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Abstract— One of the main challenges for successful human-
robot collaborative applications lies in adapting the plan to the
human agent’s changing state and preferences. A promising
solution is to bridge the gap between agent modelling and
AI task planning, which can be done by integrating the
agent state as action costs in the task planning domain. This
allows for the plan to be adapted to different partners, by
influencing the action allocation. The difficulty then lies in
setting appropriate action costs. This paper presents a novel
framework to learn a set of planning action costs considering
the preferred actions for an agent based on their state. An
evolutionary optimisation algorithm is used for this purpose,
and an action outcome simulator is developed to act as the
black-box function, based on both an agent model and an
action type model. This addresses the challenge of collecting
data in HRC real-world scenarios, accelerating the learning for
posterior fine-tuning in real applications. The coherence of the
models and the simulator is proven through a conducted survey,
and the learning algorithm is shown to learn appropriate action
costs, producing plans that satisfy both the agents’ preferences
and the prioritised plan requisites. The resulting system is a
generic learning framework integrating components that can
be easily extended to a wide range of applications, models and
planning formalisms.

I. INTRODUCTION

The topic of Human-Robot Collaboration (HRC) has
gained substantial attention over the past years, with the idea
of combining strengths from humans and robots to improve
efficiency and productivity in shared plans. However, several
challenges still need to be tackled when developing such
systems for practical real-world applications, such as dealing
with the variable human state, preferences and capabilities.

AI (or automated) task planning frameworks have been im-
plemented to generate and distribute the sequence of actions
required to achieve a shared goal, when given a world model
(domain) with an initial state and a high-level goal (problem).
In a collaborative plan, the assignment of actions to different
agents should be based on the states and preferences of
the contributing members. In our previous work [1], we
targeted the gap between agent state modelling and AI task
planning, by developing a planning framework for HRC
plans integrating the agents’ states into the action costs in the
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Fig. 1. Framework developed to learn the action costs corresponding to
each agent in a human-robot collaboration. The framework implements an
evolutionary algorithm for learning, where the black-box function consists
of an action outcome simulator based on an agent and an action type model,
all designed in this work.

planning domain. This would influence the action allocation
between the agents based on their state, which was defined in
terms of three elements: capacity, motivation and knowledge.
The action costs reflecting the agent model elements must
be given appropriate values, as these will have a direct
impact on the generated plan, and therefore on its successful
execution by the contributing agents. Manually estimating
the costs is a difficult task, and can lead to unexpected results.
Learning from experience constitutes a valid approach for
this purpose [2], [3], but collecting training data in HRC
applications is a well-known challenge. This creates a need
for the development of a human action simulator, which is in
turn hindered by the lack of appropriate models. In addition,
we recognise that learning over a collection of domains
with different structures constitutes a major challenge in
learning for AI task planning. We propose to address these
challenges by developing the novel framework shown in
Fig. 1, with the objective of facilitating and accelerating
the learning of action costs associated with an agent type,
using a simulator in a black-box optimisation algorithm. The
framework includes the following elements, constituting the
contributions of this paper:

• Agent State Model - We define an agent model inspired
by character attributes in role-playing games (RPG)
adapted to human-robot collaborative tasks (Sec. III),
which has not been explored in literature before.

• Action Type Model - Generally, the agent model
elements are assumed to impact the outcome of all
actions in the same way. We recognise that this is not
the case, and define what we call an action type model,
grouping actions in HRC scenarios into a number of



action types based on how much each element in the
agent state model affects the successful execution of the
action (see Sec. IV).

• Action Outcome Simulator - Motivated by the huge
challenge of obtaining real-world data in this type of
scenario, an action outcome simulator is devised (see
Sec. V), providing the outcome of the actions (success
or failure) in a plan based on the agent state and the
defined action type model. This simulator is used as
the black-box function in the learning component.

• Action Cost Learning - Addressing the difficulty of
learning action costs in AI task planning, we present a
general method implementing a black-box optimisation
algorithm to learn appropriate costs, regardless of the
planner and domain structure (see Sec. VI).

The integration of these elements into a framework provides
a fast and effortless way of learning costs that produce adap-
tive collaborative plans, considering the preferred actions for
an agent type. Although the action outcome simulator is not
intended to match a real application, it constitutes a way
of speeding up the initial learning, for future fine-tuning
in a real scenario. The validity of the simulator is backed
up by a user survey in Sec.VII-A, and some examples of
learning appropriate action costs with the proposed method
are presented in Sec.VII-B.

II. RELATED WORK

Human modelling for task planning in HRC. For suc-
cessful human-robot collaborative plans, the task planning
framework should assign the appropriate complementary
actions to the team members based on their state and
capabilities. In our previous work [1], we targeted the gap
between human modelling and its effective integration in
the planning framework. This is something other works
have attempted to do [4], [5], with some of the human
elements modelled including mental state factors such as
knowledge [6], [7], capacity, distraction and fatigue [8]–[10].
Cooper [11] defined the concept of Persona as a fictional
user model that represents archetypical users. This model is
intended to focus only on the attributes that are relevant to
the specific task and context, and has been applied to HRI by
Andriella et al. [12]. This inspired us to look into the field
of RPG [13]–[15], where substantial effort has been made
towards developing models for character definition. Based on
our literature review, these models have not been translated
into HRC robotic applications yet. We believe in the potential
of adapting these models for modelling humans and creating
agent types in HRC scenarios, which is a novelty proposed
in this work. On another note, we realise that none of these
works attempt to model the link between the elements in the
human model and their different effect on each action in the
plan. We refer to this as an action type model, and integrate
it into the framework along with the agent model.

Learning in AI task planning. Learning algorithms have
been used to assist AI planning, by learning action models
and control knowledge to guide the search [16]. In [17]–
[19], evolutionary genetic algorithms are used to guide

AI planning. Learning action costs for symbolic planning
has been explored in a number of works [2], [3], [20],
where the costs are updated from sensed data during plan
execution using methods such as relational decision trees or
an exponentially weighted moving average. The problem of
having to estimate the costs at episode 0 without previous
knowledge is mentioned as unsolved. In the assistive sce-
nario, Canal et al. [21] focus on learning to improve the
robot’s behaviour and adapt it to the user preferences. They
achieve this by modifying the actions’ costs associated with
a user model in task planning, learning from user feedback
at the end of the execution. The challenges of data collection
and learning over different planning domains remain present,
and there does not seem to be significant research on learning
action costs specified in the domain for automated planning.
We therefore explore the possibility of learning these by
using a simulator and a black-box learning framework that
can be deployed for any planner and domain.

Simulating human behaviour. The challenge of collecting
training data in real applications is tackled by Andriella et al.
in [12], where the authors develop a Persona simulator to
learn a robot’s initial policy in a cognitive training scenario.
We translate this concept for action cost learning in HRC
plans using a number of simulated agent types. The lack
of realistic synthetic agents to simulate human behaviour
is recognised as one of the main obstacles to developing
effective HRC applications [22], and is targeted by a number
of works [23]–[26]. The synthetic human agents are far from
being natural and realistic, and achieving this would require
really complex systems to be developed. Without intending
to match this level of realism, we recognise the potential
of developing simple systems targeting only the required
simulated elements (e.g. success or failure based on the
agent state). This accelerates the initial evaluation of HRC
applications, before fine-tuning the case in the real world.

III. AGENT STATE MODEL AND AGENT TYPES

For collaborative plans to be successful, the agents’ states
need to be continuously monitored, so that the plan can
be adapted to any change in them. An agent state model
definition is required and should cover enough elements
representing what the agents’ preferred actions would be
towards the completion of the shared goal. An agent state
model AS comprising m elements E can be defined as

AS = {E1, ..., Em}. (1)

The agent model we define in this work is an extension
of the one presented in [1] and is based on literature
research adapted to HRC scenarios, as described below.
The model includes physical and mental factors, with three
static elements (Knowledge (K), Dexterity (D) and Strength
(S)), and two dynamic elements (Focus (F) and Vitality
(V)), which might vary during the plan execution. Table I
provides a definition of the elements in the agent state model
AS = {K,D, S, F, V }. The selection of these elements has
been made by targeting collaborative tasks examples in both
industrial and household applications, such as tidying up



TABLE I
DEFINITION OF THE ELEMENTS IN THE AGENT STATE MODEL

Element Definition

Knowledge (K) Prior knowledge of the agent on the task.

Dexterity (D)
Agility, coordination and skill in performing

tasks with the hands.Static

Strength (S) Physical power and carrying capacity.

Focus (F)
Level of concentration during the execution

of the task. Opposite of distraction.
Dynamic

Vitality (V)
Levels of energy and activity during the

execution of the task. Opposite of fatigue.

a workshop or cooking. The definition of the three static
elements has mostly been inspired by character attributes in
RPG [13]–[15], representing the character’s natural abilities
and aptitudes. We have taken the most relevant elements
for our target application: strength and dexterity as physi-
cal abilities, and knowledge (encompassing intelligence and
wisdom), as a mental ability. The two dynamic elements
have been chosen based on literature [9], [10], [27], [28],
where the concepts of distraction (versus focus) and fatigue
(versus vitality) have been used, mostly related to the agent
contribution level towards the goal and to the safety related
to this contribution. These five elements have a direct effect
on the successful execution of most actions in a collaborative
task, and imply that an agent might prefer or perform better
in certain types of actions in the plan over other types.

From this model, we can define a set of agent types that
can be recognised during the plan execution by sensing the
current level of each element. Each element is measured
in a discretised way, accepting the values of bad, fair, or
good (0.1, 0.5, or 1). This leads to 243 (35) agent types,
representing a reasonable number of types to cover the
possible agent states during a collaboration. Once these agent
types have been defined, their corresponding action costs can
be learnt. Observe that a single agent can be matched to
different agent types during the collaboration based on their
state. Whenever a change is sensed, a replan is triggered
using the action costs associated with the new agent type,
which might lead to an alternative task allocation.

IV. ACTION TYPE MODEL

We recognise that the successful outcome of each action
is affected differently by the different elements in the agent
model. As an example, grasping a small and pointy object
requires more dexterity and focus than pushing a heavy box,
which requires more strength and vitality. The impact that
each element in the agent state model (AS) has on the
success of an action has been embodied into an action type
model (AM ), containing a number n of action types (AT ):

AM = {AT1, ..., ATn}. (2)

Each action type AT is defined by a set of impact weights
wE describing how much each element E in AS influences
its successful execution as

AT = {wE1
, ..., wEm

} (3)

where m is the number of elements in the agent model.
Each weight can take the values of low (L), medium (M),
high (H), representing a low, medium or high impact on
the successful action outcome. Applying this to the agent
model defined in Sec. III, an action type is defined as
AT = {wK , wD, wS , wF , wV }. When assigning values to
the weights, the sum of the five weights must be equal
to 1. Table II shows the values of the weights for four
action types defined in this work, as well as some examples
in the applications of tidying up a workshop, cooking and
washing clothes. A great number of tasks in a collaborative
environment can be grouped into the defined action types,
both in industrial and household settings. For simplicity, we
only show only four of the possible action types, proving
the concept and the potential of using an action type model.
This can be easily extended to a larger number of types,
as well as applied to different agent models. The main
benefit of developing this action type model is that it can
be used to develop an action outcome simulator, defining
the probabilities of successful execution of an action type
by a certain agent, as presented in the following section.

V. ACTION OUTCOME SIMULATOR

Our ultimate goal is to be able to learn appropriate action
costs associated with an agent state during a collaboration,
so that a successful plan with the right action assignment can
be generated and executed. Collecting good sets of learning
examples is crucial, but obtaining data in the real world is
very difficult and time-consuming. We intend to use an action
outcome simulator in order to learn an initial set of action
costs, which can eventually be refined in the real application.
Note that the simulator is not intended to replace or match the
real world, but to provide a tool for early evaluation of plans
and for learning initial action costs. The simulator developed
in this work determines an action’s outcome (success or
failure) when assigned to a particular agent in the plan. The
probability of success of each action is defined based on
the agent model and the action type model presented in
the previous sections. Let’s define an agent type ag using
the agent state model AS = {K,D, S, F, V } described in
Table I. Applying the action type model from Sec. IV, the
success probability of an action type AT can be written as

p successAT = wK,AT ∗Kag + wD,AT ∗Dag+

wS,AT ∗ Sag + wF,AT ∗ Fag + wV,AT ∗ Vag

(4)

where wK,AT , for example, represents the impact the Knowl-
edge (K) element has on the success of action type AT , as
defined by the action type model. The same applies to the rest
of the elements in the agent model. This can be generalised
to any agent state model and action type model: for an agent
type ag defined using an agent state model AS comprising m
elements (Eq. 1), and an action type model AM comprising
the action type AT (Eqs. 2 and 3), the success probability
of this action type is defined as:

p successAT =

m∑
k=1

wEk,AT
∗ Ekag (5)



TABLE II
ACTION TYPES

Example Actions in Different ApplicationsAction
Type Description Agent Model Impact Weights

{wK , wD , wS , wF , wV } Tidying up a workshop Cooking Washing clothes

1
Actions requiring focus
and previous knowledge of the
task, but no physical effort.

{H, M, L, H, M} Taking inventory. Selecting ingredients. Classifying clothes by
washing temperature.

2 Actions requiring physical
effort, but no focus. {M, M, H, L, H} Carrying a heavy box. Kneading the dough. Carrying a heavy bag

of clothes.

3
Actions requiring strong focus,
but not much previous knowledge
or strength.

{L, M, M, H, H} Carrying cutting tools. Pouring ingredients
on a hot pan. Ironing clothes.

4
Actions requiring strength and
dexterity, but not too much
focus or specific knowledge.

{L, H, H, M, M} Vacuuming the floor
(heavy vacuum).

Grinding chillies with
a pestle and mortar.

Hanging out wet
clothes.

where wEk,AT
represents, for action type AT , the weight that

the element Ek of the agent model has on the outcome of
this action type, as defined by the action type model.

Once the success probabilities of all action types have been
determined, the simulator can be implemented as:

f o r a c t i o n i n p l a n :
g e t c o r r e s p o n d i n g a c t i o n t y p e AT
i f p s u c c e s s A T <= random [ 0 , 1 ]
t h e n : a c t i o n f a i l u r e
e l s e : a c t i o n s u c c e s s

Listing 1. Action Success Simulator

The higher p success is, the less likely the condition for
action failure is to occur. This provides a neat, simple and
generalisable action outcome simulator which, based on a
proper definition of an agent model and an action type model
following the structure defined in this work, can be extremely
useful for applications such as action cost learning in HRC.

VI. ACTION COST LEARNING

When integrating the agent states in the task planning
action costs, the value given to these costs has a major impact
on the action allocation in the generated plan, and therefore
on its success. Manually estimating the costs is a challenging
task, and can lead to unexpected and inappropriate plans for
the current collaboration scenario and participating agents.
We propose a fast and generic method to learn an initial set
of Planning Domain Definition Language (PDDL) [29], [30]
action costs associated with an agent type, so that actions can
be suitably allocated in human-robot collaborative plans. The
method uses the simulator developed in Sec. V, which can be
based on any action and agent models specified as described
in Sec. IV and Sec. III respectively.

Learning Algorithm. The learning is done through an
evolutionary optimisation algorithm that evaluates a fitness
function to select the “best” set of action costs, and therefore
preferred actions, for the agent type being evaluated. An
advantage of using this learning method is its generality, as
no specific structural knowledge about planners or domains is
needed. In our case, the method learns the action cost values
from the plans generated using the POPF planner [31]. The
action costs are defined in the PDDL planning domain as
action effects increasing the total plan cost. The evolutionary
algorithm selected for this work is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [32], due to its

suitability for black-box optimisation, where the deriva-
tive of the objective function is not known. Furthermore,
there is no need to discretise or set bounds in the search.
The implementation has been made using the open-source
DEAP evolutionary computation framework [33]. The steps
implemented for learning action costs using the CMA-ES
algorithm and the action outcome simulator are as follows:

1) Generate a population of individuals (candidate so-
lutions): sets made of costs for each action type
([costActiontype1, costActiontype2,...]).

2) Evaluate every individual in the population.
2.1 Use the individual to update the action costs in

the planning knowledge base.
2.2 Generate the PDDL problem including the action

cost values being evaluated.
2.3 Generate the plan.
2.4 Parse the generated plan and extract the elements

included in the fitness function.
2.5 Calculate the fitness value for the individual.

3) Select parents from the fittest individuals.
4) Reproduce offspring of the next generation (recombi-

nation and mutation).
5) Repeat until a termination criterion is met.

Fitness Function. A fitness function is used to assess the
goodness of each set of action costs evaluated during learning
(step 2.5). From the simulator, we know which actions are
more likely to be successful for each agent type. However,
other elements that don’t necessarily affect the outcome of
the actions might play a role in the preferred plan generation,
such as the time taken by the actions, the priority of the
actions to be executed, etc. The fitness function defined to be
minimised by the learning algorithm contains these elements,
taking values in the range [0,1], where 0 is the optimal case:

• goalNotReached: determined by the action outcome
simulator, takes a value of 0 if all actions are successful.

• planLength: plan length in seconds, normalised between
0 and 1, where 0 represents the minimum plan length.

• magControl: factor introduced to avoid cost values
exploding during the search. The lower the values in
the individual, the lower it is.

• priorKnowledge: helps the search by introducing prior
knowledge about the relative values between the action
costs. The factor is set to 0 if the relationship (bigger



Fig. 2. Agent types defined in terms of the agent model.

than or smaller than) between the action cost values in
the individual corresponds to the one in the simulator’s
action success probabilities e.g., if action A has a higher
success probability than action B, we would expect
action A to have a lower cost than action B.

The elements are weighted based on how much importance
they are given in the resulting plan using

fitness = wgoalNotReached ∗ goalNotReached

+wplanLength ∗ planLength
+wmagControl ∗magControl

+wpriorKnowledge ∗ priorKnowledge

(6)

where the sum of the weights equals 1. Based on how the
factors are weighted, the learnt costs should generate plans
that prioritise the plan length or success differently. Sec. VII-
B shows examples of learning action costs for a number of
agent types using different weights in the fitness function.

VII. EVALUATION

A. Simulator Evaluation - User Survey

An unsupervised survey1 has been conducted to evaluate
how “realistic” and coherent the action outcome simulator is.
The link was advertised and 40 people participated (N=40,
mean age=28) without active recruitment. People were asked,
for a number of agent types and applications, what their
preferred actions in the collaborative plan would be. We
then associate these actions to an action type, and verify
if the preferred actions correspond to the action types with
the highest success probabilities obtained by the simulator.
Inspired by the work in [12], we have defined a number of
“personas”, or agent types, in terms of the elements in the
agent model as shown in Fig. 2. Table III shows, for each
agent type, the resulting action success probabilities from
applying Eq. 4, and therefore the preferred action types for
each agent based on the simulator.

The participants were given a description of each agent
and were asked which two out of the actions in the appli-
cation they believed the agent would prefer to execute. This
was asked for the three applications presented in Table II,

1http://www.iri.upc.edu/groups/perception/#HRC_LearningCosts

TABLE III
SUCCESS PROBABILITIES FOR EACH ACTION TYPE AND AGENT

Simulator’s success
probabilities per action type
(pAT1

, pAT2
, pAT3

, pAT4
)

Preferred action types
(based on simulator)

Joey (0.80, 0.45, 0.60, 0.45) 1, 3
Rachel (0.45, 0.80, 0.60, 0.67) 2, 4
Ross (0.59, 0.47, 0.74, 0.51) 3, 1
Monica (0.32, 0.66, 0.51, 0.74) 4, 2

Fig. 3. Human Survey vs Simulator - comparing preferred actions by
application (top) and action type (bottom)

namely cooking, washing clothes and tidying up a workshop.
The evaluation consists in comparing the two action types
chosen by the participants to the ones set as most likely to
be successful by the simulator. Fig. 3 shows the percentage
of times the simulator and human preferences would have
matched, as well as the percentage of times the human
preference would not have been reflected in the simulator.

The results are analysed by application (top) and by
action type (bottom). It can be seen that in 84% of the
cases, the simulator success probabilities match the choices
a human would make based on their state. When considering
the action types, even though the survey results match the
simulator in most cases, the human preference for action
type 4 is not caught by the simulator as well as for the other
types. This suggests that the grouping of these actions into
this action type might not be suitable, and a new action type
would need to be defined. Nevertheless, the results show
that the grouping of actions into action types works well in
most cases, with the simulated success probabilities match-
ing the human preferred actions in a number of different
applications. Furthermore, this confirms that modelling the
agent in terms of the elements defined in this work gives
a sufficient representation of the human state for a choice
on preferred actions to be made. To conclude, the action
outcome simulator based on these models can be considered
coherent, “realistic”, and suitable as a starting point for action
cost learning in AI task planning.

B. Action Cost Learning Evaluation

The intention of this evaluation is to reinforce the concept
of learning PDDL action costs using a black-box optimisa-
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tion algorithm and a plan outcome simulator in HRC. Fig. 4
shows the results of learning action costs for two agent
types, Joey and Rachel (defined in Fig. 2). The learning
process takes an average of 190 minutes. For Joey, action
type 1 has the highest success probability (0.80), followed
by action type 3 (0.60), and action types 2 and 4 (0.45) (see
Table III). When the plan success is prioritised, the learnt
cost associated with type 1 should be the lowest, followed
by type 3, with types 2 and 4 having the highest cost. This
is supported by the results in Fig. 4. The same principle
holds for the agent Rachel, showing that the method can
learn coherent costs for different agent types. Note that the
dynamic elements of the agent model could vary during a
real execution, in which case the agent would become a
new agent type, with different associated simulator success
probabilities. This would trigger a replan, applying the action
costs learnt using these different probabilities.

Varying the fitness function. We evaluate the effect of
varying the weight values in the learning fitness function
presented in Eq. 6. Let’s take the cooking scenario as an
example, where the four tasks described in Table II need to
be distributed between the human and the robot. In this case,
the human doesn’t know the ingredients to be selected, and
this action will therefore always fail in the simulator. The
human takes 50 seconds longer than the robot to perform
the rest of the tasks (kneading, pouring and grinding). If
the plan success is strongly prioritised during learning, the
resulting plan should not include the “select ingredients”
action assigned to the human, as this would result in a failed,
(even if shorter) plan. Instead, the learnt costs are expected
to generate a longer but successful plan (Fig. 5a). Contrarily,
if the plan length factor is strongly weighted in the fitness
function, the learnt costs should result in a shorter, even if
unsuccessful plan (Fig. 5b). The four sets of fitness function

TABLE IV
WEIGHTS IN FITNESS FUNCTION FOR EACH CASE EVALUATED

wgoalNotReached wplanLength wmagControl wpriorKnowledge

Case 1 0.85 0.00 0.05 0.10
Case 2 0.65 0.20 0.05 0.10
Case 3 0.40 0.45 0.05 0.10
Case 4 0.25 0.60 0.05 0.10

a) Planning with costs learnt with:
wgoalNotReached = 0.85 in fitness function

    0: (move init fridge)  
  10: (pick dough fridge)  
  20: (move fridge counter) 
  30: (knead dough counter) 
  90: (move counter fridge) 
100: (pick chillies fridge) 
110: (move fridge counter)
120: (grind chillies counter)

  0: (move init fridge) 
10: (select ingred fridge)
20: (pick veg fridge) 
30: (move fridge hob)
40: (pour veg hob)

  0: (move init fridge)  
10: (select ingred fridge)
20: (pick veg fridge)
30: (move fridge hob)
40: (pour veg hob)

  0: (move init fridge) 
10: (pick dough fridge) 
20: (move fridge counter) 
30: (knead dough counter)
40: (move counter fridge)
50: (pick chillies fridge) 
60: (move fridge counter)
70: (grind chillies counter) 

b) Planning with costs learnt with:
wplanTime = 0.85 in fitness function

Plan length: 100 sec
Plan success: False

Plan length: 180 sec
Plan success: True

Collaborative plan

[10]
[10]  
[10]
[60]
[10]
[10]
[10]
[60] 

[10]
[10]  
[10]
[10]
[10]

[10]
[10]  
[10]
[10]
[60]

[10]
[10]  
[10]
[10]
[10]
[10]
[10]
[10] 

Collaborative plan

Fig. 5. Collaborative plans resulting from action costs learnt with different
weights in the learning fitness function. The human doesn’t know the recipe,
causing the select function to fail (0% success probability in simulator). The
human takes longer to execute the other tasks. Success is prioritised in case
a), whilst plan length is prioritised in case b).

Fig. 6. Comparing the times the plan generated from planning with the
learnt costs correspond to a successful but longer or shortest but failed plan,
for different weights in the learning fitness function (see cases in Table IV).

weights from Table IV are evaluated. We run each case 40
times, and compare the percentage of times the plan resulting
from planning with the learnt action costs corresponds to a
successful but longer plan, or the shortest but failed plan.

Fig. 6 shows how if no importance is given to the plan
length (Case 1), the learnt costs generate a plan that doesn’t
include the action with 0% success probability, even if it
takes longer to execute. As wplanLength is increased and
wgoalNotReached is decreased from cases 2-4, the time factor
is more frequently prioritised, trading the success probability
of the plan for a shorter plan.

These results highlight the possibility of learning coherent
PDDL action costs for a set of agent types using a generic
learning framework and action simulator. Depending on the
application priorities, different weights can be set and new
factors can be added to the fitness function to learn costs
that reflect these preferences in the plan generated.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a framework to learn an initial
set of action costs for task planning in HRC scenarios,
influencing the action allocation based on the agent states.
The learning is done using a simulator, facilitating and
accelerating posterior fine-tuning in real applications. The



framework integrates a number of novel elements, including
an agent state model inspired by RPG, the concept of an
action type model, and an action outcome simulator setting
the action success probabilities for an agent type based on
the models. The simulator is used as a black-box function
in an evolutionary algorithm to learn a set of action costs
associated with a number of agent types and states, consid-
ering their ”preferred” actions. The validity of the simulator
is supported by a user survey, and the learning results show
that coherent action costs can be learnt for different agent
types and requirements in the plan. The resulting system is a
generic framework integrating components easily extendable
to different applications, models, and planning formalisms.

The framework will require evaluation in real scenarios,
which will allow for the refinement of the agent and action
models. This will in turn improve the simulator’s effective-
ness. A larger number of action types will be defined, and
we suggest querying a language model such as GPT-4 [34]
to classify new actions into the defined action types, by
providing a description of these. In terms of the learning
component, different parameters and learning algorithms
could be evaluated. Nevertheless, this constitutes a working
proof of concept for learning action costs using a simulator
in HRC applications, facilitating the adaptability of the plan
to the contributing partners in the initial deployment stage.
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