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LayerNet: High-Resolution Semantic 3D
Reconstruction of Clothed People

Enric Corona Guillem Alenyà Gerard Pons-Moll Francesc Moreno-Noguer

Abstract—In this paper we introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry;
and LayerNet, a deep network that given a single image of a person simultaneously performs detailed 3D reconstruction of body and
clothes. In contrast to existing learning-based approaches that require training specific models for each type of garment, SMPLicit can
represent in a unified manner different garment topologies (e.g. from sleeveless tops to hoodies and open jackets), while controlling
other properties like garment size or tightness/looseness.
LayerNet follows a coarse-to-fine multi-stage strategy by first predicting smooth cloth geometries from SMPLicit, which are then refined
by an image-guided displacement network that gracefully fits the body recovering high-frequency details and wrinkles. LayerNet
achieves competitive accuracy in the task of 3D reconstruction against current ‘garment-agnostic’ state of the art for images of people
in up-right positions and controlled environments, and consistently surpasses these methods on challenging body poses and
uncontrolled settings. Furthermore, the semantically rich outcome of our approach is suitable for performing Virtual Try-on tasks
directly on 3D, a task which, so far, has only been addressed in the 2D domain.

Index Terms—3D human reconstruction, 3D virtual try-on

✦

1 INTRODUCTION

BUILDING a differentiable and low dimensional gen-
erative model capable to control garments style and

deformations under different body shapes and poses would
open the door to many exciting applications in e.g. digi-
tal animation of clothed humans, 3D content creation and
virtual try-on. However, while such representations have
been shown effective for the case of the undressed human
body [1], [2], where body shape variation can be encoded
by a few parameters of a linear model, there exist so far, no
similar approach for doing so on clothes.

The standard practice to represent the geometry of
dressed people has been to treat clothing as an additive dis-
placement over canonical body shapes, typically obtained
with SMPL [3], [4], [5], [6]. Nevertheless, these types of
approaches cannot tackle the main challenge in garment
modeling, which is the large variability of types, styles,
cut, and deformations they can have. For instance, upper
body clothing can be either a sleeveless top, a long-sleeve
hoodie or an open jacket. In order to handle such variability,
existing approaches need to train specific models for each
type of garment, hampering thus their practical utilization.

In this paper, we introduce SMPLicit, a topologically-
aware generative model for clothed bodies that can be
controlled by a low-dimensional and interpretable vector
of parameters. SMPLicit builds upon an implicit network
architecture conditioned on the body pose and shape. With
these two factors, we can predict clothing deformation in
3D as a function of the body geometry, while controlling the
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garment style (cloth category) and cut (e.g. sleeve length,
tight or loose-fitting). We independently train this model
for two distinct cloth clusters, namely upper body (including
sleeveless tops, T-shirts, hoodies and jackets) and lower body
(including pants, shorts and skirts). Within each cluster,
the same model is able to represent garments with very
different geometric properties and topology while allow-
ing to smoothly and consistently interpolate between their
geometries. Shoes and hair categories are also modeled as
independent categories. Interestingly, SMPLicit is fully dif-
ferentiable and can be easily deployed and integrated into
larger end-to-end deep learning systems.

Concretely, we demonstrate that SMPLicit can be read-
ily applied to two different problems. First, for fitting 3D
scans of dressed people. In this problem, our multi-garment
“generic” model is on a par with other approaches that were
specifically trained for each garment [5], [6]. We also apply
SMPLicit for the challenging problem of 3D reconstruction
from images, where we compare favorably to state-of-the-
art, being able to retrieve complex garment geometries
under different body poses, and can tackle situations with
multiple clothing layers. Fig. 1 shows one such example,
where besides reconstructing the geometry of the full outfit,
SMPLicit provides semantic knowledge of the shape, al-
lowing then for garment editing and body re-posing, key
ingredients of virtual try-on systems.

A preliminary version of this work was presented in [7],
in which we showed our generative model was able to rep-
resent multiple cloth topologies, interpolate between them
and fit clothes from 3D scans and images. In this paper
we also present LayerNet, which is based on SMPLicit to
predict body and garments as layers, while still preserving
high fidelity detail and texture, given a single in-the-wild
image of a person in an arbitrary pose. For this purpose,
we formulate a two-stage pipeline that combines the best of
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Fig. 1. We introduce SMPLicit, a fully differentiable generative model for clothed bodies, capable of representing garments with
different topology. The four figures on the left show the application of the model to the problem of 3D body and cloth reconstruction
from an input image. We are able to predict different models per cloth, even for multi-layer cases. Three right-most images: The
model can also be used for editing the outfits, removing/adding new garments and re-posing the body.

model-based and model-free paradigms. Concretely, in the
first stage, we predict body shape and pose parameters with
SMPL [1] and clothing with SMPLicit. In the second stage,
we process the image with pixel-aligned feature maps: we
estimate features, normal maps and front and back RGB
completion. We then introduce a deformation network that
predicts point-wise displacements on the smooth shape to
add detail based on pixel-aligned features, obtained by
projecting the SMPLicit model vertices onto the feature
maps. This makes the deformation network independent of
the number of vertices of the layers. In addition, the de-
formation network reasons about the different cloth layers,
enabling the full reconstruction of garments that are mostly
occluded. Similar to the deformation network, a texture
network predicts front and back per-vertex colors, yielding
a high-resolution, textured, and complete geometric recon-
struction for all garments.

A thorough evaluation demonstrates that LayerNet
achieves reconstructions in a forward pass which are com-
petitive with PIFuHD [8] (arguably the SOTA of single-layer
models) for people in upright positions, and consistently
overcomes this approach on images with complex body
poses. Most importantly, the detailed reconstructions we
provide are accompanied by a 3D semantic segmentation
into the meshes of the body and each one of the garments,
even for multi-layer outfits. This rich output opens the
door to a number of novel applications that involve 3D
mesh editing, like 3D virtual try-on. Fig. 1 shows one such
example, in which after applying SMPLicit to the images of
two people we can easily swap their clothes.

2 RELATED WORK

Reconstruction and modelling of clothes is a long-standing
goal lying at the intersection of computer vision and com-
puter graphics. We next discuss related works, grouping
them in Generative cloth models, 3D reconstruction of clothed
humans and Cloth editing, the three main topics in which we
contribute.

2.1 Generative cloth models
Drawing inspiration on the success of the data driven meth-
ods for modeling the human body [1], [2], [10], [11], [12],

[13], [14], a number of approaches aim to learn clothing
models from real data, obtained using multiple images [3],
[15], [16], [17], [18], 3D scans [19], [20], [21] or RGBD
sensors [22], [23]. Nevertheless, capturing a sufficiently
large volume of data to represent the complexity of clothes
is still an open challenge, and methods built using real
data [24], [25], [26] have problems to generalize beyond
the deformation patterns of the training data. [5] addresses
this limitation by means of a probabilistic formulation that
predicts clothing displacements on the graph defined by the
SMPL mesh. While this strategy improves the generalization
capabilities, the clothes it is able to generate can not largely
depart from the shape of a “naked” body defined by SMPL.

An alternative to the use of real data is to learn clothing
models using data from physics simulation engines [6],
[27], [28], [29], [30]. The accuracy of these models, how-
ever, is again constrained by the quality of the simulations.
Additionally, their underlying methodologies still rely on
displacement maps from a template, and can not produce
different topologies.

Very recently, [4], [31], [32] have proposed strategies to
model garments with topologies departing from the SMPL
body mesh, like skirts or dresses. [4] does so by predicting
generic skinning weights for the garment, independent from
those of the body mesh. In [32], the garment is characterized
by means of 2D sewing patterns, with a set of parame-
ters that control its 3D shape. A limiting factor of these
approaches is that they require training specific models
for each type of garment, penalizing thus their practical
use. [31] uses also sewing patterns to build a unified rep-
resentation encoding different clothes. This representation,
however, is too complex to allow controlling the generation
process with just a few parameters. SMPLicit, in contrast, is
able to represent using a single low-dimensional parametric
model a large variety of clothes, which largely differ in their
geometric properties, topology and cut.

Table 1 summarizes the main properties of the most
recent generative cloth models we have discussed.

2.2 Reconstructing clothed humans from images
Most approaches for reconstructing 3D humans from im-
ages return the SMPL parameters, and thus only retrieve
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Training

Inference

Fig. 2. Architecture of SMPLicit during training (top row) and inference (bottom row). At the core of SMPLicit lies an implicit-
function network C that predicts unsigned distance from the query point p to the cloth iso-surface. The input Pβ is encoded from
p given a body shape. During training, we jointly train the network C as the latent space representation is created. We include
an image encoder f that takes SMPL occlusion maps from ground truth garments and maps them to shape representations zcut,
and a second component zstyle trained as an auto-decoder [9]. At inference, we run the network C(·) for a densely sampled 3D
space and use Marching Cubes to generate the 3D garment mesh. We finally pose each cloth vertex using the learnt skinning
parameters [1] of the closest SMPL vertex.

TABLE 1
Comparison of our method with other works.

Method Body Pose
Variations

Body Shape
Variations Topology Low-Dimension

Latent Vector
Model is

public

Santesteban [29] ✓ ✓
DRAPE [27] ✓ ✓ ✓
Wang [30] ✓ ✓ ✓

GarNet [28] ✓ ✓ ✓
CAPE [5] ✓ ✓ ✓ ✓

TailorNet [6] ✓ ✓ ✓ ✓
BCNet [4] ✓ ✓ ✓ ✓

Vidaurre [32] ✓ ✓ ✓
Shen [31] ✓ ✓ ✓ ✓
SMPLicit ✓ ✓ ✓ ✓ ✓

3D body meshes, but not clothing [2], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42]. To reconstruct clothed people,
a standard practice is to represent clothing geometry as an
offset over the SMPL body mesh [3], [15], [16], [17], [43],
[44], [45], [46], [47]. However, these approaches are prone to
fail for loose garments that exhibit large displacements over
the body. Non-parametric representations have also been
explored for reconstructing arbitrary clothing topologies.
These include approaches based on volumetric voxeliza-
tions [48], geometry images [49], bi-planar depth maps [50]
or visual hulls [51]. Certainly, the most powerful model-free
representations are those based on implicit functions [8],
[52], [53], [54]. Recent approaches have also combined
parametric and model-free representations, like SMPL plus
voxels [55] and SMPL plus implicit functions [21], [54], [56].

While these approaches retrieve rich geometric detail,
the resulting surfaces can not be controlled in both pose
and clothing. SMPLicit is also built upon implicit func-
tions, but our output contains multiple layers for the body
and garments, and allows control over pose and clothing.
Moreover, in this work we design a pipeline that builds on
parametric and parametric-free models, extending SMPLicit
to achieve high-definition and expressive meshes on in-the-

wild images.

2.3 Cloth editing.

Several recent cloth editing approaches are focused on 2D,
mostly tailored to virtual-try-on applications [57], [58], [59],
[60], [61], [62], [63], [64], [65]. In this work, we are interested
in doing such editing tasks, like swapping clothes between
people, by extending initial approaches [66] to work in the
wild. For this to be possible, it is necessary to segment the
meshes of clothed humans into body and garment com-
ponents. However, as mentioned above, most existing ap-
proaches on reconstructing clothed humans estimate cloth
and body geometry as a single surface (mesh or voxels).

There exist a few works that provide rich cloth represen-
tations potentially applicable to editing tasks [16], [23], [43],
[67], [68], although so far, none of them is ready to be used
on single in-the-wild images. [6], [31], [32] propose gener-
ative models to control garment style (e.g. sleeve length or
size), but do not demonstrate reconstructions from images.
BCNet [4] and Multi-Garment Net [17] demonstrate recon-
struction from images and show convincing cloth editing
results, although they are evaluated on synthetic data [4]
and require up to 8 video frames [17].

While SMPLicit has the capacity to perform 3D cloth
editing on in-the-wild images, the editing results are also
undermined by the lack of high-frequency details and color
of the estimated 3D meshes. As we will show in the exper-
imental results, our extension has the capacity to represent
this detail when performing cloth editing tasks.

3 SMPLICIT

We next describe SMPLicit’s formulation, training scheme
and how it can be used to interpolate between clothes. Fig. 2
shows the whole train and inference process.
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3.1 Vertex Based SMPL vs SMPLicit
We build on the parametric human model SMPL [1] to
generate clothes that adjust to a particular human body
M(β,θ), given its shape β and pose θ. SMPL is a function

M(β,θ) : θ × β 7→ V ∈ R3N , (1)

which predicts the N vertices V of the body mesh as a func-
tion of pose and shape. Our goal is to add a layer of clothing
on top of SMPL. Prior work adds displacements [15], [16] on
top of the body, or learns garment category-specific vertex-
based models [6], [28]. The problem with predicting a fixed
number of vertices is that different topologies (T-shirt vs
open jacket) and extreme geometry changes (sleeve-less vs
long-sleeve) can not be represented in a single model.

Our main contribution is SMPLicit-core (Sec.3.2-3.4),
which departs from vertex models, and predicts clothing
on T-pose with a learned implicit function

C(p,β, zcut, zstyle) 7→ R+. (2)

Specifically, we predict the unsigned distance to the clothing
surface for a given point p ∈ R3. By sampling enough
points, we can reconstruct the desired mesh by thresholding
the distance field and running Marching Cubes [69]. In ad-
dition to shape, we want to control the model with intuitive
parameters (zcut, zstyle) representing the cut (e.g. , long vs
short) and style (e.g. , hoodie vs not hoodie) of the clothing.
Moreover, although it is not the focus of this paper, we also
learn a point-based displacement field (Sec.3.5) to model
pose-dependent deformations, and use SMPL skinning to
pose the garments. The full model is called SMPLicit and
outputs posed meshes G on top of the body:

C ′(θ,β, zcut, zstyle) 7→ G. (3)

3.2 SMPLicit-Core Formulation
We explain here how we learn the input representation: two
latent spaces to control clothing cut and style, and body
shape to control fit; and the output representation. Together,
these representations allow to generate and control gar-
ments of varied topology in a single model.
Clothing cut: We aim to control the output clothing cut,
which we define as the body area occluded by clothing. To
learn a latent space of cut, for each garment-body pair in the
training set, we compute a UV body occlusion image denoted
as U. That is, we set every pixel in the SMPL body UV
map to 1 if the corresponding body vertex is occluded by
the garment, and 0 otherwise, see Fig. 2. Then we train an
image encoder f : U 7→ zcut ∈ RD to map the occlusion
image to a latent vector zcut.
Clothing style: Different clothes might have the same body
occlusion image U, but their geometry can differ in tight-
ness, low-frequency wrinkles or collar details. Thus we
add another subset of parameters zc which are initialized
as a zero-vector and trained following the auto-decoder
procedure from [9].

The set of parameters z = [zcut, zstyle] ∈ RN fully
describes a garment cut and style.
Body shape: Since we want the model to vary with body
shape, instead of learning a mapping from points to occu-
pancy [9], [70], [71], we first encode points relative to the

body. For each garment, we identify SMPL vertices that are
close to ground truth models (e.g. torso vertices for upper-
body clothes), and obtain K vertex clusters vk ∈ R3 that
are distributed uniformly on the body in a T-pose. Then we
map a 3D point in space p ∈ R3 to a body relative encoding
Pβ ∈ RK×3 matrix, with rows storing the displacements to
the clusters Pβ,k = (p−vk). This over-parameterized repre-
sentation allows the network to reason about body bound-
aries, and we empirically observed superior performance
compared to Euclidean or Barycentric distances. However,
too many clusters might increase overfitting.

Output representation: One of the main challenges in learn-
ing a 3D generative clothing model is registering training
garments [17], [20] (known to be a hard problem due to the
lack of semantics and correspondences, and the diversity
of body poses in raw data), which is necessary for vertex-
based models [5], [6]. Implicit surface representations do not
require registration, but necessitate closed surfaces for learn-
ing occupancies [71], [72] or signed distances [9], [73]. Since
garments are open surfaces, we follow recent work [74] by
predicting unsigned distance fields.

Given a query point p, its positional encoding Pβ and
cloth parameters z, we train a decoder network C(Pβ , z) 7→
R+ to predict the unsigned distance D(p) to the ground
truth cloth surface.

3.3 SMPLicit-core Training

Training entails learning the network parameters w1 of the
clothing cut image encoder zcut = f(U;w1), the style latent
parameters zstyle for each training example, and the pa-
rameters of the decoder network C(·;w2). For one training
example, and one sampled point p, we have the following
loss:

Ld = |C(Pβ , f(U;w1), zstyle;w2)−D(p)|. (4)

During training, we sample points uniformly on a body
bounding box, and also near the ground-truth surface, and
learn a model of all garment categories jointly (we train
separate models for upper-body, pants, skirts, shoes and
hair though, because interpolation among them is not mean-
ingful). At inference, we discard the encoder f : U 7→ zcut
network, and control SMPLicit directly with zcut.

To smoothly interpolate and generate new clothing, we
constrain the latent space z = [zcut, zstyle] to be distributed
normally with a second loss component Lz = |z|.

We also add zero mean identity covariance Gaussian
noise zσ ∼ N (0, σnI) in the cloth representations before the
forward pass during training, taking as input C(Pβ , z+zσ),
which proves specially helpful for garment types where we
have a very small amount of data. The network C and the
cloth latent spaces are jointly learned by minimizing a linear
combination of the previously defined losses Ld + λzLz ,
where λz is a hyper-parameter.

3.4 SMPLicit-core Inference

To generate a 3D garment mesh, we evaluate our network
C(·) at densely sampled points around the body in a T-
pose, and extract the iso-surface of the distance field at
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threshold td using Marching Cubes [69]. We set the hyper-
parameter td = 0.1mm such that reconstructed garments
do not have artifacts and are smooth. Since C(·) predicts
unsigned distance and td > 0, the reconstructed meshes
have a slightly larger volume than ground truth data; this
is still better than closing the garments for training which
requires voxelization. Thinner surfaces could be obtained
with Neural Distance Fields [74], but we leave this for future
work.

In summary, we can generate clothes that fit a body
shape β by: (1) sampling z ∼ N (µ ∗ 1, σ ∗ I), with a single
mean and variance (µ, σ ∈ R) for all latent components
obtained from the training latent spaces; (2) estimating the
positional encoding Pβ for points around the T-pose and
evaluating C(Pβ , z); (3) thresholding the distance field, and
(4) running marching cubes to get a mesh.

3.5 Pose Dependent Deformation
SMPLicit-core can drape garments on a T-posed SMPL, but
does not predict pose dependent deformations. Although
pose deformation is not the focus of this work, we train a pose-
dependent model to make SMPLicit readily available for
animation applications. Similar to prior work [6], we learn
the pose-deformation model on a canonical T-pose, and use
SMPL learned skinning to pose the deformed mesh. Here,
we leverage the publicly available TailorNet [6] dataset of
simulated garments. Specifically, we learn a second network
which takes body pose θ, a learnable latent variable zθ and
maps them to a per-point displacement P : p×θ×zθ 7→ d ∈
R3. The latent space of zθ is learned in an auto-decoding
fashion like zstyle.

During training, since we are only interested in the
displacement field on the surface, we only evaluate the
model on points sampled along the cloth surface template
on a T-Pose. We also encode the position of the input points
p 7→ Pβ as a function of the body surface and train the
model to minimize the difference between ground truth
displacement and prediction.

During inference, we only evaluate P on the vertices
of the recovered SMPLicit-core mesh, and displace them
accordingly p 7→ p + d to obtain a deformed mesh (still
in the T-pose). Then we apply SMPL [1] to both body and
deformed garment to pose them with θ. In particular, we
deform each garment vertex using the skinning deformation
of the closest SMPL body vertex. This process determines
the SMPLicit function C ′(·) defined in Eq. (3).

4 FITTING SMPLICIT

In this section, we show the potential of SMPLicit for
several computer vision and graphics applications. We show
how SMPLicit can be fitted to 3D scans of dressed humans,
or directly to in-the-wild images for perception tasks, tak-
ing advantage of the full differentiability of the predicted
unsigned distance field with respect to cloth parameters.

4.1 Fitting SMPLicit to 3D scans of dressed people
Here we show how to fit SMPLicit to 3D scans of the Sizer
dataset [75] which includes cloth segmentation. Intuitively,
the main objective for fitting is to impose that SMPLicit-core

evaluates to zero at the unposed scan points. We sample 3D
points uniformly on the segmented scan upper-body and
lower-body clothes, and also the 3D empty space around
it. Let q ∈ R3 be a point in the posed scan space, and let
d = dist(q,S) be the distance to the scan. Since SMPLicit-
core is defined on the T-pose, we unpose q using the differ-
entiable SMPL parameters (we associate to the closest SMPL
vertex), and obtain the body relative encoding Pβ(θ,β),
now as a function of shape and pose. Then we impose that
our model C evaluates to the same distance at the encoding
of the unposed point:

L(β,θ, z) = |C(Pβ(θ,β), z)− d|. (5)

We run the optimization for a number of iterations and
for the cloth parameters of all garments the person is
wearing. We also minimize the Chamfer distance between
scan points and SMPL vertices, the MSE between SMPL
joints and predicted scan joints, an SMPL prior loss [33],
and a regularization term for z. We use scheduling and
first optimize the pose and shape, and finally all parameters
jointly.

4.2 Fitting SMPLicit to images
Similar to SMPL for undressed bodies, SMPLicit provides
the robustness and semantic knowledge to represent clothed
people in images, especially in presence of severe occlu-
sions, difficult poses, low-resolution images and noise. We
first detect people and obtain an estimate of each person’s
pose and shape [40], as well as a 2D cloth semantic segmen-
tation [76]. We then fit SMPLicit to every detection to obtain
layered 3D clothing.

For every detected garment, we uniformly sample the
space around the T-Posed SMPL, deform those points to
the target SMPL pose (p 7→ p̄), and remove those that are
occluded by the own body shape. Each posed point p̄ is
then projected, falling into a semantic segmentation pixel
(u, v) that matches its garment class sp = 1 or another
class/background sp = 0. We have the following loss for
a single point p:

LI(z) =

{
|C(Pβ , z)− dmax|, if sp = 0

mini|C(Pi
β , z)|, if sp = 1

(6)

When sp = 0 we force our model to predict the maximum
cut-off distance dmax of our distance fields (we force the
point to be off-surface). When sp = 1 we force prediction
to be zero distance (point in surface). Since many points
p̄i (along the camera ray) might project to the same pixel
(u, v), we take the mini(·) to consider only the point with
minimum distance (closest point to the current garment
surface estimate). Experimentally, this prevents thickening
of clothes, which helps when we represent more than one
cloth layer. We also add a regularization loss Lz = |z| and
optimize it jointly with LI .

5 LAYERNET

We next describe our model LayerNet which takes advan-
tage of SMPLicit’s robustness and predicts deformations on
its clothing. In this section, we first give an overview of the
pipeline, and then describe each of its modules and the data
pre-processing required to train it.
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Fig. 3. Overview of LayerNet. Given a single input image, we first perform 2D person segmentation, predict SMPL [1] parameters and cloth
categories from SMPLicit to obtain a coarse approximation of clothes. A novel Deformation Network that leverages image information allows to
progressively refine the geometry of the clothes and recover fine details and wrinkles while adjusting to the body. A final branch estimates per-
vertex normals and color, resulting in a high-definition person avatar with controllable garment meshes.

5.1 Pipeline Overview
After having described the SMPL and SMPLicit models,
we can now formally summarize our pipeline (see Fig. 3).
Given an input image I of a clothed and posed person, we
initially use Frankmocap [40] to estimate SMPL/SMPL-X
parameters {β,θ} encoding body shape and pose, respec-
tively. The input image is also fed into a pre-trained 2D cloth
segmentation network [76] that predicts cloth types mg and
the matrix of latent vectors z. We then apply the SMPLicit
mapping of Eq. 3 to recover the cloth meshes G. However,
recall that these meshes are still very coarse and lack of
detail. Let us define g as a single vertex of G. To recover
the details, we train a deformation network D(·) that learns
the mapping D : g → g′, where g′ ∈ G′ are high-definition
cloth meshes. We then propose an optimization approach
to reason about cloth layers and remove interpenetrations,
and we finally predict per-vertex color and normals for both
cloth and body.

Since LayerNet is based on SMPL predictions, we require
an elaborated process of fitting SMPL, SMPLicit and re-
posing scans for generating the data to train the pipeline
to estimate body shape and garments from one single in-
the-wild image. Data generation and LayerNet training
procedure are described in Sections 5.2 and 5.3, respectively.

5.2 Data pre-processing
In order to learn to predict body shape and garment ge-
ometry directly from images, we will use both off-the-shelf
segmentation networks pretrained on 2D real images, and
other modules trained on 3D scans. The 3D scans will need
to be pre-processed to extract ground truth parameters for
the SMPL and SMPLicit models. For fitting SMPL, we follow
a similar strategy as in [17], [20], [77] to minimize a loss
combining three terms: L2 distance between SMPL joints
and predicted scan joints , Chamfer distance between SMPL
and scan vertices and an SMPL prior [33]. The 3D joints
are up-lifted from 2D predicted joints in multiple views. We
next describe the rest of pre-processing operations onto the
training 3D scans.
Segmentation. The goal of this task is to assign to each
vertex of the scan a garment/body label according to the 19

categories of the CIHP dataset [78], including hair, face, t-
shirt, jacket, dress, pants, skirt or shoe. For this purpose, we
render 360 views of the scan and perform semantic segmen-
tation of each view using RP-R-CNN [25]. From the vertices
visibility, we can back-project the 2D segmentation maps
onto the 3D scan, and assign a per-vertex label according to
a majority voting strategy.

SMPLicit fit. Given the 3D segmented scans, we next fit
SMPLicit (i.e, we estimate the latent representations zcut and
zstyle from Eq. 3) for each cloth type using the optimization
proposed in Section 4.1. Additionally, we compute a Gaus-
sian mixture model (GMM) over a large number of SMPLicit
cloth mesh representations. This GMM is incorporated into
the optimization of the SMPLicit parameters, which we
observed to provide cleaner 3D cloth fits.

Cloth deformation. Given the SMPLicit fit encoded by
zcut and zstyle, we calculate the corresponding meshes G
using Eq. 3. Then the mesh of each garment is non-rigidly
deformed towards the corresponding mesh of the original
segmented scan. This deformation is encoded by means of
a per-vertex displacement D, which is to be added to G to
obtain a refined mesh G′ as close as possible to the 3D scan,
i.e G′ = G+D. The deformation D is obtained based on the
following optimization:

min
D

= LCD + LE + LL + |D|2 , (7)

where LCD is the Chamfer distance between the scan and
G′. LE regularizes the edge lengths of G′ and prevents
departing from a mean length, that is, LE =

∑
l∈EG′ |l −

µ(EG′)|2, where EG′ are the edges of G′ and µ(·) is the mean
function. LL regularizes over the curvature of neighboring
vertices. We estimate the Laplace-Beltrami operator for each
vertex and compute the graph Laplacian. LL is then defined
as the average norm of the product between the Laplacian
and the position of each vertex, which represents the local
amount of curvature. The last term |D|2 enforces small
deformations.

Reposing scans. In order to extend the range of human
poses of our training set, we re-pose each scan using differ-
ent pose configurations from the AMASS dataset [79]. This
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reposing, however, needs to be done carefully to prevent
self-intersections between arms and torso. For this purpose,
we manually validate the fit of SMPL and SMPLicit in each
of the scans and discard those where the optimization did
not converge or the re-posing generated artifacts.

The output or these dataset processing operations is a
large training set of 3D body scans with very diverse poses.
Each 3D scan is annotated with the SMPL and SMPLicit
parameters, plus a deformation map D that adds high-
frequency details to the coarse SMPLicit meshes.

5.3 From images to 3D semantic reconstructions
We next describe the learning process of LayerNet, which
follows a coarse-to-fine strategy and combines branches
trained using real images with other branches trained with
the registered data described above. Given an input image,
the learning pipeline (see Fig. 2) involves the following
steps: 1) Estimate coarse garment geometry; 2) Deform
garments to retrieve fine details; 3) Reason about multi-layer
outfits; 4) Estimate dense normals and texture.
Coarse cloth estimation. Following recent works [8], [52],
[56] we initially use DeepLab [80] to perform 2D person
segmentation on the input image I. [80] is trained on large
datasets of real images [81] which brings robustness to a
variety of environmental conditions and body poses. Ad-
ditionally, FrankMocap [40] is used to predict body shape
and pose. This supports both SMPL [1] and SMPL-X [2]. We
will use the latter, as it yields a better representation of the
hands.

The segmented image is forwarded to MaskR-CNN [82],
trained on DeepFashion2 [83], to predict cloth types. These
labels, together with the SMPL parameters are then pro-
cessed by SMPLicit, to obtain a coarse shape estimation
G of the clothes. The garment labels are mapped to clus-
ters computed over the GMM defined in 5.2, which is
used to initialize SMPLicit and achieve faster and more
robust convergence. SMPLicit allows recovering the fol-
lowing categories and their topological variations: upper
clothes (vest/t-shirt/shirt/jacket), pants, skirts and shoes.
Additionally, we train it to reconstruct different hair meshes.
Long dresses and jumpsuits are modeled using two separate
clothes: upper-cloth and skirt or pants.
Cloth deformation. We next refine the coarse cloth geome-
try, by adjusting it to the body shape and introducing high-
frequency details consistent with the wrinkles in the input
image I. For this purpose, if we denote by g a specific vertex
of G, we learn a function Fdisp(·) that predicts the Cartesian
displacement d in camera coordinates:

Fdisp : H(I(g)), π(g), Z(g), B(g), N(g) 7→ d , (8)

where H(I(g)) are image features extracted at different
resolutions using a Hourglass architecture [84], as in [8],
[52]. π(·) and Z(·) represent the projection and normalized
depth of the target vertex. We also condition Fdisp with
the undressed body geometry: B(·) is the distance to the
SMPL surface and N(·) the normal direction of that vertex.
During training, this process is supervised by the ground
truth deformation maps D we described in Sect. 5.2.
Reasoning about 3D cloth layers. So far, we have not
introduced constraints that prevent intersections between

different body-cloth or cloth-cloth in multi-layer outfits (e.g.
including T-shirts and jackets). To avoid body-cloth intersec-
tions we can exploit that SMPL and SMPLicit clothing are
watertight and easily detect cloth vertices that fall inside the
body or other clothing. These vertices are iteratively moved
towards outside the body, along their normal direction, until
the intersection is removed. For the multi-layer case, we
first pre-define a specific garment ordering (e.g. T-shirts are
“inside” jackets). Then, the garment that is in the exterior
is slightly deformed, so as to remain outside an slightly
inflated version of the body shape. The interior garment is
adjusted so as not to intersect the original body shape.

Normals and texture prediction. Recovering cloth normals
and color is essential to capture rich details and convey
realism. There have been already several works in this di-
rection [8], [52], [55], [56], from which we obtain inspiration
in our method. Given the segmented input image, we train
pix2pix [85] to predict front and back normal maps Nf ,Nb,
and back texture map Ib. This training is performed in a
fully supervised manner using renders of the original scans.

Using this information we then train a final function Fn,c

that for every vertex g ∈ G predicts its normal direction n
and RGB color c:

Fn,c : H(I, Ib,Nf ,Nb)(g), π(g), Z(g), ID(g) 7→ n, c (9)

where ID(g) encodes the cloth type.
At inference, for those vertices that are visible, we di-

rectly assign them the interpolated normals and colors from
the frontal predicted normal map Nf and input image I,
respectively. Fn,c is used to assign color and normals to the
rest of non-visible vertices.

To improve the ability of this prediction network to infer
the color of the unseen parts (e.g. skin color when the whole
body is covered by garments), during the training procedure
of Fn,c we swap 10% of the input cloth types ID(·) and
assign other types that are present in the person (e.g. body).
For these data points, we set the ground truth color to be the
average color of the new target cloth type (e.g. average body
color). This will guide the network to learn to predict colors
of unseen parts, especially occluded body regions, for which
we do not have groundtruth color in the training scans. By
doing this we can swap clothes between a reference person
wearing, e.g., a short-sleeve T-shirt and a target person
wearing a jacket (right-most column in Fig.10).

6 IMPLEMENTATION DETAILS

For the cloth latent space of SMPLicit, we set |z|= 18 for
upper-body, pants, skirts, hair and |z|= 4 for shoes; the
pose-dependent deformation parameters |zθ|= 128, number
of positional encoding clusters K = 500 and iso-surface
threshold td = 0.1 mm. We clip the unsigned distance field
dmax = 10mm. The implicit network architecture uses three
2-Layered MLPs that separately encode zcut, zstyle and Pβ

into an intermediate representation before a last 5-Layered
MLP predicts the target unsigned distance field. SMPLicit is
trained using Adam [88], with an initial learning rate 10−3,
β1 = 0.9, β2 = 0.999 for 1M iterations with linear LR
decay after 0.5M iterations. We use BS = 12, σn = 10−2

and refine a pre-trained ResNet-18 [89] as image encoder f .
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3D Scans CAPE [5] TailorNet [6] SMPLicit

Fig. 4. Fitting SMPLicit to 3D Scans of the Sizer Dataset [75]. All three models achieve fitting results of approximately 1 mm of
error. However, SMPLicit does this using a single model that can represent varying clothing topologies. For instance, it can model
either hoodies (top row) and tank tops (third row) or long and short pants.

TABLE 2
Average Chamfer distance in cm in the AYXZ and BUFF datasets [86]. We use the SMPL-X [2] estimation from [40]. SMPLicit and PIFuHD [8]

depict a similar quantitative performance, although recall that SMPLicit also provides a semantic disentanglement of the different garment meshes.

AXYZ BUFF Dataset [86]

Method Body Hair Upperclothes Pants Skirts Shoes Avg. Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Avg.

PIFu [52] 4.7 3.0 2.8 3.3 3.4 3.5 3.3 2.6 3.7 2.8 2.7 2.7 2.8
PIFuHD [8] 4.4 2.4 2.8 3.5 4.8 3.0 3.0 2.5 3.6 2.6 2.4 2.5 2.7

Tex2Shape [3] 3.5 3.1 3.4 4.9 5.6 5.0 3.8 4.3 4.1 5.4 4.6 4.0 4.3
SMPL-X [2] 4.0 3.6 3.3 5.1 5.5 6.0 4.1 3.9 5.0 3.7 3.6 3.8 4.0

SMPLicit 3.4 2.5 2.2 3.5 3.9 4.4 2.9 2.6 3.8 2.5 2.6 2.8 2.9

TABLE 3
Capacity of SMPLicit for fitting 3D scans in comparison

with TailorNet [6] and CAPE [5]. Note that we fit clothes on
either long-sleeves or short-sleeves using a single model, while

baselines have particularly trained for such topologies. All
models achieve a remarkably accurate fitting within the

segmented clothes of the original 3D scans.

Distance to surface (mm)
Short Sleeves Long Sleeves

Method Lower-Body Upper-Body Lower-Body Upper-Body

Cape [5] 1.15 0.87 1.09 1.35
TailorNet [6] - 0.32 0.48 0.41

SMPLicit 0.78 0.46 0.58 0.52

As [9], we use weight normalization [90] instead of batch
normalization [91].

In LayerNet, the cloth estimation, deformation network,
color/normal prediction network and normal and texture

map prediction networks are trained for 4k, 4k, 1k and
5k epochs respectively, with batch size 6. All image en-
coders are trained using a pre-trained Resnet-50 [89] while
pix2pix [85] and the Hourglass [84] architectures are trained
from scratch with Adam [88] and learning rate 10−3, de-
creasing linearly after reaching half training. The MLPs take
as input the pixel representation and process it with 3 FC
layers with weight normalization [90].

We render all images and train the networks at a
256 × 256 resolution. However, to obtain high-resolution
reconstructions at test, we train and run the pix2pix at
512× 512 which leads to more representative normal maps.
The reconstructed meshes are also high-fidelity and contain
around 500k.
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Fig. 5. Overview of interpolations on latent space. (A) effect
of the two first principal components in the garment geometry.
(B) SMPLicit can be used to interpolate from T-shirts to more
complex clothes like hoodies, jackets or tops. (C) examples
of retargeting an upper-body cloth to different human body
shapes.

7 EXPERIMENTS

This section first describes the datasets used to train SM-
PLicit and LayerNet. We then show how SMPLicit can
interpolate smoothly between different cloth topologies, fit
clothes from 3D scans and images with multiple people.
We finally evaluate the performance of Layernet in the task
of 3D reconstruction of clothed people, which provides a
higher level of detail and allows 3D virtual try-on in images
in-the-wild.

7.1 Training data
In order to train SMPLicit we resort to several publicly
available datasets and augmentations. Concretely, we use
the long-sleeved T-shirts (88797), pants (44265) and skirts
(44435) from the BCNet Dataset [4]. This data is augmented
by manually cutting different sleeve sizes on Blender [92],
yielding a total of 800k T-shirts, 973k pants and 933k skirts.
We also use 3D cloth models of jackets (23), jumpers (6), suits
(2), hoodies (5), tops (12), shoes (28), boots (3) and sandals
(3) downloaded from diverse public links of the Internet.
We adjust these garments to a canonical body shape β = 0
and transfer them to randomly sampled body shapes during
training, deforming each vertex using the shape-dependent
displacement of the closest SMPL body vertex. For hair,
we use the USC-HairSalon dataset [93], which contains 343
highly dense hair pointclouds, mostly of long hair. Given the
large imbalance on the cloth categories for the upper-body,
in each train iteration we sample one of the downloaded
models with probability 0.5, otherwise we used one of the
BCNet garments.

For training LayerNet, we use the 3D scans of the Ren-
derPeople [94] and AXYZ [95] datasets and a subset of the
SIZER Dataset [75]. After discarding not-successful fittings

during the pre-processing operations, we keep a total of
346 scans, from which we used 318 for training and 28 for
testing. Every scan was reposed to 20 different body poses
of AMASS [79]. For rendering, we follow a similar approach
as in [8], [52], [56], and consider 360 views per subject with
a randomly sampled precomputed radiance transfer [96].

7.2 Generative properties

To provide control over cloth properties, we perform PCA
on the latent space to discover directions which vary in-
tuitive cloth characteristics, like sleeve-length, and identify
cloth prototypes such as hoodies and tops.
PCA: The latent space z = [zcut, zstyle] of SMPLicit-core is
small (4 to 18) in order to better disentangle cloth charac-
teristics. We further perform PCA on the zcut latent space
and find that, for the upper and lower-body clothes, the first
component controls sleeve length, while the second changes
overall length (for upper-body garments), or the waist
boundary height (for pants and skirts). Fig. 5-(A) shows the
effect of the first 2 components for upper-garment. We also
notice that perfect disentanglement from cut and style is not
possible, as for example the network learns that tops tend
to be more loose than t-shirts.
Prototypes: Furthermore, we identify cloth prototypes with
interesting characteristics in the train data, such as open
jackets, hoodies or tops, and store their average style latent
space vectors z. Fig. 5-(B) illustrates interpolation from a T-
shirt to each of these prototypes; notice how SMPLicit is able
to smoothly transition from short-sleeve to open jacket.
Body Shape: In Fig. 5-(C), we show results of re-targeting a
single T-Shirt to significantly different body shapes.

7.3 Fitting SMPLicit to scans of dressed people

We applied SMPLicit-core to the problem of fitting 3D scans
of clothed humans from the Sizer dataset [75], comparing
against the recent TailorNet [6] and CAPE [5]. Since these
methods have been specifically trained for long-sleeved and
short-sleeved (for both shirt and pants), we only evaluate
the performance of SMPLicit on these garments.

In Table 3 we report the reconstruction error (in mm) of
the three methods. Note that in our case, we use a single
model for modeling both short- and long-sleeves garments,
while the other two approaches train independent models
for each case. In any event, we achieve results which are
comparable to Tailornet, and significantly better than CAPE.
Qualitative results of this experiment are shown in Fig. 4.
Note that CAPE does not provide specific meshes for the
clothes, and only deforms SMPL mesh vertices. Tailornet
yields specific meshes for shirts and long pants. SMPLicit,
on the other hand, allows representing different topologies
with a single model, from hoodies (first row) to a tank top
(third row).

7.4 Fitting SMPLicit to images of clothed humans

Finally, using the optimization pipeline detailed in Sec. 4.2,
we demonstrate that SMPLicit can also be fitted to images of
clothed people and provide a 3D reconstruction of the body
and clothes. Recall that to apply our method, we initially
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Fig. 6. 3D reconstruction of clothed humans, in comparison to PIFuHD [8] and Tex2Shape [3]. SMPL regression is from [40].

Input Reconstruction 3D Layered Clothing Input Reconstruction 3D Layered Clothing

Fig. 7. Fitting SMPLicit in multi-person images from the MPII [87] dataset. SMPLicit can dress SMPL with a variety of clothes.
Failure case in bottom-right example, where cloth semantic segmentation mixes shirts and jackets in most upper-bodies, and
SMPLicit wrongly optimizes two similar intersecting jackets. Best viewed in color with zoom.
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Input PIFu [52] PIFuHD [8] SMPLicit Texture and Semantic 3D

Fig. 8. Front and back 3D reconstructions from SMPLicit and competing methods. Both PIFu [52] and PIFuHD [8] do not rely on human body
templates such as SMPL [1], which in some cases entails failing to reconstruct entire body limbs (first and second rows), or reconstructions looking
unfeasible from the back, while SMPLicit is able to recover high-resolution details from challenging human poses.

use [40] to estimate SMPL parameters and [76] to obtain a
pixel-wise segmentation of gross clothing labels (i.e upper-
clothes, coat, hair, pants, skirts and shoes).

In Fig. 6 we show the results of this fitting on several
images in-the-wild with a single person under arbitrary
poses. We compare against PIFuHD [8] and Tex2Shape [3].
Before applying PIFuHD, we automatically remove the
background using [97], as PIFuHD was trained with no-
or simple backgrounds. Tex2Shape requires DensePose [98]
segmentations, that map input pixels to the SMPL model.
As shown in the Figure, the results of SMPLicit consistently
improve other approaches, especially PiFuHD, which fails
for poses departing from an upright position. Tex2Shape
yields remarkably realistic results, but is not able to cor-
rectly retrieve the geometry of all the garments. Observe
for instance, the example in the last row, where SMPLicit is
capable of reconstructing clothing at different layers (T-shirt
and jacket), even if layers are implicitly modelled and learnt
from data. Interestingly, once the reconstruction is done,
our approach can be used as a virtual try-on, changing
garments’ style and reposing the person’s position. In Fig. 1
we show one such example. In Sec. 5 we also propose
LayerNet to add more detail and color that enables realistic

virtual try-on.
In Fig. 7 we go a step further in the task of 3D re-

construction, and show that SMPLicit can also be applied
on challenging scenarios with multi-persons, taken from
the MPII Dataset [87]. For this purpose we iterate over
all SMPL detections [40], project the body model onto the
image and mask out other people’s segmentation. Note that
in these examples, the model has to tackle extreme occlu-
sions, but the combination of SMPLicit with powerful body
pose detectors, like [40], and cloth segmentation algorithms,
like [97], makes this task feasible. Of course, the overall
success depends on each individual algorithm. For instance,
in the bottom-right example of Fig. 7, errors in the segmen-
tation labels are propagated to our reconstruction algorithm
which incorrectly predicts two upper-body garments for
certain individuals.

7.5 3D Reconstruction with LayerNet

We next evaluate the experiments regarding LayerNet,
which involve the task of 3D reconstruction from monocular
images where we compare our approach both quantitatively
and qualitatively.
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Fig. 9. Pushing the boundaries of state-of-the-art 3D human reconstruction. For every input image, we show the colored reconstruction, front
and back 3D models of the person. The bottom-right example is a failure case where, due to challenging pose and confusing garment texture, the
person is thought to wear a long skirt instead of long pants. Best viewed in zoom.

7.5.1 Quantitative evaluation

Even though LayerNet is effective for in-the-wild images,
there are no such datasets with 3D ground truth to measure
the performance. We therefore provide a quantitative eval-
uation on our synthetically rendered test set from [95] and
renders from the BUFF dataset [86], consisting of 3D scans of
people in upright body poses, and report the average Cham-
fer distance from the ground truth mesh to the reconstruc-
tions, in centimeters. We compare against several SOTA,
including model-free methods: PIFu [52] and PIFuHD [8],
and model-based methods: Tex2Shape [3] and SMPL-X [2].
Extending SMPLicit, LayerNet can use SMPL or SPML-X,
and the reported results and figures are based on SMPL-
X. Table 2 summarizes the results and demonstrates that
LayerNet achieves very competitive reconstructions, close to
the best current method, PIFuHD. Recall that on top of these
results, LayerNet also provides meshes that are semantically
interpretable as different garments. Additionally, thanks to
the use of the underlying SMPL model, we can tackle more
complex body poses than those of model-free approaches
like PIFu or PIFuHD. In the following, we qualitatively
demonstrate this.

7.5.2 Qualitative evaluation

Fig. 8 compares the performance of PIFu, PIFuHD and
LayerNet on images in-the-wild. For a fair comparison,

since PIFu and PIFuHD were trained with images without
background, we apply the same segmentation mask for
all methods. Note that LayerNet, in contrast to the other
baselines, achieves consistent reconstructions for different
poses and for the back of the body not seen in the image.
Unlike LayerNet, note that previous methods do not gener-
ate layered reconstructions that include body and clothes.

In Fig. 9 we push the limits of our model and show
that it is still robust to diverse outfits, complex body poses
and even occluded body parts. This robustness is inherited
from the prior of the SMPL model and the fact that we have
trained our model with a large variety of re-posed 3D scans.

7.6 3D cloth transfer

We show qualitative results on the problem of cloth retarget-
ing between two people. While SMPLicit does not capture
details and cloth colors, we train LayerNet specifically for
this purpose, obtaining promising results on the task of
3D virtual try-on. In this section, we apply LayerNet to a
reference and a target image. We then unpose the reference
cloth meshes to a T-pose configuration, and repose them
to the target body shape and pose. Fig. 10 shows several
examples that demonstrate we are able to retarget one, mul-
tiple or all clothes, even when reference and target images
have different poses and body shapes. We also include some
examples where the reference person is partially occluded,
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T-Shirt Upper-clothes Upper-clothesJumperT-Shirt Jacket Pants

Reference
Clothing

Target All clothes

Fig. 10. 3D Cloth transfer. Given a reference image of a person, we can transfer one, multiple or all their clothes to a new person. Our high-
resolution approach enables reconstructing and retargeting clothes while preserving fine-grained details, logos and even text. SMPLicit also infers
colors that are not visible in the target image, such as body color in the rightmost column, for those targets that were dressed in long sleeve outfits.

but our results are still consistent. It is also interesting that
our pipeline is able to retrieve the textures of unseen parts.
See for instance in Fig. 10 the pair fencer-soccer player.
The skin tone of the fencer is also reasonably inpainted
despite his body being completely occluded. This ability to
hallucinate unseen parts is achieved thanks to the ID swap-
ping process we have applied when training the texture
prediction network in Sect. 3. Note that we are dealing with
far more unconstrained scenarios than previous methods for
3D virtual try-on [68], which consider people in frontal view
and mild poses, and a clean image for a single cloth. Our
setup with in-the-wild-images, challenging poses and multi-
layered garments, makes the problem far more complex.

7.7 Runtime

During inference, SMPLicit is very fast and can generate 3D
garment models in less than a second, running marching
cubes at a resolution of 128×128×128. In contrast, LayerNet
requires representing clothing at a large resolution to re-
cover details like wrinkles and colors accurately, leading to a
slower runtime when running the full pipeline. This process
takes approximately one minute to obtain a reconstruction
given a monocular image on an Nvidia GTX 1080 Ti GPU.
This runtime is comparable to works that require marching
cubes at large resolutions [8]. The optimization to remove
cloth interpenetrations takes an additional minute when
multiple cloth layers are detected.
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8 CONCLUSIONS

We have presented SMPLicit, a generative model for cloth-
ing able to represent different garment topologies and con-
trolling their style and cut with just a few interpretable
parameters. Our model is fully differentiable, making it
possible to be integrated in several computer vision tasks.
For instance, we showed that it can be readily used to fit 3D
scans, and reconstruct clothed humans in images that pose a
number of challenges, like multi-layered garments or strong
body occlusions due to the presence of multiple people.

Furthermore, we extended the approach with LayerNet,
a 3D reconstruction pipeline that simultaneously recon-
structs high-resolution clothed humans and segments multi-
layered garments from a single in-the-wild image. This
pipeline combines the advantages of model-free and model-
based approaches and inherits the flexibility of the former
and the robustness of the latter.

8.1 Limitations

Our method still has some limitations which require further
study. First, our method is trained on a relatively small
dataset of clothing types and might not generalize well to
garments that depart from the training distribution or very
loose garments, especially considering the enormous diver-
sity in cloth style. We believe that our framework could be
trained with larger clothing databases, potentially combin-
ing both synthetically generated and real garments. Other
open questions reside on how to model pose-dependent
deformations in clothing, which would be necessary for
animation or more realistic clothing try-on applications.
Modeling illumination would enable relighting and realistic
scene placement. Finally, recovering and modelling physical
properties of clothing is an interesting open avenue for
future work that would allow faithful reconstructions and
animation.
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formàtica Industrial in Barcelona. His doctoral
research investigates computer vision applica-
tions for sensing human body pose and motion,
that are convenient for applications for Human-
Robot-Interaction applications.
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