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Abstract—This conference paper presents a comparison study
between different charging techniques for energy storage systems.
The work presents the application of charging methods in
two different types of models, which are a dynamic nonlinear
electrochemical and the well-known equivalent circuit model.
For both cases, a controller is designed in order to analyze
its performance, using the classical PID implemented in the
vast majority of industry controllers. In order to validate its
implementation, the case of an emerging technology in terms of
energy storage has been considered, as is the vanadium redox
flow battery. The models have been calibrated for later validation,
using a particle swarm optimizer and a real dataset found in
the literature. The controllers have been developed separately,
considering the variables and characteristics of each model.
Finally, a comparison of both controlled systems is presented.

Index Terms—Charging techniques, Energy storage systems,
Redox flow battery, Particle Swarm Optimization

I. INTRODUCTION

Within the current energy situation, where the demand of
large energy storage systems (ESSs) is growing exponentially,
the use of electrochemical battery systems is one of the
greatest solutions. The main benefit of this type of systems
is that it can be implemented for energy storage in solar
or wind plants with the necessary storage capacity, being
used as secondary elements in these important renewable
installations [1]. However, one of the main challenges in the
study of electrochemical ESS is the determination of charging
techniques.

The strategies used to determinate them are usually divided
in two different types. On one hand, some strategies are fo-
cused on the search of fast and safe charging laws, which avoid
the appearance of secondary reactions. For electrochemical
typologies of ESSs such as lithium-ion batteries or redox flow
batteries (RFBs), a simple charging technique consists on the
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use of a constant current-constant voltage (CC-CV) profile [2].
However, this strategy can lead to gassing side reactions or
battery deterioration if these values are not regulated. For this
reason, this strategy has been changed to one that consists on
first introducing a constant current profile until the state of
charge (SOC) reaches an upper bound, followed by a constant
voltage profile until maximum SOC is reached [3].

On the other hand, there are strategies focused on the
determination of charging methods that maximize the ESS effi-
ciency, reducing the possible losses. Within this scenario, there
are different studies that present optimal charging techniques,
as for example the use of a negative pulse charging theory
[4] or an optimal flow rate law that minimizes pump losses in
RFBs [5].

Among all possible control strategies, the most typical ones
are voltage and power tracking [6]. The main reason is that
usually the energy demand of these variables depends on
the systems or installations where they are connected. Thus,
considering a microgrid where the RFB serves as a support
element, the energy demand in terms of voltage and power
is imposed by other devices such as the grid, solar panels or
other ESSs.

Both strategies have been extensively analyzed for different
types of ESS [7], seeking different goals but sharing the same
starting point, which is the use of a mathematical model that
can describe the real behaviour of the system and make it
possible to analyze and formulate a control strategy.

Within electrochemical ESS modeling, the use of dynamic
lumped parameter models (LPMs) stands out. The main reason
for this is the simplification of the system analysis and
formulation, unlike distributed models where the variables
depend not only on the time but also on other spatial variables
[8].

Within the scope of LPM, there exists another distinction,
which is the use of physical or equivalent models [9]. On
one side, a physical model is more realistic since, as its
name suggests, its formulation is directly related with physical
phenomena that can be computed by ordinary differential
equations (ODEs). However, as many of these ODEs can
hinder the theoretical analysis and could have a high compu-
tational cost, the use of equivalent models appears as a better
option. The most common type of electrochemical systems is



the equivalent circuit model (ECM), which relies on the use of
different electric components such as voltage/current sources,
resistors and capacitors [10]. Considering their complexity,
there are different typologies of ECMs, ranging from the
simplest, which correspond to zero-order models composed by
a resistor and a voltage source, to second or third-order models
composed by different RC branches [11]. The main problem
when dealing with ECMs is that their parameters are unknown
and must be estimated in order to verify the reliability of
the model. This parameter estimation is a challenge that has
been analyzed by different studies as [12], where a particle
swarm optimizer (PSO) is used to estimate the parameters of
a lithium-ion battery ECM.

Based on these different models, the aim of this work is
to propose and analyze, for each one of them, a charging
technique that can solve typical challenges in electrochemical
ESSs such as the voltage and power tracking or the minimiza-
tion of side reactions. Thus, the goal is to propose different
valid charging techniques that could be implemented in an
electrochemical ESS, adapted to its corresponding model.

In order to properly analyze and validate the proposed con-
trollers, a real electrochemical ESS consisting on a vanadium
redox flow battery (VRFB) has been used as an example.
This particular system has been chosen since it is being
widely used in recent years. The main reason for this are its
high efficiency (70-90%) [13], long life and the possibility of
decoupling energy and power [14], when compared to other
electrochemical ESSs.

The VRFB was designed by professor Skyllas-Kazacos
[15], who pioneered the use of vanadium in RFBs and
has actively participated in the analysis and study of this
system. Most of her works are focused on the design and
analysis of electrochemical and thermal models oriented to
SOC estimation [16]. In terms of charging methods, the main
advantage of VRFBs compared to other types of batteries
such as lithium-ion batteries is that the control strategy can be
defined considering a new variable besides from the current
and voltage, which is the electrolyte flow rate. Taking this
into account, a voltage control strategy for different currents
is proposed in [17], consisting on a H∞ flow rate controller.

This work allows to analyze two different studies. Firstly, it
compares the ECM and the physical model, in terms of data
fitting with the dataset used. Secondly, it makes it possible
to develop a comparison of both models in terms of optimal
charging techniques, being able to analyze under which con-
ditions the use of an ECM or electrochemical model could be
more appropriate. The development of optimal controllers has
been analyzed in several works such as [18] that presents the
use of multi-parametric quadratic programming in fuzzy con-
trol systems or [19] presenting the use of optimal controllers
in nonlinear systems. However, in this work the purpose is to
analyze the performance of classical PID controllers. In order
to do that, there are works that present tuning rules for robust
PID controllers [20]. However, in this work it is intended
to use the particle swarm optimization (PSO) algorithm that
makes possible to find solutions for non-convex problems as

the one addressed, defining the measure of quality and possible
constraints.

The work is organized as follows: Section II presents the
formulation of the ECM and the physical electrochemical
model for a VRFB. In Section III, both models are calibrated
with real data found in the literature, solving the parameter
estimation problem by means of a PSO. The design of optimal
charging controllers is presented in Section IV, and Section
V presents a comparative evaluation. Finally, the fruitful
conclusions are summarized in Section VI.

II. MODEL FORMULATION

A. Equivalent circuit model

Among the different typologies of ECMs that exist for the
modeling of electrochemical systems such as batteries, the
Thevenin first-order circuit is the most commonly used [21].
A scheme of this ECM is shown in Fig 1, where the different
components can be appreciated. The voltage source represents
the open circuit voltage (OCV), usually denoted as EOCV in
V units, the resistor R0 allows to consider the ohmic losses,
having units of Ω and the RpCp branch is used to model the
polarization losses by means of a resistor Rp and a condensator
CP with units of Ω and F, respectively.

Thus, the computation of the battery terminal voltage E,
can be formulated following the Kirchhoff’s second law as:

E = EOCV +R0 · I + Ep , (1)

where I is the current in A units, being positive for a charging
process and negative for a discharging one.

The term EOCV is function of the SOC and can be
computed by means of the Nernst equation as:

EOCV = Eθ +
2RT

zF
ln

(
SOC

1− SOC

)
, (2)

being Eθ the standard electrode potential for a VRFB, which
value is 1.4 V, R = 8.31 Jmol−1K−1 the gas constant, F =
9.6485· 104 sA mol−1 the Faraday constant, T = 298 K the
electrolyte temperature and z the number of electrons involved
in the redox reaction which is 1 for a VRFB.

With respect to the term Ep of expression (1), it defines
the polarization losses associated to the concentration and
activation overpotentials. It can be computed by means of the
following differential equation:

Ėp =
I

Cp
− Ep

RpCp
. (3)

Finally, the SOC can be computed as a function of the current
and the battery capacity Cn as [22]:

˙SOC = − I

Cn
. (4)



Fig. 1. Scheme of the first-order Thevenin ECM.

B. Dynamic electrochemical model

The electrochemical model presents the evolution of the
vanadium species inside the cell and tanks. There are four
species in a VRFB, which are V2+,V3+,VO2+ and VO+

2 .
Their evolution along the time depends both on the charg-
ing/discharging current and on the electrolyte flow rates q with
units of m3·s−1. Therefore, based on the models proposed by
Skyllas-Kazacos, the species evolution can be represented in
the state-space notation as [23]:

ẋ = Ax · q + bI , (5)

being x = [cc2, c
c
3, c

c
4, c

c
5, c

t
2, c

t
3, c

t
4, c

t
5]

⊤ the state vector where
the sub-index indicates the species and the super-index is used
to distinguish if the species concentration is inside the cell,
denote with c, or inside the tank, denote with t. As can be
noticed, matrix A ∈ R8×8 is related with the flow rate q while
vector b ∈ R8 is related with the current. Their expressions
and details can be found in [23].

Based on the species concentration inside the cell, it is
possible to compute the battery voltage E by means of the
following expression:

E = N · (EOCV +R0 · I + ηact + ηcon) , (6)

which is similar to the ones of the ECM model (1) differing
on the computation of the activation and concentration over-
potentials, defined as ηactand ηcon, respectively. Moreover,
it is possible to compute the terminal voltage for a VRFB
composed by different single cells N assembled in series.

For the particular case of a VRFB, the OCV depends on all
vanadium species and can be computed as:

EOCV = Eθ +
RT

zF
ln

(
x1 · x4

x2 · x3

)
. (7)

The activation over-potential ηact is formulated based on
the Butler-Volmer equation [24]:

I = I0

e

(1− α) · F
RT

ηact

− e
−
α · F
RT

ηact

 (8)

being α the change transfer coefficient and I0 the exchange
current density that can be computed as follows:

I0 =
1

se
·
(
F · kθ · x1−α

1 · xα
2 · xα

3 · x1−α
4

)
(9)

where se is the electrode surface in m2 units and kθ is the rate
constant. Expression (8) defines a smooth implicit function
ηact (I, I0, α) that cannot be numerically isolated. For that
reason, it has been approximated by means of a 2 piecewise
function using the hyperbolic sine function [25]. The final
expression is formulated as:

ηact =


RT

(1− α)F
hsin−1

(
I

I0

)
if I/I0 < 0

RT

α · F
hsin−1

(
I

I0

)
if I/I0 > 0

(10)

For the case of the concentration over-potential ηcon

ηcon =
RT

zF


ln

(
x4 − |∆c|

x4

)
− ln

(
x1

x1 − |∆c|

)
I < 0

ln

(
x2 − |∆c|

x2

)
− ln

(
x3

x3 − |∆c|

)
I > 0

where ∆c is the concentration difference between the surface
and bulk, which can be computed as:

∆c =
I

kmF
, (11)

being km the mass transfer coefficient.
With respect to the SOC, it is normally associated to the

tanks species concentration. Thus, it can be computed for both
sides of the system as:

SOC− =

(
x5

x5 + x6

)
(12)

SOC+ =

(
x8

x7 + x8

)
. (13)

III. MODEL CALIBRATION

Once the models have been formulated, it is important to
determine the unknown parameters in order to be able to
calibrate them. Thus, it is possible to analyze if these models
resemble the real behavior of a VRFB. In order to develop this
analysis, real data obtained from a charging and discharging
experiment have been used.

The dataset in question is presented in [26], where different
experiments are carried out with a VRFB composed by 10
single cells with an electrolyte composition of 1 M VOSO4

in 4 M H2SO4. The volumes of the electrolyte tanks are 50
ml and the charging and discharging processes take place at a
constant current of 0.3 A. Finally, the flow rate used in these
experiments is 200 ml·min−1.

The data have been acquired every second and correspond
to the current and voltage measurements. The experimental
data selected consist on a discharging and charging profile at
constant current as can be seen in Fig. 2.
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Fig. 2. Voltage and current measurements of the experimental data used.

With this experimental data it is possible to propose a
PSO for each one of the models described. For both cases,
the measure of quality is the absolute error between the real
voltage and the estimated one.

A. ECM model calibration
According to the ECM presented, the parameters that must

be estimated are the initial SOC and the resistors and capac-
itors R0, Rp, Cp and Cn. Therefore, the set of parameters is
defined as: p = [SOC(0), R0, Rp, Cp, Cn].

Using this parameter vector, the optimization problem is
formulated as follows:

minp

ni∑
i=1

|E(i · Ts)− Ê(i · Ts)|

subject to

˙̂
Ep(i · Ts) =

I(i · Ts)

Cp
− Êp(i · Ts)

RpCp

˙̂
SOC(i · Ts) = −I(i · Ts)

Cn

Ê(i · Ts) = ÊOCV (i · Ts) +R0 · I(i · Ts)

+Êp(i · Ts)

f (p) ≤ 0.

being ni the number of samples, Ts the sample period, E the
measured voltage, Ê the estimated one and p the set of the
parameter constraints that is presented in TABLE I.

TABLE I
ECM PARAMETERS BOUNDS.

Parameter LB UB

SOC(0) 0 1
R0 10−3 102

Rp 10−3 102

Cp 10−6 10−2

Cn 10−6 10−2

B. Dynamic electrochemical model calibration

Considering the electrochemical model, some assumptions
can be made in order to relax the problem of estimating the 8
initial concentrations. Firstly, it is assumed that the electrolyte
flow rate is high enough to not make a distinction between
cell and tank dynamics. In fact, for the real VRFB presented,
where the electrolytes volumes are 50 ml, a flow rate of 200
ml·min−1 is high enough to ensure this hypothesis. Thus, it is
possible to remove four states from the original formulation.

Secondly, based on the matter and charge conservation prin-
ciples, it is possible to eliminate two more states. Therefore,
the simplified model corresponds to a second-order model with
states x1 and x2.

Finally, the unknown parameter vector is composed by the
initial states x1(0) and x2(0) and the unknown parameters R0,
α and kθ. For this case the PSO problem is formulated as:

minp

ni∑
i=1

|E(i · Ts)− Ê(i · Ts)|

subject to ˙̂x(i · Ts) = Ax̂(i · Ts) · q + bI(i · Ts)

Ê(i · Ts) = h (x̂(i · Ts), I(i · Ts))
f (p) ≤ 0.

where the vector parameter p is [x1(0), x2(0), R0, α, k
θ], and

h is the battery voltage function in terms of the states and
current I , which is expressed by means of (6).

For this second case, the parameter bounds appear summa-
rized in TABLE II.

TABLE II
ELECTROCHEMICAL MODEL PARAMETERS BOUNDS.

Parameter Lower bound Upper bound

x1(0) 0 103

x2(0) 0 103

R0 10−3 102

α 0.4 0.6
kθ 10−6 10−2

C. Calibration results

The optimization problems presented have been solved
using Matlab with the PSO algorithm [25]. Thus, it is possible
to solve the minimization problem considering the system
constraints. For all problems it has been used a population
of 100 particles and the fmincon function.

The results are shown in Fig. 3, which displays the voltage
profiles for both the ECM and electrochemical model, and
the real voltage measurement E. As can be noticed, both
profiles show good results in terms of fitting, specially in the
intermediate charging area. However, when SOC is low, the
ECM model presents a slight deviation with respect to the real
profile, in contradistinction to the electrochemical model that
presents a profile that is very similar even in this low SOC
period.

The parameter vectors obtained can be compared in or-
der to identify some relationships. On one hand, in the
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Fig. 3. Estimated voltages profiles for the ECM (yellow) and the electro-
chemical model (purple) compared to the real one (red).

case of the ECM model, the parameter vector estimated is
p = [0.57, 0.027, 0.015, 0.00067, 0.67]. On the other hand,
considering the electrochemical model the parameter vector
calibrated is p = [552, 448, 0.029, 0.52, 0.00045].

From these results, it is possible to see how the initial SOC
of the ECM model has been estimated in 56%, while for the
case of the electrochemical model, its value is 55.2% consid-
ering expression (12) for its computation. Another comparison
that can be directly extrapolated is the ohmic resistance R0,
which has a value of 0.027 Ω and 0.029 Ω, respectively, for
the ECM and the electrochemical models.

IV. CHARGING CONTROLLER DESIGN

With the ECM and electrochemical models already cali-
brated, the next step consists on designing the optimal con-
troller for each one of these models. At this point, it is
important to remark that the ECM does not take into account
the flow rate variable. Therefore, the controllers that can be
designed using this model can only consider the current as the
control action. On counterpart, considering the electrochemical
model, it is possible to use both current and flow rate variables
as control actions.

A. ECM charging controller

The first controller that can be easily implemented for the
ECM consists on a tuned PID with the purpose of voltage
tracking. Thus, it is possible to formulate an optimization
problem that tries to obtain the optimal parameters of the well-
known PID controller.

As the ECM is non-linear, common techniques such as the
gradient descent methods are not viable as they are used to
solve convex problems and the ones presented in this work
are non-convex. For that reason, the PSO method is used in
order to find a possible candidate that fits in the measure of
quality defined.

As the purpose of this controller is to track a reference, the
measure of quality used to design the optimization problem is
the tracking error ε, which can be computed as:

ε = Eref − E , (14)

being Eref the voltage reference profile.
Thus, the optimization problem can be described intro-

ducing a new parameter vector p that is related with the
PID actions: p = [Kp, Ti, Td] being Kp, Ti and Td the
proportional, integral and derivative actions.

minp

ni∑
i=1

|ε(i · Ts)|

subject to

˙̂
Ep =

ε(i · Ts)C(s)

Cp
− Êp

RpCp

˙̂
SOC = −ε(i · Ts)C(s)

Cn

Ê = ÊOCV +R0 · ε(i · Ts)C(s) + Êp

I ≤ I ≤ I

f (p) ≤ 0 .

where C(s) is the PID controller introduced with a unit
feedback in the system which is directly related with p by
means of the following expression:

C(s) = Kp

(
ε+

1

Ti

∫
ε(τ)dτ + Td

dε

dt

)
(15)

As has been done previously, it is necessary to define
the constraint vector of parameters, which in this case is
summarized in TABLE III.

TABLE III
PID BOUNDS

Parameter Lower bound Upper bound

Kp -10−4 102

Ti -10−6 102

Td -10−6 102

The tuned PID controller for the optimization problem
formulated is the following one: p = [9.56, 0.0156, 0.0043].
Applying this controller to the ECM model, considering as a
reference voltage the experimental profile used to calibrate
the system models, it is possible to analyze the system
performance.

As can be noticed in Fig. 4, the output voltage tracks the
desired reference. In the detail, it is possible to see how despite
the sudden change of current from discharging to charging
method, the voltage signal does not present any overshoot.
In order to guarantee that the current control signal does not
present values outside the permitted operating ranges, which
could lead to an inappropriate charge, the PID controller has
been designed considering a lower and upper bound for I ,
named I and I , respectively. For the case presented, it has



been bounded between -2 and 2 A. Fig. 5 shows the control
current profile, where it can be noticed how the current does
not exceed these values, guaranteeing a safe charging.
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Fig. 4. Referenced (red) and controlled (blue) voltage profiles for the ECM.
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Fig. 5. Control current profile for voltage control for the ECM.

Another controller that can also be designed considering
the ECM consists on the power control. In most cases, the
purpose when using an ESS is ensure that can satisfy a power-
energy demand. Thus, considering the power as a reference,
the same optimization problem as the one presented previously
has been used, substituting the voltage error ϵ for the power
error defined as:

ε = Pref − P, (16)

being P the battery power computed as: P = E·I . In that case,
to ensure safety conditions, both current and voltage signals
have been bounded.

For the case of the current the previous bound has been
used, while for the voltage it has been used a bound between
8 and 18, corresponding to the values near the minimum and
maximum SOC, respectively.

The power tracking problem has been analyzed applying a
constant power profile that varies between -5 and 5 W. For
this particular case, the PID controller obtained from PSO
computation is p = [9.56, 0.0156, 0.0043]. As can be noticed
in Fig. 6, the required power is obtained using this controller,
presenting only an initial fluctuation compared to the desired
value when applied for first time and when the process changes
from discharging to charging.
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Fig. 6. Referenced (red) and controlled (blue) power profiles of the ECM
controller.

To analyze the safe battery operation without overshoots in
both current or voltage variables, their values have been also
computed. Fig. 7 shows both profiles, where it can be noticed
how the current does not overpass the 0.5 A, while the voltage
is found between the 11 and 16 V, which are values that
guarantees that none of the species concentrations are close
to running out, which could be translated into the appearing
of unwanted reactions.
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Fig. 7. Voltage and current profiles for power control using the ECM model.



B. Electrochemical model charging controller

Using the electrochemical model, it is also possible to
develop a PID controller that is able to control previous battery
variables such as the voltage o power.

If the aim is to control the battery power, the optimization
problem that must be formulated is the following one:

minp

ni∑
i=1

|ε(i · Ts)|

subject to ˙̂x(i · Ts) = Ax̂(i · Ts) · q + bI(i · Ts)

Ê(i · Ts) = h (x̂(i · Ts), I(i · Ts))
I ≤ I ≤ I

E ≤ E ≤ E

f (p) ≤ 0 ,

where ε is the power error that can be computed by means
of (16). In that case, as can be noticed, both voltage and
current variables have been bounded to avoid unwanted val-
ues, using the same bounds as the ones used for the ECM
design. For this particular case, the tuned PID vector has been
p = [12.34, 10.15, 0.012], obtaining the power profile obtained
is presented in Fig. 8, where it can be seen that the results are
quiet similar to the ones obtained using the ECM design.
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Fig. 8. Referenced (red) and controlled (blue) power profiles for the
electrochemical model.

One of the strengths of using the electrochemical model
is that the current and the eletrolyte flow rate can be used
as control actions. Thus, it is possible to develop a new
controller using this last variable. The same authors of this
work have presented a voltage controller which is able to track
a voltage profile, although the current presents abrupt changes,
by means of controlling the electrolyte flow rates [27]. This
controller was developed based on the H∞ norm, but can also
be computed using an industrial PID following the procedure
done for previous controllers.

In order to validate this controller, a voltage profile has
been used as reference, varying between 14 and 16 V, while a

current profile with different changes have been also defined,
which varies between 0.2 and 1 A. Fig 9 shows how the output
voltage follows the reference with null steady-state error. It can
be noticed how, in the presence of abrupt current changes, the
controller works correctly regulating the flow rate. The current
profile is shown in Fig. 10, jointly with the flow rate control
signal.
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Fig. 9. Referenced (red) and controlled (blue) voltage profiles for the
electrochemical model.
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Fig. 10. Current and flow rates profiles for voltage control using the
electrochemical model.

V. COMPARATIVE EVALUATION

Considering the results obtained in the previous section, as
well as the design procedure followed, some conclusions can
be extrapolated. First of all, it is important to remark that the
use of both ECM and electrochemical models for ESSs allows
the implementation of traditional PID controllers for tracking
problems such as voltage or power tracking. Moreover, the use
of this types of models can be found in the literature for other
purposes such as state and parameter estimation problems.



The design of the controllers by means of a optimization
method as the PSO used in this work allows to implement
and define a particular control problem for both models,
facilitating the problem design. Nevertheless, the use of an
electrochemical instead of an ECM allows to consider the
flow rate as a control variable, giving more wealth in the
control scope for other purposes such as the optimal control
minimizing the mass imbalance or pump losses.

VI. CONCLUSIONS

This conference paper has presented a methodology to de-
sign traditional PID controllers that can be used in the control
of electrochemical ESS. The control design has been carried
out using two different types of models that are used in the
field of battery modeling, obtaining positive results when both
voltage and power control problems have been formulated. In
order to solve these problems, the PSO algorithm has been
used. One of the main advantages of this technique is the
possibility to define the cost function and some constraints that
are generally important in ESS problems such as the voltage
or current limitation. However, it is important to remark that
the performance of this technique depends on the operating
conditions when the PID it is calibrated. Thus, the tuned
controller is fragile when new experiments can be carried out
with distant operational conditions or uncertainty. In order
to analyze this problem, using the electrochemical model it
has been possible to validate the tuned PID controller even in
presence of sudden changes in the current variable that can be
seen as system uncertainty. Moreover, it has been possible to
analyze the benefits of using an electrochemical model instead
of an ECM for voltage control with variable flow rates.
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