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Abstract— We address the problem of teaching a service
robot to detect doors and drawers in indoor environments.
We propose a robust and accurate method in which a human
demonstrates to the robot how to open doors and drawers that
the robot is expected to operate in its future use. The proposed
algorithm creates a model of a door or drawer from a sequence
of RGB-D images and inserts it into an environment map. The
model contains information about the size of the door panel
or drawer front, as well as the position and orientation of the
joint axis. This augmented environment map is then used by
the robot to detect the target object in its environment and
estimate its state.

I. INTRODUCTION

Robots are called to become ubiquitous in people’s
everyday life. Human environments are complex and are
not easy to manage by robots. Acceptance and good
user experiences depend on the ability to make a useful
task, adapt to uncertain environments, and deliver a good
experience [1]. The complexity of these environments resides
in the variety of objects, the uncertainty in their position,
and the possibility or not of interaction [2]. In particular,
in this work we focus on understanding the state of doors
and drawers, as examples of articulated movable parts with
whom a robot can interact.

Doors and drawers are a very common part of furniture
and architecture. Robots in a house will have to deal
continuously with doors: to go from one room to another,
or, for instance, to locate objects within wardrobes. State of
the art door detection methods vary in their approach and
application, with some focusing on 2D methods using RGB
images as input [3], while others use 3D methods and deal
with RGB-D images. 3D detection has gained more attention
in recent years, with various geometry-based methods [4],
[5], [6], [7], [8]. However, many of these methods lack
generality, as they can only detect standardized doors for
which they have a model. To overcome this limitation,
approaches using machine learning [9], [10] and detectors
in the form of neural networks, particularly YOLO-based
approaches [11], [12], have become popular. These methods
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Fig. 1. A human demonstrates to a robot the movement of a door. The robot
learns where the door is located and which is the direction of movement.

use RGB-D data and create bounding boxes around doors,
segmenting them based on color clustering and depth point
extraction.

Door detection methods are primarly developed to assist
robots in indoor navigation and door opening. For instance,
one YOLO-based approach [13] used YOLOv3 to detect
doors on a mobile robot navigating through a building
simulation. In another study [14], a YOLOv3 model trained
on the custom DoorDetect dataset was employed to detect
various types of doors and handles, allowing a mobile robot
to open them. This custom dataset included annotated images
of doors and handles from the Open Images Dataset. In [15],
a labeled RGB-D dataset, HoDoor, was created to train a
method for classifying different types of door opening, with
the aim of enabling robot manipulation in the future.

In [16], an approach is proposed that uses visual
information collected during robot manipulation with doors
and drawers to estimate their kinematic model. Previous
research on the detection and manipulation of articulated
objects has been extensively discussed in [17], which
compares image-processing-based methods and benchmark
datasets for detecting and segmenting articulated objects,
determining their joint parameters, and manipulating them
with a robot.

In this article, our contribution is a novel method
that allows a robot to easily determine the location of
doors and drawers within a given environment map and
assess their current state. Our approach utilizes human
demonstrations to teach the robot the location of doors
and drawers (as shown in Fig. 1) within the environment,
which are then incorporated into the map using standard



localization methods. During the teaching process, a human
demonstrates how to open each door and drawer, and our
algorithm analyzes the resulting image sequences to create
corresponding door and drawer models, which are then
positioned within the environment map. By augmenting the
map with these models, the robot is able to accurately
determine the states of observed doors and drawers (i.e.,
whether they are open or closed and to what degree).
Unlike the approach presented in [16], which also creates
a door or drawer model from a 3D image sequence, our
approach doesn’t rely on information about the robot gripper
during the robot action. Instead, we use a generic model
of the door panel or drawer front and fit the point clouds
captured by a 3D camera to this model. Our method is based
on generating candidate models by hierarchical evidence
accumulation over a depth image sequence and evaluating
these candidate models by projecting them onto the image
and calculating hypothesis evaluation cost, similar to that
used in [18] and [19]. To our knowledge, this approach has
not yet been used to solve the problem under consideration.
The model created is used to estimate the state of the door
or drawer based on a single depth image.

The remainder of the paper is structured as follows:
Section II outlines our augmented environment map. We
provide an overview of our method in Section III. In Sections
IV and V, we describe our teaching by demonstration and
state estimation algorithms, respectively. Section VI details
our experimental results and subsequent discussion. Finally,
Section VII presents our conclusions.

II. AUGMENTED ENVIRONMENT MAP

Storage furniture such as cabinets, chests of drawers,
or nightstands represent articulated objects whose movable
parts are doors and drawers. The algorithm proposed in this
paper detects doors and drawers. It augments an arbitrary
environment map created by a mobile robot navigation
system by inserting door and drawer models (DM) into this
map. Each DM consists of information about the size of a
door or a drawer and the position and orientation of its joint
axis with respect to the environment map reference frame
(RF) SW .

A. Door Model

The door model used in this paper consists of a door panel,
which is a movable part connected to the stationary part
of a piece of furniture by a revolute joint. We define the
door/drawer reference frame SA centered on the joint axis
with its z-axis parallel to the joint axis. The door panel is
represented by a cuboid that can rotate about the joint axis,
as shown in Fig. 2. It is associated with an RF SB centered
in the center of the cuboid with its axes parallel to the edges
of the cuboid. The size of this cuboid is defined by a vector
s = [sx, sy, sz]

⊤, whose elements represent the size of the
cuboid along the x, y, and z axes, respectively. The origin of
SA is the orthogonal projection of the origin of SB onto the
joint axis, as shown in Fig. 2. The state of a door is defined
by the angle θ, which is the angle between the x-axes of

Fig. 2. Door model.

SA and SB . The x-axes of SA and SB are parallel when
the door is closed. This is the zero-state of the door where
θ = 0. The relative position of the joint axis and the door
panel is defined by the vector r = [rx, ry]

⊤, which represents
the x and y coordinates of the panel center in the zero-state
with respect to SA, as shown in Fig. 2. The position and
orientation of SA with respect to SW are represented by a
homogeneous transformation matrix (HTM) WTA.

B. Drawer Model

The drawer front is represented by a cuboid, which is
assigned an RF SB and a size vector s, analogously to the
door panel model. The rest of the drawer is not modeled. A
drawer is drawn in the direction of the x-axis of SB . The
state of a drawer is its extension, where 0 denotes a closed
drawer. The model RF SA is identical to SB in the zero-state.

III. OVERVIEW OF THE METHOD

The proposed approach, which we named Door and
Drawer Detector (DDD), consists of two algorithms. The
first algorithm, DDD-THD, where THD stands for Teaching
by Human Demonstration, detects a door or drawer in a
sequence of RGB-D images captured by a 3D camera such
as Microsoft Kinect, Asus Xtion, Orbbec, Intel RealSense,
or similar devices. This algorithm creates a door or drawer
model that can be used to detect a particular door or drawer
in a particular environment and for robotic manipulation of
that object. The second algorithm, DDD-SE, where SE stands
for State Estimator, determines the current state of a door or
drawer captured in an RGB-D image. A door is opened by
rotating the door panel about a joint axis. In the following
sections, these two algorithms are described. Due to limited
space, some implementation details are omitted.

IV. TEACHING BY HUMAN DEMONSTRATION

This section describes the algorithm DDD-THD. The input
to the algorithm is the current pose of the robot with respect
to the environment map RF provided by a robot localization
method, and a sequence of RGB-D images representing a
human opening a door or drawer. This sequence must be
captured by a stationary camera so that the only moving
objects in the scene are the human and the moving part
of an articulated object, i.e. a door or a drawer. The



algorithm detects and segments the human in the images
using TensorMask [20]. The algorithm then removes the
human from the images so that the only moving object in
the scene is the moving part. The algorithm then generates
one or more moving part hypotheses (MPH) for each image
and integrates these hypotheses across the sequence to form
door/drawer hypotheses (DH). A confidence value is then
assigned to these hypotheses. A door/drawer model (DM)
is created from the hypothesis with the highest score and
inserted into the environment map. The algorithm consists of
the following steps applied to a sequence of RGB-D images:

1: Removal of people from the images
2: Generation of MPHs for images in the sequence
3: Integration of MPHs into DHs
4: Assigning a confidence value to the DHs
5: Selection of the DH with the highest confidence value
6: Creating a DM and inserting it into the environment map

A. Moving Part Hypotheses

Moving part hypotheses are generated for each image
in the input image sequence by segmenting the scene into
approximately planar patches using a suitable segmentation
method and determining which of these planar regions is
moving. For the detection of planar patches, we use the
method proposed in [21]. An example of planar patches
detected by the applied algorithm is shown in Fig. 3.

Moving regions in a given image are detected by
comparing that image with other images in the sequence
within a predefined time window. Two compared images
are represented by 3D point clouds, and for each point
in one point cloud the closest point in the other one is
determined. The difference between the coordinate vectors
of these two points represents a displacement vector. All
the displacement vectors obtained from this image pair are
clustered, and the enter of the dominant cluster is considered
as the dominant displacement vector. The planar patch with
the largest number of points whose displacement vectors are
sufficiently similar to the dominant displacement vector is
considered as the front of a moving part. This planar patch
is then used to generate an MPH. The bounding box of
the planar patch is computed and an RF SB is defined as
described in Section II-A. The generated MPH is represented
by a tuple h =

(
CTB , s, k

)
, where CTB is the HTM

representing the pose of SB with respect to the camera RF
SC , s is the size vector defined in Section II-A, and k is the
index of the image in the input image sequence from which
the MPH is generated. An example of an MPH is shown in
Fig. 3.

B. Door/Drawer Hypotheses

Door/Drawer hypotheses are generated by integrating
MPHs over the image sequence. A DH is represented by
a tuple H =

(
η,C TA, s, r, o,Θ

)
, where η is the object

type: door or drawer, CTA is the HTM representing the
pose of SA, defined in Section II-A, with respect to SC ,
s and r are vectors, defined in Section II-A, o ∈ {−1, 1}
defines the opening direction and Θ is the state sequence.

Fig. 3. Input image (left) and a moving part hypothesis denoted by red
lines (right). Colored regions in the right image represent detected planar
patches.

The first element of s represents the thickness of a door panel
or a drawer front. In the current version of our approach,
this element is set to a constant value of 0.018m, which,
according to our analysis, fits the majority of real cases
within a measurement noise range. It is assumed that the
possible states of a given door, except for the zero-state,
can have only positive or only negative values. The opening
direction o defines the sign of the possible door states. In the
case of a drawer hypothesis, o is always 1 and r = [0, 0]

⊤.
Each state in the sequence Θ is represented by a pair (θ, k),
where k is the index of the image in which the moving part
appears in the state θ.

The integration of MPHs into door hypotheses is done by
a hierarchical clustering procedure. First, z-axis hypotheses
are generated by forming pairs of MPHs and computing
a z-axis candidate for each pair. Let (hi, hj) be a pair of
MPHs. Each of these two MPHs is associated with an RF
SB , as explained in Section IV-A. Since the z-axis of SA

is perpendicular to the x-axis of SB in each door state, the
z-axis candidate is computed as the unit vector perpendicular
to the plane spanned by the x-axes of the RFs SB,i and SB,j

associated with the MPHs hi and hj . Z-axis hypotheses are
then generated by clustering z-axis candidates, where each
cluster Cz is represented by a z-axis hypothesis.

Let χ (Cz) be the set of MPHs involved in the formation
of a cluster Cz. From each such set, one or more joint
axis hypotheses are generated. Consider two MPHs hi, hj ∈
χ (Cz). A joint axis of a door is usually very close to the line
representing the intersection of the yz-planes of RFs SB,i and
SB,j , as shown in Fig 2. Let us define the moving part plane
intersection (MPPI) as the point representing the intersection
of this line with the plane Π passing through the origin of
SC and perpendicular to the z-axis of SA. Since the MPPI
is usually very close to the joint axis, the position of the
joint axis can be estimated by clustering MPPIs computed
from pairs of MPHs from the set χ (Cz). Let Ca be a cluster
of MPPIs and let χ (Ca) be the set of MPHs involved in
the formation of this cluster. The distance between the yz-
plane of SB,i and the joint axis should be rx for all MPHs
hi ∈ χ (Ca). This (signed) distance can be computed by

δ (hi, p) = x⊤
B,i (ci − p) ,

where xB,i and ci are the projections of the x-axis and the
origin of SB,i, respectively, onto the plane Π and p is the
intersection point of the joint axis and the plane Π. The



position of the joint axis is estimated by calculating the point
p and the distance rx that minimize the cost function

E (p, rx) =
∑

hi∈χ(Ca)

(δ (hi, p)− rx)
2

The joint axis is the line parallel to the z-axis of SA passing
through the point p.

After defining the joint axis, the MPHs hi ∈ χ (Ca) are
used to determine the faces of the cuboid representing the
door panel. The supporting plane of the front face of the
cuboid is defined by the planar patch used to generate the
MPH. The supporting planes of the top and bottom face,
cf. Fig. 2, are parallel to the plane Π. Therefore, these
planes are defined by their distances from Π. Let dt

i and
db
i be the distances of the top and bottom face of the

cuboid corresponding to the MPH hi. These distances can
be calculated from the center and the size of this cuboid.
Clustering of the values dt

i and db
i for all hi ∈ χ (Ca) is

performed, and the centers of the obtained clusters d̄t and
d̄b are used to define the top and bottom face of the door
hypotheses.

The supporting planes of the inner and outer face of the
cuboid representing the door panel are parallel to the joint
axis and perpendicular to the front face. Therefore, these
planes are defined by their distances from the joint axis.
The outer face of the cuboid representing the door panel is
calculated by clustering the distances do

i of the outer faces
of the MPHs hi ∈ χ (Ca), analogous to the calculation of
the top and bottom faces. In the current implementation of
our algorithm, the distance of the inner face from the joint
axis is set to 0.

From each MPH hi ∈ χ (Ca) a pair (θ, k) is added to the
sequence Θ, where θ is the door state, computed as the angle
between the x-axes of SA and SB , and k is the image index
of hi.

The proposed hierarchical clustering procedure is
represented by Algorithm 1. The input of the algorithm is
the set of all MPHs generated from an image sequence χall
and the output is a set of door hypotheses H obtained by
integrating the MPHs over the image sequence.

The drawer hypotheses are generated by a similar but
simpler procedure, which we don’t describe here due to space
limitations.

C. Hypothesis Evaluation and Selection

For a given image sequence, a set H of door and drawer
hypotheses is generated. Each hypothesis H ∈ H is evaluated
by computing its hypothesis evaluation cost

Ψ(H, k) = ζ (H, k) (−Ω (H, k) + |Φ (H, k) |)

which represents the sum of the scene fitting score Ω and
the transparency cost |Φ|, as proposed in [18] multiplied by
the zero-state factor ζ. The zero-state factor, defined as

ζ (H, k) = 1 + e−(θ/σ)2 ,

assigns greater weight to hypotheses that are close to the
zero-state, because the zero-state is a priori more likely than

Algorithm 1 Generating door hypotheses by hierarchical
clustering

1: procedure INTEGRATE(χall)
2: H ← ∅
3: Create z-axis clusters Cz.
4: for every cluster Cz do
5: Compute z-axis and plane Π.
6: Create top face clusters C t.
7: Compute center d̄t of each cluster C t.
8: Create bottom face clusters Cb.
9: Compute center d̄b of each cluster Cb.

10: Compute MPPIs.
11: Create joint axis clusters Ca.
12: for every cluster Ca do
13: Compute p and rx.
14: Create outer face clusters Co.
15: Compute center d̄o of each cluster Co.
16: for every d̄o do
17: for every d̄b do
18: for every d̄t do
19: Generate a door hypothesis H .
20: Put H into H.
21: return H

other states. The value σ is a user-defined constant set to 5◦

for doors and 0.05 m for drawers.
Cost Ψ is computed for each pair (θ, k) in the sequence Θ.

The pose of the cuboid representing a door panel or drawer
front with respect to the camera is computed using CTA,
r and θ. This pose is represented by an HTM CTB . The
surface of the cuboid is uniformly sampled and the obtained
point cloud is transformed into the scene using CTB . By
comparing this transformed point cloud with the scene point
cloud computed from the k-th depth image of the input image
sequence, Ω (H) and Φ (H) are computed as described in
[18].

Furthermore, for each hypothesis H , the temporally
consistent subsequence Θ∗ ⊆ Θ is determined, i.e. the
subsequence with the lowest total hypothesis evaluation cost
which satisfies a temporal constraint. The temporal constraint
requires that the change in state between two successive
states be within a predefined threshold. The total hypothesis
evaluation cost of a sequence Θ′ is computed by

ΨΣ (H,Θ′) =
∑

(θ,k)∈Θ′

min {Ψ(H, k) , 0}.

Finally, the hypothesis H∗ with the least cost ΨΣ (H∗,Θ∗)
is chosen as the final solution. From this hypothesis, a DM
is created and inserted into the augmented environment map.
The pose of this DM with respect to the environment map
RF SW is calculated by

WTA = WTC · CTA,

where WTC is provided by the mobile robot localization
system.



V. STATE ESTIMATION

After the robot learns the location and movement direction
of doors and drawers, it can estimate their state when it
stops in front of them and captures an RGB-D image. The
following procedure is used:

1: Predict the target object’s location in relation to the
camera.

2: Detect one or more planar patches within a region of
interest (RoI).

3: Generate hypotheses about the moving part’s state from
the planar patches in the RoI.

4: Evaluate the hypotheses and select the most likely one.
5: Compute the object state, which is the angle of the door

panel or drawer extension relative to the zero-state.
We assume that the robot localization system can provide

information about the camera pose with respect to the
environment map RF SW in the form of an HTM WTC . This
is a very reasonable assumption. The augmented environment
map (described in Sect. II) contains the information about the
doors and drawers in the robot’s environment in the form
of DMs, where each DM is associated with an HTM WTA

describing the pose of a door or drawer with respect to SW .
The matrices WTC and WTA can be used to compute the
HTM CTA defining the pose of a particular DM with respect
to the camera RF SC .

Given the pose of a DM, a RoI is computed in the form
of a 3D bounding box aligned with the axes of SA. The size
of this bounding box in the y and z-directions is equal to
the second and third element of the size vector s, defined in
Sect.II-A extended by 10%, while its size in the x direction
is a constant value large enough for the RoI to contain a
door or drawer in any state. We set this value to 1.1 m.

For each planar patch with at least 1000 points within the
RoI, a DH is generated with the x-axis of SB parallel to the
planar patch normal. The door state is computed as the angle
between the x-axes of SB and SA and the drawer state is
computed as the distance between the planar patch and the
drawer front in the zero-state. Each DH is evaluated using
the approach described in Sect. IV-C, and all hypotheses
with positive hypothesis evaluation costs are rejected. In
some cases, a door panel is oriented in such a way that
it is aligned with the camera optical rays, i.e. the angle
between its surface and the camera optical rays pointing to
that surface is very small. In such cases, the door panel is
poorly visible in the image, and there is no suitable planar
patch representing this surface. An example of this is the
bottom-right image in Fig 4. Thus, if no hypothesis with
a negative hypothesis evaluation cost is generated, the door
panel is assumed to be perfectly aligned with the optical rays
of the camera, and its state is calculated accordingly.

An accurate estimate of the state of a door or drawer
requires an accurate pose CTA. Since this pose is computed
using the camera pose WTC provided by the robot
localization system, an error in the robot localization will
result in an error in the state estimate. To compensate
for the inaccuracy of the robot localization, we store the

Fig. 4. Examples of correct (green) and incorrect (red) state estimates.

local environment model, i.e. a set of planar patches in the
vicinity of a door or a drawer detected by the DDD-THD
algorithm, and use it to align the query image with this local
environment model. An ICP-based algorithm can be used for
this alignment, using the pose WTC provided by the robot
localization system as the initial solution. In the experiments
reported in this paper, we use our alignment algorithm
specifically designed for aligning rectangular structures, but
this is beyond the scope of this paper and therefore not
described due to space limitations.

VI. EXPERIMENTS

We conducted two experiments to evaluate our approach.
The goal of the first experiment was to test the ability of
DDD-THD to recognize doors or drawers in sequences of
RGB-D images in which a human demonstrates opening a
door or drawer. The second experiment aimed to measure
the accuracy of the state estimation achieved by DDD-SE.
The test images were captured in a laboratory at the Institut
de Robòtica i Informàtica Industrial in Barcelona, which
replicated a typical household setting with furniture. Four
different test objects were used in the experiments: a room
door, a kitchen cabinet with two doors and one drawer, a
nightstand with one door, and a wardrobe with two door
leafs, see Fig. 5.

For the experiments, we utilized a TIAGo robot mobile
platform. This robot has the ability to autonomously create
a map of its environment and navigate without colliding
with obstacles thanks to using the ROS Advanced Navigation
Stack from PAL Robotics©. Additionally, it possesses a 7-
DOF robotic manipulator attached to its chest, enabling
it to grasp objects effectively. This feature is particularly
advantageous as it will enable us to manipulate objects in
future. To improve its visual capabilities, we installed an
Intel RealSense Lidar Camera L515 on top of its head. This
addition enables us to capture highly detailed RGB-D images
of the objects. This is very important to get good estimates
of their state.



Fig. 5. Location of the different pieces of furniture within the map. For
clarity, the rest of the furniture is not represented.

TABLE I
INTERSECTION OVER UNION FOR EACH MOVING PART.

Moving part min IoU max IoU mean IoU

Room door 85.21% 94.52% 88.33%
Drawer 58.66% 82.74% 70.70%

Small cabinet door 78.94% 91.13% 85.04%
Big cabinet door 81.59% 89.57% 85.58%

Nightstand 78.79% 79.21% 79.00%
Wardrobe left door 72.58% 90.50% 81.59%

Wardrobe right door 84.91% 95.38% 92.25%

A. Door/Drawer Detection

To test the accuracy of door/drawer detection, we captured
38 sequences of RGB-D images in which a human opens
doors or drawers of the test objects and applied the algorithm
DDD-THD to these image sequences. For each image
sequence, DDD-THD generated a DM. In addition, we
manually annotated the images of the four test objects
by outlining the moving parts to obtain the ground truth.
The ground truth annotations are compared to the image
projections of the front faces of the DMs in the zero-state
(closed doors and drawers) by computing Intersection over
Union (IoU) as the detection performance index. The results
of the described experiment are shown in Table I. Of the 38
captured sequences, 6 belong to a room door, 12 to the left
door of a wardrobe, 12 to the right door of the wardrobe,
and 2 to each of the following moving parts: drawer, small
cabinet door, large cabinet door and nightstand. The drawer
has the lowest mean IoU of the tested parts. In one case, the
hand of the human opening the drawer covers a large part
of the front surface of the drawer. This causes the algorithm
to incorrectly estimate the size of the DM. The average IoU
value accross all objects is 83.62%. The results of the door
and drawer detection experiment are shown in Fig. 6.

B. State Estimation

The accuracy of the state estimation of the proposed
approach is evaluated by applying the DDD-SE algorithm
to RGB-D images of the considered test objects in different
states and comparing the estimated state values with
manually measured ground truth data. The results of this
experiment are presented in Table II. For each moving part of
the test objects, the total number of occurrences, the number
and percentage of correct measurements, and the average

Fig. 6. Door/drawer detection results for the test objects. The ground truth
data is shown with a green bounding box, while the detected parts are shown
with red bounding boxes.

absolute error are given. We assume that a measurement
is correct if the absolute difference between the estimated
and true state is at most 5◦ for doors or 0.05 m for the
drawer. These values were obtained by camera measurement
error analysis. We analyzed a scene with a dominant planar
surface by fitting a plane to the points on that surface detected
by the 3D camera and calculating the standard deviation of
those points from the plane. This standard deviation was ε
= 0.0068 m. Assuming a normal distribution of the camera
measurement error, almost all points on the surface under
consideration are within 3ε of the plane. Therefore, we
assume that the maximum error in estimating the position
of a plane is 3ε. The state of the drawer is measured by
calculating the distance between the drawer front and the
static part of the furniture to which this drawer belongs. If
we assume the worst case, where both the drawer front and
the furniture front are estimated with the maximum error of
3ε, then the error in the state measurement is 6ε = 0.0408
m. Rounding up this value to the first larger integer value
in centimeters, we obtain the tolerance of τd = 0.05 m. We
determined the tolerance for the door state by assuming that
the maximum error in measuring the distance γ between the
point of the door panel farthest from the door axis and the
static part of the furniture is 6ε. Assuming a reference door
width of wdoor = 0.5 m, the door angle corresponding to the
distance γ is 6ε/wdoor = 4.68◦. The nearest integer value in
degrees is used as the tolerance for the door state τθ = 5◦.

A few examples of correct state estimates are shown in
Fig. 4. Most false measurements occur when the door panel is
oriented so that the camera’s optical rays fall on its surface at
a small angle. In this case, the door panel is almost invisible
in the depth image. For some surfaces, this effect occurs
at larger angles than for others, depending on the surface
finish. In the case of the small cabinet door, there is a wall
to the right of the cabinet that is a flat vertical surface barely
different from the door panel open at 90◦, which is another
cause of incorrect estimates. An example of such a case is



TABLE II
STATE ESTIMATION ACCURACY FOR EACH MOVING PART.

Moving part total correct % avg. err.

Room door 30 19 63.33 1.35◦

Drawer 78 77 98.72 6.0 mm
Small cabinet door 78 67 85.90 0.71◦

Big cabinet door 78 78 100.00 0.53◦

Nightstand 30 21 70.00 2.70◦

Wardrobe left door 54 43 79.63 0.61◦

Wardrobe right door 54 44 81.48 1.74◦

shown in Fig. 4 (bottom right), where the misidentified door
panel is outlined in red.

Furthermore, since the proposed method relies on the
alignment of furniture surfaces and walls, it fails in cases
where the scene has a simple geometry with few surfaces
available for matching and some of these surfaces cannot be
reconstructed by the RGB-D camera used due to specular
reflection. This is the cause of the lower performance of our
algorithm for the nightstand shown in Fig. 4 (bottom left).

VII. CONCLUSIONS

In this paper, we have presented a novel method for
teaching robots to detect and retrieve the state of drawers
and doors, a crucial ability for robots operating in household
environments. Our approach utilizes human demonstrations,
making it easily attainable for non-experts. Although the
method is effective in most cases, certain degenerate cases,
such as when the door is aligned with the camera axis, may
not be accurately detected. This problem could be mitigated
by determining that the door is not detected and using a
next best view strategy to move the robot to a position from
which the door panel is clearly visible. Another approach
would be to use RGB information, since depth information
is not reliable in such cases. For this purpose, a machine
learning algorithm could be used that could be trained with
a set of images of doors in different states captured from
two different viewpoints, where the door would be clearly
visible from at least one of these two viewpoints.

We have successfully validated our approach in a realistic
environment using doors of varying sizes and opening
directions. In the future, we aim to further develop the robot’s
physical interaction capabilities with the environment,
particularly for the task of looking for a particular object
in the context of assistive robotics.
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