
Robust Multimodal and Multi-Object Tracking for
Autonomous Driving Applications

Marc Perez1,2 and Antonio Agudo1

Fig. 1: Robust multimodal and multi-object tracking. The raw sensor data and associated detections in a highway scenario;
the point cloud from a 360◦-lidar is color-coded by intensity with most points in red or yellow. The lidar detections from our
method are in grey, the radar is in purple, the camera detections are in yellow for trucks and green for cars, the low-resolution
frontal lidar is in white, and the results of our MOT algorithm are the edges of the bounding boxes color-coded as the camera
detections. The covariance of each detection is displayed as a shadow ellipse. For reference, the 2D detections overlayed on
top of the images are shown on top and the lanes detected by a camera with integrated detections are shown in green.

Abstract—In this work, we present a method for Multi-
Object Tracking (MOT) that uses unsynchronized multimodal
detections from a configurable set of sensors such as cameras,
radars and lidars. All the information is processed from the
sensors with modality-specific detectors and then combined
in the MOT module that incorporates a Kalman filter and
tracklet management logic. To be able to deploy our system in
real-world driving applications, we handle localization errors,
misclassifications and partial bounding-box detections from
the object detector in the MOT module. We show promising
results and compare them with respect to competing approaches
in two challenging real-world scenarios, including a traffic
jam chauffeur as well as a traffic monitoring application on
highways.

Index Terms—Multiple Object Tracking, Sensor Fusion.

I. INTRODUCTION
An accurate perception of the environment is essential

for autonomous driving and Advanced Driver-Assistance
Systems (ADAS), as the system needs to be aware of the
trajectories of all the other actors in the scene in order to
plan its own trajectory. To this end, Multi-Object Tracking
(MOT) techniques can be used to combine detections from
different sensors over time to estimate these trajectories. A

1Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona,
Spain. {mperez, aagudo}@iri.upc.edu

2Applus+ IDIADA, Tarragona, Spain.

common approach for real-time applications is tracking-by-
detection [1]–[3], where a list of existing tracklets is kept, and
every time that a new detection is received, it is associated
with a tracklet in the list updating it. Detections that are not
associated, are used to create new tracklets and are added
to the list. Each tracklet represents an object with a state
at each time instance. Usually, the state usually contains
the position, velocity, orientation, and size of the object.
Since common datasets do not include the acceleration, it
is not computed in many methods in the literature, being
only considered in a variant of CBMOT [2]. However, that
information is necessary when deploying these systems in
real-world applications, such as a traffic jam chauffeur (as
demonstrated in experiment III-A), since the vehicle needs to
be able to react to, e.g., a vehicle in front braking suddenly.
A tracking-by-detection MOT method needs to solve the next
main tasks: 1) Data association (how to decide to which
tracklet each detection corresponds), 2) Filtering (how to
update the tracklet given the associated detection), and 3)
Tracklet management (how to create and delete tracklets).
Next, we review previous work on each of these tasks.

1) Data association: Methods can be classified depend-
ing on whether they consider all detections from different
time steps at once (offline tracking), or the information is



processed as the data arrive (online tracking). Online track-
ing [1]–[3] is simpler in terms of data association and may
be used in real-time applications, but offline tracking [4] can
use future information to achieve more robust and accurate
results. Detections and tracklets are associated based on a
defined distance, such as the intersection over union, the
Euclidean distance and the Mahalanobis one to account for
the covariance of the estimations, or even learned distance
functions based on data [5]–[7]. A common assumption for
driving scenarios is that tracklets and detections are assigned
one-to-one, creating a bipartite graph where the associations
can be calculated using the Hungarian algorithm [8] or
others [9]. In this way, we minimize the total distance of the
associations. In some contexts, with many detections of low
confidence, it is preferable to iterate through the detections
sequentially by confidence and associate each of them to the
closest tracklet [2], [3]. Detections can also be combined from
different modalities before being associated with a particular
tracklet [10]. Recent works have only explored association
between objects of the same class, but we have observed that
when applying learning-based methods to real-world data,
some objects are misclassified. For example, when testing on
highways with YOLO [11] trained on the COCO [12] dataset,
as we will see in our experiments. We will present a method
to overcome these issues and reduce the errors in MOT that
misclassifications from the object detector cause.

2) Filtering: Each tracklet has a state. We need a method
to predict how this state will evolve in the future, and a
method to update the state taking into account the detections
associated with it. The most common approach [1], [3], [6],
[10] is to use a Bayesian filter for that, such as a Kalman
filter (KF) [13] or its extended version [14]. A simpler
approach [2], [15], when the detections include the velocity,
is to calculate the position of the detection at the last time
step, associate it to the tracklet based on the positions at that
time, and then replace the state of the tracklet with that of
the new detection.

Some sensors, such as radars, or lidar clustering algo-
rithms [16], [17], produce detections with a partial bounding
box, but this is not taken into account in previous works as
they assume complete bounding boxes as input for the filter,
propagating the error from the object detector to the MOT
module. In this work, we propose a method to consider these
partial detections and reconstruct the complete bounding box
in the MOT module.

To improve the robustness of the module, [18] proposes an
MOT framework with multiple sensors that can work if one
sensor is disabled. Our method can also work when some of
the sensors are disabled, but in our case, we try to handle the
errors from the detections instead of disabling the sensors.

3) Tracklet management: This subsystem manages the
creation, deletion, and output of tracklets. The basic solution
is to create tracklets from unassociated detections but do
not output them until they have had a minimum number of
detections while deleting tracklets that have not been detected
for a successive number of time steps [1]. But confidence-

based management works better than count-based solutions
when a proper function is used to update the confidence of the
tracklet taking into account the confidence of the associated
detection, as shown in [2].

The main contribution of our work is a detection and
tracking pipeline that can work with a large set of sensors and
detection methods and that generalizes well to different real-
world scenarios, leveraging some novelties we include. First,
we propose a simple method to estimate the location error of
the depth estimation algorithm used by the camera and take it
into account in the MOT module for association and filtering.
In this module, we also recover from partial detections (when
the detected bounding box is smaller than the real one)
and misclassifications from the object detector. Second, we
eliminate the need to synchronize sensors by asynchronously
updating the same shared tracklet list. We provide experi-
mental results on challenging real-world scenarios, including
a traffic jam chauffeur and a traffic monitoring application,
where we show the effectiveness of our sensor fusion solution.
We compare our results with respect to CBMOT [2] to show
how our approach improves the performance of MOT in the
presence of noisy detections.

II. SENSOR FUSION FOR MULTI-OBJECT TRACKING

Our MOT pipeline works with a configurable set of sen-
sors without the need to synchronize them. In this work,
without loss of generality, we consider images coming
from RGB cameras, 3D detections from radars, and point
clouds from lidars. We first process the raw data from
the sensors with class-specific object detectors. These 3D
detections are then combined in the MOT module using
a KF [13] and tracklet management logic, providing 3D
tracklets with higher accuracy than the input detections.
Our detection and tracking pipeline is displayed in Fig. 2.
All the 3D detections, regardless of the modality of origin,
are composed of a vector d and a timestamp. Particularly,
d = [rx, ry, rz, w, h, l, ϕ, c, β, σrx,rx , σrx,ry , σry,ry ]

⊤, in-
cluding the position of the centre of the object (rx, ry, rz), the
width w, height h, and length l of the bounding box, the yaw
rotation ϕ, the type of object class c, the confidence score β
of the detection model, and the 2D-position covariance values
(σrx,rx , σrx,ry , σry,ry ). For some sensors such as radars, we
also include the velocity v = [vx, vy]

⊤ as well as its covari-
ance entries by the vector σv = [σvx,vx , σvx,vy , σvy,vy ]

⊤.
We process the images using YOLO [11] trained on the

COCO dataset [12] to obtain 2D bounding boxes, and then
convert these to 3D detections by using [19] for depth
estimation. Since the depth estimation is noisy, each of
these 3D detections has a larger frontal positioning error
that increases as the object gets further away. This error is
captured in the covariance matrix, which the MOT then takes
into account and reduces by exploiting other modalities. To
obtain this covariance matrix, we consider a fixed pixel error
ep from the object detector and then calculate the difference
in range ∆λ and azimuth angle ∆α that we would obtain
from [19] in p + ep and p − ep, where p is the detected



pixel. Next, we obtain the covariance matrix in terms of

(σrx,rx , σrx,ry , σry,ry ) by setting the matrix to
[
∆λ 0
0 ∆α

]
and then rotate it by the obtained azimuth α. We use ep = 2
pixels for all our experiments.

To obtain 3D detections from point clouds, we filter the
ground and apply a clustering algorithm to get class-agnostic
detections with a partial bounding box, corresponding to
the visible part of the object. The complete bounding box
and class are covered in the MOT module. For lidars and
radars, we set the covariance matrix according to sensor
specifications.

These detections are taken as input to the sensor fusion
module, and we output our estimation consisting in a list of
I tracklets at every time step, where the i-th tracklet is coded
by a vector oi = [d⊤,v⊤,a⊤, σv

⊤, σa
⊤]⊤.

For completeness, we also consider the acceleration a =
[ax, ay]

⊤ and the corresponding covariance values σa =
[σax,ax , σax,ay , σay,ay ]

⊤. These values are not computed in
most recent works, but are key in practical applications such
as the experiments we provide in sections III-A and III-B.

At each time step k, the module keeps a tracklet list of all
the objects that are being tracked. Every one of them contains
a KF [13], where a constant velocity model is considered.
The i-th tracklet has the state sk,i = [rx, ry, vx, vy]

⊤ ∈ R4

and its covariance Pk,i ∈ R4×4. When the module receives
a detection from any modality with a time difference ∆t =
tk − tk−1, all the tracklets are updated using the prediction
equation:

ŝk,i = F(∆t)sk−1,i, (1)

where F ∈ R4×4 is defined as:

F(∆t) =

[
I2 ∆tI2
0 I2

]
. (2)

The covariance of the tracklet after the prediction is:

P̂k,i = F(∆t)Pk−1,iF(∆t)⊤ +Q(∆t) ∈ R4×4, (3)

where the process noise of the prediction Q(∆t) ∈ R4×4 is
modelled with an impulse of linear velocities as:

Q(∆t) =

[
I2 0
0 b∆tI2

]
, (4)

where b = 6 m/s2, representing a reasonable maximum for a
driving scenario. Then, at each time step k, the J detections
received {dk,j ∈ Rm | j = 0, 1, . . . , J} are associated to
tracklets by minimizing the global distance of the associations
by means of [9]. Despite being several distances useful to be
applied, we consider the Mahalanobis one d(̂sk,i,dk,j) : R4×
Rm → R defined by:

d =
√
(dk,j − h(̂sk,i))⊤Σ

−1
k,i,j(dk,j − h(̂sk,i)), (5)

where h : R4 → Rm depends on the sensor and maps the state
to the detection space of the sensor. We use the Mahalanobis
distance to be able to account for the covariance of the
detections, this is especially relevant with camera detections

of far away objects, as the frontal error is much larger than
the lateral error, and using a simpler distance such as the
Euclidean distance would result in incorrect associations.
Once the detection dk,j has been associated to the i-th track,
the mean and covariance of the innovation are defined as:

yk,i = dk,j − h(̂sk,i) ∈ Rm, (6)

Σk,i,j = HP̂k,iH
⊤ +Rk,j ∈ Rm×m, (7)

where H ∈ Rm×4 is the Jacobian of h and Rk,j ∈ Rm×m

the covariance of the detection.
The detection is used to update the tracklet that has been

associated by following the next KF equations:

Kk,i = P̂k,iH
⊤Σk,i,j ∈ R4×m, (8)

sk,i = ŝk,i +Kk,iyk,i ∈ R4, (9)

Pk,i = (I−Kk,iH)P̂k,i ∈ R4×4, (10)

where Kk,i is the optimal Kalman gain, that weights how
much the state changes considering the detection received,
and it gives more importance to detections with lower errors.
It is worth noting that the detections that have not been
associated can be used to create new tracklets to include in
the list. As radar sensors have a high rate of false positives,
they are not considered for tracklet initialization. Finally, a
tracklet removal step is also included to keep only relevant
tracklets in the list, removing from the list those tracklets with
a confidence below a defined threshold τ or that have not been
associated for a given period of time κ. In all our experiments
we set τ = 0.1 and κ = 3 s. Since each sensor updates
the shared tracklet list independently, no synchronization is
required.

Some terms in the o vector are not kept in the state of
the KF and are instead computed separately. This helps to
better generalize to a larger set of sensors that cannot estimate
these terms. For instance, we use the orientation of the
velocity vector included in the state to calculate the yaw angle
or heading when complete and accurate detections are not
available. To infer the acceleration, we filter the differences
in velocity from the KF state over time. First, we calculate the
instant acceleration âk from the velocity and time differentials
between the current time step tk and the previous one tk−1

as âk = max(min((vk − vk−1)/(tk − tk−1), b),−b), where
max and min indicate the enterwise max/min operators,
respectively. We then filter the acceleration with respect to
previous accelerations as ak = γak−1 + (1 − γ)âk, for
γ ∈ [0, 1]. For all our experiments we set γ = 0.8.

We follow the multiplication score update function from [2]
to update the confidence score of the tracklets and propose
new approaches to calculate the width, height, length, and
class, that are more robust to detections with partial bounding
boxes and misclassifications. Next, we present our solutions.

A. Handling misclassifications

Learning-based object detectors have recently achieved
very accurate results [15]. However, these approaches tend



Fig. 2: Multi-object tracking from sensor fusion. The proposed system receives inputs from a configurable set of sensors
(camera, radar, and lidar, in our particular configuration). Modality-specific object detectors generate 3D detections that are
then combined by means of a KF to obtain more robust and stable 3D tracks. The corresponding equations and terminology
used in the text can be found next to each module.

to degrade their performance due to the distribution shift that
is produced when they are applied to sensors and scenarios
not considered in the training distribution [20]. For example,
in our experiments on proving grounds and open roads, we
can observe many misclassification errors between similar
classes, such as bicycles and motorcycles, or buses and trucks.
These errors tend to appear in some of the frames, while
the majority of the sequence is correctly classified, making
it possible to recover from the error by exploiting temporal
consistency. To handle this misclassification error in the MOT
module, we associate tracklets and detections from similar
classes that are not associated after the same class association.
We can extract the pairs of similar classes from a confusion
matrix (when available) taking as pairs the classes that are
confused in over 1% of all data. We could also set them
empirically, depending on our application and set of classes.
This allows us to correctly associate detections to tracklets
even when they contain misclassification errors. Each tracklet
has a counter for each class with the number of times that
it has been associated with a class, and then we output the
class with the highest counter.

B. Handling partial detections

Some sensors and detection methods [15] are capable of
detecting the full bounding box of the objects even when
the object is partially visible. However, other sensors (like
some radars) detect only the visible part of the object or do
not provide accurate information on the size of the detected
object. To reconstruct the complete bounding box from partial
detections such that they can be associated with tracklets, we
define minimum values for width, height, and length for each
class. These values can be set empirically or based on the 20-
th percentile of the values in the training set, when available.

Then, we assume that the closest part of the bounding box
is detected and if any dimensions are lower than the minimum
for the class, we calculate what the centre of the detection

Fig. 3: Handling of partial detections. We consider a sensor
mounted at the front bumper of the left car that detects the car
in front with the partial bounding box in red. We then extract
the closest point (in blue) and the new centre (in yellow),
such that the blue point is the closest point for the bounding
box with minimum size for a car (in yellow) that maintains
the detected orientation. The orientation will be corrected in
the MOT module.

would be if those dimensions were equal to the minimum
for the class, so that the closest point to the sensor remains
the same. To this end, we define the closest point as the
intersection of the bounding box with the line from the sensor
to the centre of the box. We then resize the box and calculate
the new centre of the box, so that the closest point remains
the same, as it is shown in Fig. 3.

To improve the accuracy of the data association when the
orientations of the detections are not reliable or unavailable,
we set the orientation of the bounding box to that of the
tracklet that we are comparing it to. This reconstruction is
especially important for classes with a large bounding box,
such as trucks or buses. Some sensors will only detect the
rear part and, if the full bounding box is not reconstructed,
we would not be able to correctly associate the detections or
update the tracklets, as we will see in the experiments.



III. EXPERIMENTS

We now present experimental results using our MOT
method with different sensors on different real and challeng-
ing scenarios. We compare our results with the state-of-the-art
CBMOT [2] tracker, since it has an open code base and it is
a tracking-by-detection method that can be easily integrated
into our experiments.

A. MOT for a traffic jam chauffeur

We first test our method in proving grounds, by integrating
our MOT technique as the perception module of a traffic jam
chauffeur function. To generate the ground truth data in order
to analyze the performance of the system, we equip our ego
vehicle and the target vehicle in each scenario with the OxTS
RT3000, high-precision differential GNSS devices that are
in constant communication so that they can estimate their
relative position with an accuracy of 1 cm. Since we want to
test an ADAS function that is currently present in commercial
vehicles and to be able to extract comparable results, we use
a front radar (Continental ARS 408-21) and a front camera
with integrated detections (Mobileye 630) as sensors.

The radar is more accurate in estimating the longitudinal
position and velocity of the target but has too many false
positives, so we rely on the camera for tracklet initialization.
We report results for different car-to-car scenarios, where the
ego vehicle with the perception system and the target vehicle
in front drive in the same lane. For the parametrizations S1

and S2, the ego vehicle approaches while driving faster than
the target vehicle in front and then adapts to the velocity
of the target vehicle. For S3, S4, and S5 both vehicles are
driving at 50 km/h, with some oscillations, then the vehicle
in front brakes at different deceleration values and the ego
vehicle reacts accordingly by breaking until both vehicles
are at a full stop. In Tab. I, we show the average error
in position and velocity. We can see that our sensor fusion
outperforms both sensors and CBMOT [2]. In the scenarios
with rain, S4 and S5, we can see that the camera is more
affected than the radar and the error in longitudinal position
is much larger than in clear conditions. To complement these
quantitative results, Fig. 4 shows the evolution of the error in
longitudinal position and velocity of each sensor over time
in the last three scenario parametrizations S3−5, along with
the reference position and velocity, and the estimations of
our sensor fusion and CBMOT [2]. Here we can see that
the output of our sensor fusion is smoother than the result
of CBMOT [2] and the input sensors. CBMOT [2] does
not consider the error in the detections, and therefore each
detection received has a similar effect on the state of the
KF. We overcome this limitation by considering the location
error of the detections so that the KF can update its state
giving more weight to the detections with a lower error and
less to the detections with a higher error. Finally, Fig. 5
shows more details for a time instant in S4, where we can
see an image from a reference camera and the detections
from each sensor along with our sensor fusion’s tracklet, the
CBMOT [2] tracklet, and the corresponding ground truth. The

S1 S2 S3 S4 S5 Avg

Sensor
Fusion
(Ours)

ēx 0.20 0.18 0.30 0.17 0.24 0.22
ēy 0.29 0.28 0.43 0.33 0.54 0.37
ēvx 0.10 0.12 0.11 0.15 0.25 0.15
ēvy 0.15 0.15 0.30 0.20 0.58 0.28

CBMOT [2]

ēx 0.42 0.57 0.48 0.38 1.33 0.64
ēy 0.40 0.52 0.51 0.35 0.65 0.49
ēvx 0.17 0.13 0.12 0.13 0.26 0.18
ēvy 0.17 0.18 0.32 0.20 0.62 0.30

Radar

ēx 0.85 0.74 0.47 0.17 0.34 0.51
ēy 0.63 0.60 0.84 0.43 0.68 0.64
ēvx 0.23 0.15 0.13 0.12 0.22 0.17
ēvy 0.20 0.20 0.33 0.21 0.61 0.31

Camera

ēx 0.21 0.20 0.48 1.11 1.58 0.72
ēy 0.36 0.36 0.47 0.31 0.63 0.43
ēvx 0.10 0.13 0.18 0.24 0.31 0.19
ēvy 0.17 0.18 0.31 0.20 0.64 0.30

Parameters

vego 60 50 50 50 50
vtar 20 20 50 50 50
atar - - -1 -2 -4
rain no no no yes yes

TABLE I: Car-to-car average errors. The table reports
the Mean Absolute Error (MAE) in longitudinal and lateral
position ēx, ēy in meters [m], as well as the MAE in
longitudinal and lateral velocity ēvx , ēvy in meters/second
[m/s]. We evaluate each sensor independently, our sensor
fusion algorithm and the competing approach CBMOT [2],
all of them for a scenario with 5 different parametrizations,
S1−5, where the ego vehicle drives at a speed of vego km/h
and has a target vehicle in front driving at vtarget km/h, then
the target vehicle breaks at atarget m/s2. We also include
the average error across scenario parameterizations, and we
highlight the best results in bold. S1−3 are in clear conditions
and S4−5 raining.

error of CBMOT [2] is larger than that of our method as
it does not take into account the error of the sensors and
treats them equally, we are also capable of reconstructing the
original bounding box, whereas CBMOT [2] keeps the partial
bounding box provided by the sensors.

B. MOT for traffic monitoring

Finally, we test our system with a larger and more diverse
set of sensors and apply it to traffic monitoring on highways.
We equip two vehicles with three cameras (Basler a2A1920-
51gcBAS), one radar (Continental ARS 408-21), one frontal
lidar (ibeo LUX 4L), and one 360◦ lidar (Ouster OS2-
128). The goal of this application was to determine the
effect on other highway users of a truck platoon (a group
of trucks communicating with each other and driving at
close distances with automated speed control). We placed
one equipped vehicle in front of the platoon and the other
one behind the platoon. We then processed the data recorded
from the sensors offline to generate the trajectories (position,
velocity, and acceleration at every time step) of all other road
users. We recorded data with the platoon active, meaning the
trucks were driving at a closer distance, and with the platoon
inactive, with the drivers driving as in normal conditions. In



S3: vego = 50 km/h, vtar = 50 km/h, atar = −1 m/s2. No rain

S4: vego = 50 km/h, vtar = 50 km/h, atar = −2 m/s2. Rain

S5: vego = 50 km/h, vtar = 50 km/h, atar = −4 m/s2. Rain

Fig. 4: Traffic Jam Chauffeur scenarios S3, S4 and S5.
In all cases, longitudinal position and velocity are considered
on the left/right, respectively. Top: Position and velocity error
evolution for every sensor we use, as well as our method and
CBMOT [2]. Bottom: Evolution of the relative longitudinal
position and velocity from our method and CBMOT [2], and
the corresponding ground truth.

future work, these trajectories will be analyzed to assess the
effect of activating the platoon on other highway users. For
this experiment we do not have ground truth data available,
so can we only report qualitative results. As we can see in
Fig. 1, the radar is providing the velocity information but also
many false positives, the cameras have a large longitudinal

Fig. 5: Traffic Jam Chauffer scenario S4: Image and
detections. We display information from the time t = 2.74 s.
On the left, the effect of the rain on the camera is visible. On
the two right images, we see the detections of the camera
(green square), and radar (cyan squares); along with the
ground truth (blue rectangle) and the sensor fusion (green
edges), our method in the middle and CBMOT [2] on the
right.

Fig. 6: Qualitative results on a real traffic monitoring
scenario. The raw point cloud from the 360◦ lidar color-
coded by height with its detections in grey, the camera
detection in yellow for trucks, green for cars, and pink for
buses, and the results of the MOT algorithm are the edges
of the bounding boxes color-coded as the camera detections,
with our method on top and CBMOT [2] on the bottom.
The covariance of each detection is displayed as a shadow
ellipse. For reference, the camera image with detections is
shown in the top-right corner. Detected lanes by a camera
with integrated detections are shown in white.

error, and the lidars provide the most accurate positioning
and some false positives. Thus, we use camera detections
to initialize tracklets. Then, the rest of the detections are
associated to those tracklets and our MOT module calculates
the position, size, class, velocity, and acceleration of every
vehicle in the scene over time, obtaining estimations with



a lower covariance and error. None of the sensors provide
complete bounding box estimations, but our MOT is capable
of reconstructing the complete bounding box by using our
proposed method, whereas CBMOT [2] keeps the partial
bounding boxes from the sensors. Some camera detections
contain misclassifications, especially confusing trucks and
buses as in Fig 6, but this is handled in the MOT with our
approach. We can see the effect of not handling misclassifi-
cations in the CBMOT [2] results, where an extra tracklet
is erroneously created. The positional error is also higher
in CBMOT [2] since they do not consider the error in the
detections.

IV. CONCLUSION

We have presented a versatile and accurate MOT method
that works with a wide variety of sensors and detectors
without the need to synchronize them, and that can be used in
different real-world scenarios. To improve the robustness in
these scenarios, we proposed a method to handle misclassifi-
cations and partial bounding boxes from the object detector
in the MOT module. We also proposed a simple yet effective
method to estimate the error in the conversion from 2D to
3D camera detections using depth estimation, and a novel
method to obtain the acceleration in the MOT module. An
in depth discussion is included to justify the importance of
this information when MOT systems are deployed in real
applications, such as the traffic jam chauffeur function that we
have used to test our system in proving grounds. Our system
was tested for extensive sets of sensors by mounting cameras,
lidars, and radars on two vehicles to monitor highway traffic.
We compared our results against CBMOT [2] and highlighted
how our contributions improve the results. We believe that our
approach is generic and can be easily integrated with other
MOT methods that can benefit from our contributions.

V. ACKNOWLEDGMENTS

This work has been supported by the project
MoHuCo PID2020-120049RB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by the Government
of Catalonia under 2020 DI 105.

REFERENCES

[1] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani, “3D Multi-
Object Tracking: A Baseline and New Evaluation Metrics,” in IROS,
2020.

[2] Nuri Benbarka, Jona Schröder, and Andreas Zell, “Score refinement
for confidence-based 3D multi-object tracking,” in IROS, 2021.

[3] Ziqi Pang, Zhichao Li, and Naiyan Wang, “Simpletrack: Under-
standing and rethinking 3D multi-object tracking,” arXiv preprint
arXiv:2111.09621, 2021.

[4] Li Zhang, Yuan Li, and Ramakant Nevatia, “Global data association
for multi-object tracking using network flows,” in CVPR, 2008.

[5] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmohan Chan-
draker, “Deep network flow for multi-object tracking,” in CVPR, 2017.

[6] Hsu-kuang Chiu, Jie Li, Rareş Ambruş, and Jeannette Bohg, “Proba-
bilistic 3D multi-modal, multi-object tracking for autonomous driving,”
in ICRA, 2021.

[7] Yihan Zeng, Chao Ma, Ming Zhu, Zhiming Fan, and Xiaokang Yang,
“Cross-modal 3D object detection and tracking for auto-driving,” in
IROS, 2021.

[8] Harold W Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[9] David F Crouse, “On implementing 2D rectangular assignment algo-
rithms,” TAESS, vol. 52, no. 4, pp. 1679–1696, 2016.

[10] Aleksandr Kim, Aljoša Ošep, and Laura Leal-Taixé, “Eagermot: 3D
multi-object tracking via sensor fusion,” in ICRA, 2021.

[11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao,
“Yolov4: Optimal speed and accuracy of object detection,” arXiv
preprint arXiv:2004.10934, 2020.

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and Lawrence Zitnick, “Microsoft
COCO: Common objects in context,” in ECCV, 2014.

[13] Rudolph Emil Kalman, “A new approach to linear filtering and
prediction problems,” Journal of basic Engineering, vol. 82, no. 1,
pp. 35–45, 1960.

[14] Simon Julier and Jeffrey Uhlmann, “A new extension of the kalman
filter to nonlinear systems,” in AeroSense, 1997.

[15] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl, “Center-based 3D
object detection and tracking,” in CVPR, 2021.

[16] Kaiqi Liu and Jianqiang Wang, “Fast dynamic vehicle detection in road
scenarios based on pose estimation with convex-hull model,” Sensors,
vol. 19, no. 14, pp. 3136, 2019.

[17] Yang Liu, Bingbing Liu, and Hongbo Zhang, “Estimation of 2D bound-
ing box orientation with convex-hull points-a quantitative evaluation on
accuracy and efficiency,” in IV, 2020.

[18] Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, and
Chen Change Loy, “Robust multi-modality multi-object tracking,” in
ICCV, 2019.

[19] Apoorva Joglekar, Devika Joshi, Richa Khemani, Smita Nair, and
Shashikant Sahare, “Depth estimation using monocular camera,”
IJCSIT, vol. 2, no. 4, pp. 1758–1763, 2011.

[20] Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan,
Mark Campbell, Kilian Q Weinberger, and Wei-Lun Chao, “Train in
germany, test in the usa: Making 3D object detectors generalize,” in
CVPR, 2020.


