the
robot’s waiter for the blue person, and the approaching where
the triangle formation allows the same robot’s interaction
with both people, see Fig. 3.

In addition, the size of this area should be enlarged
depending on the number of group members, the robot’s
position inside this group, and the environment’s elements.
Then, this area should increase if there are other humans or
objects between the robot and the person. For example, this
is the case of the robot waiter for the different people at the
table and the robot’s accompaniment of a group of people
when the robot is at the side of the formation. In the case of
the waiter, depending on the person’s position on the table,
this distance is smaller or larger with respect to the robot’s

Fig. 4: Interaction areas and forbidden areas only respect people
for different tasks. Also, these forbidden areas should include areas
around the objects, but this is more related to the robot’s collision
avoidance than with the robot’s sociability.

waiter position, visual examples in Fig. 4.
2) Definition of the best area to perform the task: The best

task achievement closely relates to the formation of the group
of people to develop this task, the robot’s physical position
inside the group, and the robot’s physical space (Sec. II-A).

Regarding the physical formation to perform a task, we
should know this specific formation for the case of people
interactions. For example, in the case of group accompa-
niment, we can have two different formations to do the
accompaniment: side-by-side and V-formation, as shown in
Fig. 5. We have extracted these formations from studies
about group people dynamics that study these people for-
mations [56]–[58]. If more than one robot position within
the group is possible, we must consider them to develop
different metrics for all these cases. For example, in these two
different group formations for two people accompaniment,
there are two different metrics to consider depending on the
two different robot’s positions inside the group formation, at
the lateral or the center [51], [52], see Fig. 5 As we have
noticed in Fig. 5, the best robot position changes depending
on these two factors: the formation to perform the task and
the position of the robot inside the group formation.

Furthermore, a previous task can coerce this best area to
perform the task. For example, it is the case of combining
a people accompaniment with approaching a second person.
In this case, the robot can select two possible positions to
perform a triangle formation with both people, and the best
one should be selected to have a more natural robot behavior.



Fig. 5: Representation of how all the interaction and best robot areas change depending on the task. In this case, for the Side-by-Side
and V-formation types of accompaniments.

Fig. 6: The illustration demonstrates how the best robot interaction
area changes depending on development of the previous task (side-
by-side accompaniment).

Then, the robot should select the position of the triangle
formation nearest to its previous position on one of the sides
of the person it accompanies. You can see this behavior in
the two left images of Fig. 6. Several previous researchers
used this formation for people interaction similarly to us [3],
[59], [60]. Also, this formation is sometimes generalized for
more than three people as an O-shape formation.

Finally, the reader should consider the robot’s physical
area to set up the radius that delimits the best area to perform
the task. Also, this area will be more realistic if you consider
the robot’s personal space. For the robot case, this space is
the security distance that it needs to stop in case that any
object or person interferes in its path. Regarding our robot,
it is 0.3 cm from its sensors, which are located at 0.5 m of
its center. It is to say, the minimum area for this best area
needs to be 1.3 m around the center of the robot position.
This area is drawn in green in all the figures from this point
until the end of this paper.

Furthermore, the reader should notice that these metrics
consider the best position for humans, but we can not control
them. However, to design the people’s positions within the
formation, we can expect people to behave similarly to how
they would do with other people in that situation. We can
expect this behavior because it is the most similar interaction
that people know. Therefore, the robot will have the best
performance value if it is located in these green areas that
represent the best area to perform the task for the robot. In

the case of the scale from 0 to 1, it corresponds to the value
of 1.

3) Definition of the forbidden areas: These metrics must
consider the worst areas where the robot can not be located.
When the robot is inside these areas, its performance is 0,
and in some cases, we also need several security measures to
prevent the robot will enter there in any case. For example,
with a security system that stops the robot when any object
enters inside its radius of security, 0.3 m from its sensors.
Two possible cases need to be considered to find these
forbidden areas:

First, the robot, in any case, should be allowed to invade
any personal space of any human. Then, forbidden areas
should be located surrounding humans. Also, the form of
these areas can be different depending on if the human is
stopping or walking, and should include the human veloc-
ity. In all our previous works, we have included human
velocity using the prediction of human movement. Then,
we propagate static people’s forbidden areas around them
using their velocity (Fig. 7-left). Consequently, our forbidden
areas around humans do not include the velocity because
we include it in the propagation. However, suppose other
researchers do not use people’s prediction and propagation
of their movement. In that case, the people’s velocity should
be included directly in the shape of these forbidden areas,
similar to the case of the robot in Fig. 2. In addition, these
areas can include the level of familiarity that the person
has towards the robot. For example, extroverted people that
like robots should prefer near distances between them, and
introverted people or afraid of robots should prefer higher
distances between them, which also means more or less
personal space for the person, Fig. 2 and Fig. 7-right.

Second, if the robot goes out of the area of social distance,
the person can not notice that it is interacting with her. So
then, this situation should be avoided by the robot. Outside
the area of social distances, there is another forbidden area
for the robot. However, in this case, it does not need any
security measures to prevent the robot from entering there
because it will not harm anyone.

C. Consider the environment in proxemics

These metrics should consider the group’s environment
because the people groups’ formations change depending on



Fig. 7: Left: we show how the personal space of the person is
propagated due to its velocity and the uncertainty of the person’s
movement while the time increases. Right: we show how the
distance of accompaniment can increase due to the accompanied
person’s personality.

Fig. 8: Best robot’s area. It depends on the formation changes due
to the environment because the group of people formations should
change their structure to avoid obstacles together.

it to overpass obstacles together or use the environment’s
elements. For example, in the example of the chairs, these
areas change depending on where people are seated in the
chairs, Fig. 4. This dependence on the environment can cause
having infinite different performances, like in the case of
side-by-side accompaniment walking through different types
of corridors, Fig. 8.

Furthermore, the position of these areas depends simul-
taneously on the behaviors of the people interacting with
the robot, for example, in the case of the side-by-side while
approaching a person where there is an obstacle near the
approached person. The movements and best positions of
the robot to accompany the person and finally to approach
the other person depend on these two people’s behaviors.
For example, suppose they allow enough space for the robot
to move more naturally. In that case, these areas will be
different that in the case of these two people prefer to make
the minimum effort and induce the robot to surround the
accompanied person to interact with the approached person.
See Fig. 9.

So then, researchers must use methods that compute
dynamic metrics that will be modified automatically, consid-
ering the task, the position of all the group members during
the task performance, the environment’s configuration, and
the behavior of the people interacting with the robot. There
are more examples in [49], [52].

Fig. 9: Best robot interaction area. It changes depending on
the position of people interacting with the robot concerning the
environment.

III. SUBJECTIVE METRICS

We can use the theory of USUS questionnaires [40] to
evaluate the robot behavior in a subjective way considering
the user’s feelings about their experience while they perform
the tasks together. We have selected to evaluate the robot’s
sociability, comfortableness and ”task-intelligence”, and the
group’s communicative interaction. Our proposed questions
can be seen in Table I. These questions can be used in any
Human-Robot Collaborative task because these are presented
in a general way and can also be adapted to other different
tasks than navigation tasks. However, the researchers need to
customize these questions for the concrete number of agents
(humans and robots) involved and the tasks (accompaniment,
approaching, remove together the objects from a table to a
container, searching for objects or people in an environment,
or other) because non-experts in robotics tend to lose focus
on the task they have just completed with the robot if
generic questions are used. This fact has been pointed out
during several previous tests, and the presented questions
have demonstrated their utility in conducting user studies in
several works on HRCN [16], [51], [52], [54].

IV. EXPERIMENTAL EVALUATION

The presented objective and subjective metrics were em-
ployed in over 20.000 simulations and 600 real-life experi-
ments to evaluate the 5 different types of robot’s collaborative
navigation [16], [51], [52], [54], [61], including 6 user
studies. In this paper, we provide a summarized overview of
all the results, which serve as experimental evidence for the
effectiveness and usefulness of these metrics.The formulas
for these metrics, along with two additional formulas to
assess distance and angle failures, can be found in the
author’s PhD thesis [62]. Furthermore, these documents will
be made available on the author’s website1 in the coming
months, or interested readers can directly request them. Our
chosen maximum velocity for the robots is 1.2 m/s, which
corresponds to the typical walking speed of humans. We

1https://elyrepiso.wordpress.com/



Survey’s Questions
Robot’s Comfortableness Scale
How comfortable have you felt during the task?
How safe have you felt doing the task with the robot?
How comfortable have you felt with the robot’s position
and/or movements while you are performing the task?
Robot’s Sociability Scale
How natural was the robot’s behavior during the task?
How interactive was the robot’s behavior during the task?
Robot’s Intelligence Scale
How intelligent did the robot behave
in terms of task performance?
How well did the robot anticipate to your’s and other’s
movements during the performance of the task?
Group’s Communicative Interaction
How easy was the communication with your partner
during the task performance?
How easy was the communication with the robot
during the task performance?
How easy was it to see the other person during the task?
How easy was it to see the robot during the task?

TABLE I: Survey questions. All questions were asked on a
7-point scale from ”Not at all” to ”Very much”.

assume a constant acceleration over a 0.2-second iteration
time that has our robot controller. Our physical robots (Tibi
and Dabo) have a size of 1 meter in diameter.

Regarding the objective metrics, the results obtained in all
these experiments using the proxemic metrics are shown in
Tab. II. The accompanying images of real-life experiments
depicted in Figure 1 demonstrate that the robot’s performance
in social formations closely resembles that of humans, further
supported by the logical values obtained in the table of
results. Additional images from simulations and real-life
experiments can be found in the main author’s previous
papers. Thus, we can assert that these metrics have been
experimentally proven effective in evaluating various types
of collaborative navigation methods for robots.

In terms of subjective metrics, we employed Cronbach’s
Alpha to assess the internal consistency (or reliability) of our
questionnaires across all user studies. All scales exhibited a
reliability level exceeding the commonly used threshold of
0.7 to demonstrate a good consistency. It is worth noting
that our questionnaires utilized Likert scales to transform
qualitative data into quantitative data. Reliability in this
context refers to the ability to reproduce results under
similar conditions. For validity, we employed a test-retest
approach, iterating as necessary to ensure that the questions
effectively measured the desired hypotheses. Validity refers
to the accuracy of a measure, it is to say, whether the results
really represent what they are supposed to measure. In our
experiments, we have evaluated the Robot’s comfortableness,
sociability, and intelligence perceived by the volunteers and
also the group’s communicative interaction as Tab. III shows.
Our hypotheses were always to infer if volunteers consider
two types of collaborative navigation as equal. Initially,
the method is compared with the teleoperation to asset if

it was able to perform as similar as possible to human
behavior. Remember that in the ANOVAs test plus Pairwise
comparison with Bonferroni, the p-value means no statistical
difference when it is p − value > 0.05, and it means
statistic difference when p − value < 0.05. In all cases
with a p− value > 0.05, our hypothesis that both methods
were considered equal by the volunteers was confirmed.
However, we did find a statistically significant difference in
the case highlighted in light red. Analyzing the mean values
of robot comfort for the ASP-VG vs. ASP-SG, we observed
a higher level of comfort reported for ASP-SG. Based on
the volunteers’ comments, we deduced that for people were
more comfortable if they can see and feel the robot near
them (ASP-SG case).

V. CONCLUSIONS

This paper provides a comprehensive set of guidelines for
researchers seeking to develop objective and subjective met-
rics to evaluate a wide range of human-robot collaborative
navigation (HRCN) tasks, such as solo navigation, guidance,
accompaniment, approaching and so on. The objective met-
rics outlined in the paper take into account various social
factors identified by Hall [7] and transform them to include
the formation of the task, the relationship between the person
and the robot, the physical appearance and personality of the
agents, the positions of other people and the structure of the
environment. Additionally, these metrics consider people’s
behavior in relation to their environment.

On the other hand, the subjective metrics are concerned
with assessing people’s perceptions about the robot’s com-
fortableness, sociability, intelligence, and group communica-
tive interaction while they interact together. Finally, the paper
highlights the effectiveness of these metrics in evaluating
different types of HRCN with potential users, as evidenced
by previous works conducted by the authors.

The guidelines presented in the paper offer a solid foun-
dation and a source of inspiration for other researchers
who wish to develop metrics to evaluate their experiments
in the field of HRCN, as well as other types of human-
robot collaborative tasks. By adhering to these guidelines,
researchers can ensure that their metrics are comprehensive,
accurate, and reliable, thereby advancing the state of the art
in human-robot collaboration.
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Catalunya approved the study, with title: Navegación Robot-
Humano Colaborativa en entornos con personas y predicción
de movimiento humano. The Ethics Review Board decision
number is: 2021-11 UPC. Then, informed consent was ob-
tained from all individual participants included in all studies.

REFERENCES

[1] V. Fleishman, S. Honig, T. Oron-Gilad, and Y. Edan, “Proxemic
preferences when being followed by a robot,” Israeli Ministry of
Science and Technology, Report, pp. 3–12 060, 2018.

[2] K. Wolf and L. Lischke, “Urban proxemics for public guidance,”
in Proceedings of the NordiCHI Workshop on Ubicomp beyond De-
vices: People, Objects, Space and Meaning, ACM, vol. 10, 2014, pp.
2 639 189–2 654 842.



Simulation experiments: Area metric extracted from the proxemic metrics
One Person
Side-by-Side

Two Person
Side-by-Side

Two Person
V-form

Approaching
with Splines

Approaching
using line
intersection

Approaching
using optimal
intersection

mean 0,8639 0,7813 0,7582 0,9719 0,6121 0,8163
std (± 0,0293) (± 0,0976) (± 0,0685) (± 0,0722) (± 0,0086) (± 0,0111)

Real-life experiments: Area metric extracted from the proxemic metrics
mean 0,7764 0,8049 0,7089 0,9599 — 0,8355
std (± 0,0478) (± 0,1373) (± 0,0651) (± 0,0538 ) — (± 0,0168)

TABLE II: Results of all experiments about the mean and standard deviation of the Area performance metrics extracted from
the proxemic metrics of this paper. Notice this value is always between 0 and 1, as said previously. For the approaching
using line intersection, real-life experiments were not done because the optimal intersection outperforms this behavior.

Simulation experiments: Area metric extracted from the proxemic metrics
ASP-SG vs
Teleop

ASP-VG vs
Teleop

ASP-VG vs
ASP-SG

ASP-VG lat-
eral vs central

ASP-SG lat-
eral vs central

Accompaniment
plus approaching

Cronbach’s
alpha

0,71 0,75 0,7 0,82 0,82 0,72

ANOVAs tests plus Pairwise comparison with Bonferroni
Robot’s Com-
fortableness

p-value=0.2 p-value=0.2 p-value=0.02 p-value=0.2 p-value=0.91 p-value=0.01

Robot’s
Sociability

p-value=0.5 p-value=0.9 p-value=0.2 p-value=0.2 p-value=0.41 p-value=0.1

Robot’s Intel-
ligence

Not Measured Not Measured p-value=0.2 p-value=0.85 p-value=0.8 p-value=0.2

Group’s
Commu-
nicative
Interaction

Not Measured Not Measured p-value=0.54 p-value=0.81 p-value=0.01 Not Measured

TABLE III: All user studies results using the questioners of the current paper

[3] J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics
theory to socially-aware navigation: A survey,” International Journal
of Social Robotics, vol. 7, no. 2, pp. 137–153, 2015.

[4] K. R. MacArthur, K. Stowers, and P. Hancock, “Human-robot in-
teraction: Proximity and speed-slowly back away from the robot!”
in Advances in human factors in robots and unmanned systems.
Springer, 2017, pp. 365–374.

[5] E. Pacchierotti, H. I. Christensen, and P. Jensfelt, “Evaluation of
passing distance for social robots,” in Roman 2006-the 15th ieee inter-
national symposium on robot and human interactive communication.
IEEE, 2006, pp. 315–320.

[6] P. A. Lasota, T. Fong, J. A. Shah, et al., “A survey of methods for
safe human-robot interaction,” Foundations and Trends® in Robotics,
vol. 5, no. 4, pp. 261–349, 2017.

[7] E. T. Hall and T. Edward, “Hall. the hidden dimension,” Anchor Books
New York, vol. 20, p. 71, 1969.

[8] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[9] S. Park and M. M. Trivedi, “Multi-person interaction and activity anal-
ysis: a synergistic track-and body-level analysis framework,” Machine
Vision and Applications, vol. 18, no. 3-4, pp. 151–166, 2007.
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