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A B S T R A C T

Precision agriculture is a growing field in the agricultural industry and it holds great potential in fruit and
vegetable harvesting. In this work, we present a robust accurate method for the detection and localization
of the peduncle of table grapes, with direct implementation in automatic grape harvesting with robots. The
bunch and peduncle detection methods presented in this work rely on a combination of instance segmentation
and monocular depth estimation using Convolutional Neural Networks (CNN). Regarding depth estimation,
we propose a combination of different depth techniques that allow precise localization of the peduncle using
traditional stereo cameras, even with the particular complexity of grape peduncles. The methods proposed in
this work have been tested on the WGISD (Embrapa Wine Grape Instance Segmentation) dataset, improving
the results of state-of-the-art techniques. Furthermore, within the context of the EU project CANOPIES, the
methods have also been tested on a dataset of 1,326 RGB-D images of table grapes, recorded at the Corsira
Agricultural Cooperative Society (Aprilia, Italy), using a Realsense D435i camera located at the arm of a
CANOPIES two-manipulator robot developed in the project. The detection results on the WGISD dataset show
that the use of RGB-D information (𝑚𝐴𝑃 = 0.949) leads to superior performance compared to the use of RGB
data alone (𝑚𝐴𝑃 = 0.891). This trend is also evident in the CANOPIES Grape Bunch and Peduncle dataset,
where the mAP for RGB-D images (𝑚𝐴𝑃 = 0.767) outperforms that of RGB data (𝑚𝐴𝑃 = 0.725). Regarding
depth estimation, our method achieves a mean squared error of 2.66 cm within a distance of 1 m in the
CANOPIES dataset.
1. Introduction

The agri-food sector is central to human society and faces several
challenges. One challenge is how to feed the world’s growing popu-
lation without increasing the amount of land devoted to agriculture,
which could lead to deforestation, additional Greenhouse Gas (GHG)
emissions and reduced biodiversity. Another challenge is the shortage
of agricultural workers, mainly due to the seasonal nature of the work
and the migration of labor to more stable productive sectors, driven
by better employment opportunities, working conditions, access to
education, social protection, credit and markets (FAO, 2016). The latter
challenge can be overcome by the full or partial automation of the
various agri-food processes.

Precision agriculture or precision farming is a modern, whole-farm
management concept that uses several technologies, from remote sens-
ing and proximal data collection to automation and robotics. In our
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case, we are dealing with the harvesting of table grapes, which has to
be done by a robot using perception systems and a robotic arm. This
task has proven to be very challenging when it comes to the perception
system, the mechanical design of the robot, the control methods, the
navigation and the manipulation systems. In this article, we will only
analyze the perception system to detect the table grapes and their
peduncles, as well as the 3D location of the peduncles to be grasped.

The complexity of this perceptual task is reflected in the nature of
the environment in which it is performed. The field is unstructured
(e.g., the table grapes can be of different sizes and appear at different
heights and locations), and the conditions (e.g., illumination or partial
occlusion) are constantly changing. This poses several problems. For
example, the bunch may be partially occluded by leaves or other
bunches. Alternatively, the cluster may be visible, but the location
on the image of the peduncle to be cut may not be obvious (more
168-1699/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
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Fig. 1. Grapevine parts in the section of the plant closest to the grapes.
than one possible peduncle) or impossible (peduncle not visible due
to occlusion). In any case, the result of the perception system must be
the detection in the image of the bunches to be harvested, as well as
the 3D localization of the corresponding peduncles. This information
is then sent to a robotic arm equipped with a tool capable of grasping
and cutting the peduncle.

Robotic harvesting is an emerging technology that has been tested
for harvesting sweet peppers (Sa et al., 2017), strawberries (Han et al.,
2012), and apples (De-An et al., 2011). Harvesting involves not only
detecting the fruit, but also identifying the stalk or peduncle that
connects the fruit to the tree branch or cane. The characteristics of the
stalk or peduncle vary depending on the type of fruit. For sweet peppers
and apples, they are usually wide and long. In the case of grapes,
however, the peduncles are very thin (a few millimeters), branched,
and sometimes short (see Fig. 1). Furthermore, the bunches we are
dealing with are located in canopies, resulting in a very cluttered
background (Fig. 1). This makes it very difficult to separate the grapes
and peduncles from the background. In addition, the lighting conditions
under the canopies are highly variable, changing with the density of
the foliage, and can include cast shadows and variations in luminance.
These factors contribute to the complexity of robotic harvesting, as
it involves not only the difficulty of detecting the stems, but also
navigating around obstacles in the environment. In this work, we
present a set of methods that address these challenges, and our results,
obtained from real images captured in the field, demonstrate that our
methods outperform existing technologies. Moreover, it proves good
generalization as it has been tested with plastic and real grapes of
different type.

The motivation of this article is to provide a functional and field-
tested (Figs. 2 and 3) solution for the perception needed to recognize
bunches and peduncles by providing the cut-off point in 3D camera
coordinates. This would allow to generalize the solution for other
projects and robots.

In this paper, we first propose a precise method for the detection
of table grapes and their corresponding peduncles, which takes as
input an RGB-D image whose depth channel has been obtained by
monocular depth estimation. Using this image as input, detection and
segmentation are performed using a state-of-the-art method based on
convolutional neural networks.

We also propose an exact estimation of the distance of each pedun-
cle from the camera to obtain a precise 3D location of the cutting point.
2

Fig. 2. CANOPIES robot in the field.

Due to the small dimensions of a grape peduncle (1–5 mm), traditional
depth sensors (LIDAR’s, stereo cameras) have proven incapable of
providing robust depth measurements. We present a fusion of two
methods to obtain an accurate estimate of the distance of the peduncle
from the camera.

The article is structured in the following sections. Section 2 presents
the related work on instance segmentation, monocular depth estima-
tion, and computer vision techniques applied to harvesting of fruits and
vegetables. Section 3 presents the system overview, the databases used
for validation of the methods, the metrics, and the models developed
for instance segmentation and depth estimation. Section 4 presents the
experimental setup, the instance segmentation and depth estimation
results. Finally, a discussion of the results and conclusions of the work
are presented in Sections 5 and 6, respectively.
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Fig. 3. CANOPIES robot in the field. Top-left: Robot arm with camera in the wrist; Top-right: Cutting tool griper with stereo camera approaching a grape; Bottom: Cutting tool
griper touching the peduncle.
2. Related work

2.1. Instance segmentation

Instance segmentation is a computer vision technique that involves
two main steps: object detection and semantic segmentation. In other
words, an instance segmentation method must be able to detect indi-
vidual instances of different classes of objects in an image, while also
being able to produce binary masks for each of these detection’s.

Overall, there is an extensive literature on image segmentation
methods that do not rely on neural networks. Graph-based segmen-
tation techniques are used for this task, such as the GrabCut method
(Rother et al., 2004), the Random Walker method (Grady, 2006), and
the Normalized Cut method (Shi and Malik, 2000). These methods use
graph-based representations of images to segment objects. In addition,
several traditional methods have also been applied to this task, such as
thresholding, histogram-based clustering, region growing, watershed or
k-means clustering. However, given the complexity of the instance seg-
mentation task in unstructured and changing condition environments,
most of the successful approaches are based on deep learning.

Different Deep Learning techniques have been developed in object
detection using Convolutional Neural Networks (CNN), but a milestone
on these techniques was the work on Region-based CNN (Girshick
et al., 2014) in 2014. After this work, in 2015, it appeared Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015). However
a great improvement was the work Mask R-CNN (He et al., 2017),
which extended the Faster R-CNN method (Ren et al., 2015) with
an object mask prediction step after the object detection branch. The
validation of this technique in the COCO (Common Objects in Context)
dataset (Lin et al., 2014), showed great results for instance segmenta-
tion. If we use the mean average precision (mAP) as a metric (refer to
Section 3 for more details) the obtained results range from 33.1 to 37.1,
depending on the backbone used. An extention of this technique was
Mask scoring R-CNN (Huang et al., 2019) that was built upon Mask
R-CNN, by adding another head containing the MaskIoU prediction
network. This improved the performance, as it obtained an average
3

precision (AP) in the COCO dataset of 35.4 while Mask R-CNN obtained
34.3. In addition, it improved the robustness of its output against
different backbones and frameworks.

YOLACT (Bolya et al., 2019) is another CNN based approach for
instance segmentation. It reports a lower mAP than Mask R-CNN (a
mAP of 29.8 against 35.7), but its main advantage is that it runs in
real-time, 30 frames per second (FPS), as opposed to Mask R-CNN, 5
FPS. One more Deep Learning approach was DetectoRS (Qiao et al.,
2021). It is based on Recursive Feature Pyramids, a modification of
Feature Pyramid Networks. This approach outperformed Mask R-CNN,
obtaining an mAP of 44.4–48.5 (depending on the backbone) in the
COCO test dataset. SCNet (Vu et al., 2021) also surpassed Mask R-
CNN, obtaining a mAP of 40.2–42.7 (depending on the backbone) in
the COCO test-dev dataset. QueryInst (Fang et al., 2021) introduced
an architecture that implements query-based instance segmentation,
also upgrading Mask R-CNN results (mAP of 39.9–49.1 in the COCO
test dataset, depending on the backbone) at a similar speed (ranging
between 3.3 FPS and 13.5 FPS, depending on the backbone).

2.2. Monocular depth estimation

Depth estimation is a computer vision task designed to estimate
depth from a 2D image. First approaches to monocular depth estimation
were based on MRF-based formulations (Saxena et al., 2009), followed
by methods that used simple geometric assumptions or non-parametric
methods. Significant advances were done by using the expressive power
of convolutional neural networks to directly regress scene depth from
the input image (Eigen et al., 2014). To enhance prediction accuracy,
new architectural innovations have been proposed (Roy and Todorovic,
2016), which uses depth data from real sensors (like RGB-D cameras
or LIDAR) for training. Recently, a powerful architecture denominated
MiDaS (Ranftl et al., 2022) based on neural networks was trained by
mixing several datasets for zero-shot cross-dataset transfer to obtain
a robust monocular depth estimation. This model was enhanced by
replacing the convolutional neural network by a vision-transformer
model as a backbone for dense prediction tasks (Ranftl et al., 2021).



Computers and Electronics in Agriculture 215 (2023) 108362G. Coll-Ribes et al.

a
d
p
a

O
t

Another interesting network is the one presented in Miangoleh et al.
(2021). This method is based on MiDaS, but its main contribution is
to obtain relative depth maps with a higher resolution than MiDaS.
The main idea of the work emerges from the observed changes in the
MiDaS output, when the resolution of the input image changes. What
is observed is that, at low resolution, details are lost in the depth map,
but the structural consistency is good. However, when the resolution is
increased, the relative depth map is more detailed, but the structural
consistency deteriorates. From this information, the method tries to
find the optimal relationship between depth map detail and structural
consistency. This solution seems interesting because obtaining detailed
depth maps could be a great advantage for segmentation and can help
in the image processing stage. However, the results in terms of depth
are more inconsistent than those from MiDaS. In the supplementary ma-
terial (Hosseini Minagoleh et al., 2021) of the paper, in section A, the
authors wrote ‘‘We notice a discrepancy between the apparent visual
improvement gained from depth refinement techniques and numerical
results based on common metrics’’. This is clearly appreciated in some
comparisons presented in the supplementary material. For instance,
in the Ibims1 dataset (Koch et al., 2019) MiDaS obtains an absolute
relative error of 2.0325 while Miangoleh et al. (2021) obtains 2.0510.

2.3. Agriculture works

Fruit and vegetable detection as well as their depth estimation
using computer vision techniques is a growing field in the agricultural
industry. In Yin et al. (2021), they present a method for grape detection
and depth estimation method which is based on Mask R-CNN (He et al.,
2017) and, once the grape is detected, a 3D point cloud is extracted
and filtered. A Random Sample Consensus (RANSAC) technique is then
applied to fit the point cloud to a cylinder and finally, the depth of the
stalk is obtained.

Working with different fruits could lead to similar solutions for the
detection and depth estimation process. However, it is important to
take into account the particularities of the analyzed fruit. For instance,
in Bac et al. (2017), their work focused on sweet peppers. In Han et al.
(2012), the fruit used to perform the study was the strawberry. Whereas
others such as De-An et al. (2011) worked with apples.

When proposing a solution for fruit and vegetable detection in
a real-world agricultural environment, it is critical to consider and
address the various challenges that arise. Some of these difficulties
are related to the lighting, overlapping, or the different colors of the
fruit. In fact, papers like Yu et al. (2019) study the non-structured
environment in which the system needs to operate.

As stated before, CNNs are commonly preferred for solving the
fruit and vegetable detection problem due to their effective feature ex-
traction capabilities and generalization in unstructured environments.
For example, in Wan and Goudos (2019), the architecture of Faster
R-CNN (Girshick, 2015) is used for detecting different fruits: apples,
oranges, and mangoes. In this case, the convolutional and pooling
layers of the base architecture were modified to achieve better fruit
detection. Another example is presented in Mai et al. (2020), where
another version of Faster R-CNN was developed by merging multiple
classifier fusion strategies. Several approaches were built around the
YOLO (Bochkovskiy et al., 2020), such as Guo et al. (2023), Sozzi et al.
(2022), Zhou et al. (2023), Pinheiro et al. (2023) and Xu et al. (2023),
enabling robust, accurate and real-time detection of grape bunches in
the vineyard, improving the results obtained with plain YOLO.

A problem with the methods described above is that they only
perform object detection (bounding boxes), which may not provide
the necessary information for many applications. Other works are able
to provide individual masks for each of the detection’s. For exam-
ple, in Majeed et al. (2018), a convolutional neural network called
SegNet (Badrinarayanan et al., 2017) is used to segment branches
and apple tree trunks from RGB-D images. Mask R-CNN is also used
4

successfully in works such as Ghiani et al. (2021). u
With regard to agriculture-related works that deal with 3D infor-
mation, there are some focused on tracking and three-dimensional
association such as Santos et al. (2020). However, there are others
such as Sa et al. (2017), that work directly with the 3D information.
In this case, they present methods for detecting sweet peppers. Using
3D information, they are able to cut out the stalk of the pepper. A key
point to note is that the peduncles of peppers are wider than those of
grapes. This makes it easier to obtain the location of the stalk directly
from the RGB-D camera information.

Regarding the implementation of robotics for grape harvesting,
recent research includes the dual-arm grape-harvesting robot intro-
duced by Jiang et al. (2022), which is designed for horizontal trellis
cultivation. A novel grape harvesting technique is presented in Xu
et al. (2023), which uses vision and robotics to identify grapes, predict
picking locations, and operate a cut-and-pick robot. In Vrochidou et al.
(2021), the authors present an integrated system architecture of an
autonomous robot designed for grape harvesting, green harvesting, and
defoliation.

As mentioned in Section 1, our work focuses on developing a
robot capable of detecting the peduncles of table grape bunches. These
peduncles are characterized by being very thin (a few millimeters),
branched, and short. In addition, the robot operates in a cluttered back-
ground with varying lighting conditions. Previous research in peduncle
detection has focused primarily on crops such as peppers, strawberries,
and apples. Although there are existing methods for grape bunch image
segmentation, they have not specifically addressed peduncle detection
and localization. In our work, we propose methods that not only detect
grape bunches in complex environments with changing illumination,
but also accurately localize the delicate peduncles and their branches.
Our image segmentation approach uses both RGB and monocular depth
images to separate foreground grapes and peduncles from the back-
ground in cluttered scenes. In particular, the monocular depth image
allows relative depth estimation using only a single camera, eliminating
the need for depth sensors during the segmentation stage. Finally, we
propose a technique for estimating peduncle localization in cases where
direct peduncle detection is difficult.

3. Materials and methods

3.1. System overview

A flowchart showing the general operation of the method pre-
sented in this paper is shown in Fig. 4. The key components of the
method include monocular depth estimation, instance segmentation
and computing grape and peduncle depths. The input is an RGB image
and a point cloud of the scene. This is provided by a stereo camera
located in the CANOPIES robot, this robot has been developed by PAL
Robotics in the scope of the CANOPIES EU project (CANOPIES, 2021).
An estimate of the depth map of the scene is then generated from the
RGB image, using the Boosting Monocular Depth Estimation method
presented in Miangoleh et al. (2021).

The RGB image and the estimated depth map are combined and
used as an input to the instance segmentation method, in order to
obtain the segmented individual masks of peduncles and bunches.
Then, using the segmentation masks and the point cloud obtained from
the camera, the depth (𝑧) to the peduncle is computed. This depth
information is used to derive the (𝑥, 𝑦, 𝑧) coordinates of the picking
point as it is shown in Section 3.7. The computation of the picking
point coordinates involves the following steps: first, the 𝑧 coordinate is
obtained from the depth estimation, and second, the (𝑥, 𝑦) coordinates
re derived by using the intrinsic camera values in conjunction with the
epth value. As discussed below, this depth estimation process can be
erformed using two techniques, one when the peduncle is not visible
nd the other when the peduncle is detected.

The system has been implemented in Python and in ROS (Robot
perating System) Melodic that works in Ubuntu 18.04. This facilitates

he integration in other robotic platforms, since ROS is one of the most

sed frameworks for robotics.
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Fig. 4. General process flow of the method.
Fig. 5. On the left there is an image of the Corsira field and on the right there is a diagram showing the field location.
3.2. Data collection

In September 2021, data of grape bunches and peduncles were
collected in the vineyard of the Corsira Agricultural Cooperative Society
(Aprilia, Italy), where table grapes are grown. Fig. 5 shows an image of
the field and its location. The left image shows a view of the vineyard
field, while the right image highlights (red rectangle) the field used for
data collection and experiments. A total of 45 sequences were recorded,
with a total duration of 3660 s (61 min) and containing a total of
103,775 images and 80,489 point clouds. The images were acquired
on different days and at different times, from 9 am to 5 pm. They
had different lighting conditions due to weather conditions, density
of foliage, or time of day. The images were also taken at different
distances from the bunches, ranging from 30 cm to 2 m.

3.3. CANOPIES Grape Bunch and Peduncle Dataset (GBPD)

From the data recorded, ten sequences were selected in which the
peduncles and bunches were fully or partially visible, discarding those
taken from too far away to identify the peduncle. The CANOPIES
dataset contains a total of 1326 RGB images and provides a total of
3770 binary masks for grape bunches and another 3770 for each of
their peduncles. Some examples of the dataset with their correspond-
ing instances segmentation are shown in Fig. 6. The dataset will be
available for research purposes in the near future, but can be available
on request.

The dataset was labeled using VGG Image Annotator (VIA) (Dutta
and Zisserman, 2019; Dutta et al., 2016), a free software that can be
used without any installation. The labeling work was divided among 8
people. Each of them was given strict guidelines on how to label the
images in order to keep the labeling consistent.
5

Because the bunch and peduncle had complex geometry, it was
indicated that they would be labeled using the polygonal tool. It was
also specified that a bunch would only be labeled if its peduncle was
visible in the image and could be labeled with the tool without zooming
into the image. These criteria filtered out all bunches that were too far
away from the camera or whose peduncle was too blurred.

Two complex cases occurred during the labeling process. In the case
of overlapping bunches, the line separating the masks may not be clear.
The labelers were instructed to separate the masks with a vertical line
between the peduncles to maintain coherence. The other complex case
was that of branching stems. If the ramification point appeared in the
image, it should be considered as a single peduncle, as well as its bunch.
On the other hand, if the ramification point appeared outside the image,
it should be considered as two separate peduncles, and the bunches
should be separated accordingly.

Fig. 6 shows ground truth examples from the dataset. As can be
seen, the binary bunch mask contains not only the grapes, but also
the peduncle. This was a deliberate decision during the creation of the
dataset. The main reason for this choice is to increase the probability of
detecting the peduncle. If a single peduncle was not detected, it would
be possible to extrapolate it from the other mask.

3.4. WGISD dataset

For further analysis, we will compare the methods proposed here
with another dataset from the literature, in addition to our own dataset.
The Embrapa Wine Grape Instance Segmentation Dataset (Embrapa
WGISD for short) (Santo et al., 2019) is a dataset containing RGB
images of grape bunches in vineyards, providing bounding box infor-
mation for all instances. Additionally, for a subset of the images, the
mask of each bunch is also provided.
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Fig. 6. Examples of ground truth images from the generated dataset. The left column shows the original RGB images. The right column shows the segmentation of the bunches
(in blue) and peduncles (in orange) found in the dataset.
Unlike the CANOPIES GBPD dataset, the WGISD dataset does not
contain masks or boxes for the peduncles. In addition, only a small
subset of the dataset contains bunches masks. Moreover, the detection
conditions are simpler than in our dataset, since the vine has been
previously prepared and the bunch is in a less chaotic and element-
loaded context than in our dataset. An example of an image from this
dataset is shown in Fig. 7. In general, the metrics obtained in this
dataset are expected to be higher than those obtained in the CANOPIES
dataset.

3.5. Metrics

Segmentation results are evaluated using the following state-of-
the-art metrics: precision (P), recall (R), F1 score and mean Average
Precision (mAP). A description of the first three can be seen in Eq. (1).
The mAP is the average of the Average Precision (AP) obtained in
each class. The AP is obtained by calculating the area under the
Precision-Recall curve. The formulation of mAP can be seen in Eq. (2).

As it can be seen in their respective formulations, these metrics
are calculated using the numbers of true positives, false positives, and
false negatives. In order to compute them, a matching between the
predicted values and the ground truth elements must be established.
This matching is affected by two pre-selected values. The first is the
confidence score threshold, which is used to discard any detection
generated by the network with a confidence score below it. For this
implementation, a value of 0.8 has been used. The other value is the
minimum IoU value that a detection must have with a ground truth
element, in order to be considered a match. Like it is common in the
6

literature, the metrics obtained by a model are presented for different
IoU threshold values.

𝑃 =
𝑁𝑇𝑃

𝑁𝑇𝑃 +𝑁𝐹𝑃
𝑅 =

𝑁𝑇𝑃
𝑁𝑇𝑃 +𝑁𝐹𝑁

𝐹1 = 2 𝑃𝑅
𝑃 + 𝑅

(1)

𝐴𝑃𝑘 = 1
11

∑

𝑟∈{0,0.1,…,0.9,1}
𝑃 (𝑟)

𝑚𝐴𝑃 = 1
𝐾

𝐾
∑

𝑘=1
𝐴𝑃𝑘

K: number of classes

(2)

To evaluate the peduncle depth estimation process, the method is
tested on a dataset of known examples. For each peduncle, the depth
estimation error is computed. The root mean square error (RMSE), the
mean absolute error (MAE), and the standard deviation of the error
are used for evaluation. Eq. (3) shows how the RMSE and the MAE are
calculated, where 𝑧𝑖 is the distance estimation for example 𝑖 and 𝑧gt,𝑖
is the ground truth distance of example 𝑖. Furthermore, these metrics
allow to check if the method is within the tolerance required for its
implementation in the field. It is known that the gripper of the robot
has a tolerance of ± 3 cm, so the error must be below this threshold.

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑧𝑖 − 𝑧gt,𝑖)2

MAE = 1
𝑁

𝑁
∑

𝑖=1
|𝑧𝑖 − 𝑧gt,𝑖|

(3)

Additionally, although the speed of the algorithm will not be taken
into account in this first analysis of the method, it is a relevant metric
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Fig. 7. Sample from the WGISD dataset.
Fig. 8. Diagram of the segmentation process with RGB images (top) or estimated RGB-D images (bottom).
to consider for future implementations. The speed of the algorithm will
be evaluated in terms of frames per second (FPS), in other words, how
many image frames can be processed per second.

3.6. Instance segmentation of table grapes and peduncles using CNN

Object detection requires to locate a region where the object is de-
tected and also compute an identification score. The region is obtained
by using a set of bounding boxes. Moreover, when a single pixel mask
is obtained for each bounding box detection, instance segmentation is
performed. This is therefore a combined problem of object detection
and semantic segmentation.

The CANOPIES dataset provides a set of RGB images and individual
masks that can be used to train an instance segmentation model such
as Mask R-CNN (He et al., 2017). However, in this paper we propose a
technique to improve the instance segmentation and object detection,
which instead of using the RGB image alone, it includes an extra depth
channel which helps to improve the segmentation metrics of peduncles
and bunches. Unlike other methods that also use RGB-D images, our
method uses a depth channel estimated by monocular depth estimation.
In Fig. 8 a diagram of the mentioned process can be seen.

3.6.1. Models for monocular depth estimation
The detection of peduncles in a cluttered environment, such as

that found in vineyard fields, is very complex due to the number of
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leaves, branches, partial bunches of grapes with similar color and,
above all, due to the shape and variety of peduncles. Using only the
RGB image, it is not enough because too many ambiguities appear in
the detection of peduncles, and for this reason the use of a depth map
can help to eliminate a big part of the background and also separate
the foreground grape bunches and peduncles from the rest. In this
work, we include the depth as an essential cue that combined with
the RGB image can add the extra information needed to improve the
image segmentation and also the peduncle detection. The computation
of the depth can be done using a stereo camera but again the point
cloud obtained is not enough dense. We realized that using a monocular
depth network, we can obtain a dense relative depth map that improves
the instance segmentation and allows to separate the front objects
from the back ones. We have used two different monocular depth
methods, MiDaS (Ranftl et al., 2022) which is faster but the resolution
is reduced, and Boosting (Miangoleh et al., 2021) that gave better
results as can be seen in Fig. 9. It can be appreciated that the Boosting
net gives more details, even the grapes of a cluster can be clearly
identified. This information is added to the RGB image to improve the
instance segmentation process. The architecture of the MiDaS network
is based on ResNet. Whereas the Boosting method adopt the Pix2Pix
architecture with a 10-layer U-net as generator, to get more detail
see Ranftl et al. (2022) and Miangoleh et al. (2021).

The MiDaS implementation provides different models to be used
depending on the available hardware resources. For this project, the
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Fig. 9. Examples of application of monocular depth map estimation techniques in our dataset. The left column shows the results obtained by MiDaS (Ranftl et al., 2022). On the
right, those obtained by Boosting (Miangoleh et al., 2021).
model ‘‘version 2 large’’ was selected, which yields an absolute relative
error ranging from 0.1246 to 0.3270, depending on the selected dataset.
The model was able to run at 50 FPS on a RTX3090 graphic card,
enabling it to be used for real time applications. It is important to
note that the generated depth maps use relative units, ranging from
0 (furthest point) to 1 (nearest point). Additionally, the wide variety of
datasets used for training has allowed the method to generalize well to
the case of vineyards.

3.6.2. Improving instance segmentation performance through monocular
depth estimation

The instance detection and segmentation of the different grape
peduncles and bunches were performed using Mask R-CNN. How-
ever, instead of using only the three channels (RGB) of the image,
an additional channel containing the monocular depth estimation was
included, as explained in this section.

Mask R-CNN (He et al., 2017) is the culmination of a series of works
developed in object detection and instance segmentation (Girshick
et al., 2014; Girshick, 2015; Ren et al., 2015). This network is composed
of several key components. First, a convolutional backbone extracts
features from the input image, capturing both low-level and high-level
details. The backbone used was ResNet-101 (He et al., 2016). Next,
a region proposal network (RPN) generates candidate object regions,
called proposals. These proposals are then refined by a bounding box
regression subnetwork, which localizes the objects with high precision.
In addition, a mask prediction subnetwork generates pixel-level masks
for each object that accurately delineate their shapes. The network
also includes a classification subnetwork to classify the detected objects
into different categories. More details about the architecture can be
found in He et al. (2017) and Abdulla (2017). By combining these
components, Mask R-CNN achieves state-of-the-art results in instance
segmentation tasks, enabling advanced object detection and segmenta-
tion capabilities in various applications. Other instance segmentation
networks were also considered. For example, YOLACT training was
tested, but was not able to improve the metrics obtained by Mask R-
CNN (mAP of 0.632 𝑣𝑠. 0.725). The metrics obtained can be seen in
Section 4.2, where a comparison of the metrics obtained by different
models is shown in Table 5. The performance of the Mask R-CNN in
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initial tests, along with its extensive implementation in the literature,
led to its selection as the network of choice.

In previous works, fruits have been correctly segmented based only
on the texture obtained from the RGB images. However, in those cases,
there was a contrasting difference in texture between the fruit to be
harvested and the rest of the surrounding elements (leaves, branches,
soil, etc.). In this project, it is intended to obtain an accurate detection
of the peduncles, which have many similarities with elements that
should not be identified by the robot, such as branches or posts.

Based on the first results of the applied depth estimation techniques,
as shown in Fig. 9, it was observed that these estimated depth maps
offer potential for improving instance segmentation results. The results
indicate that the estimated depth maps contribute to the creation of
contrast between foreground and background elements. In the case
of RGB images, the grape bunches exhibit noticeable differences in
color and texture compared to the surrounding vineyard environment,
making their segmentation less challenging. However, accurate detec-
tion of the grapes is more difficult due to their similarity to other
elements in the scene, such as branches and leaves. Therefore, it is
hypothesized that the incorporation of generated depth images can aid
in the segmentation of peduncles. In addition, during the tests, it was
found that the depth map of the stereo camera often had difficulties in
correctly detecting the peduncles due to the size of them. Therefore, an
additional advantage of using the estimated depth maps is their ability
to reliably detect the presence of peduncles.

3.6.3. Instance segmentation model training
In order to train the Mask-RCNN model, we first expanded the

dataset by augmenting the images with an additional channel contain-
ing the estimated depth map, resulting in 4-channel RGB-D images.
Fig. 10 shows the 4-channels, three for RGB and one for the estimated
depth map. Subsequently, a new set of models was trained using
this augmented dataset to evaluate the impact of this technique on
segmentation results. While MiDaS (Ranftl et al., 2022) was initially
considered, the Boosting technique (Miangoleh et al., 2021) was em-
ployed for generating the estimated depth maps due to its superior
performance, as stated in Miangoleh et al. (2021).

To determine that this combination technique improves the results,
Mask R-CNN was trained using both scenarios: with RGB images only
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Fig. 10. Assembling the estimated RGB-D images.

Table 1
CANOPIES grape bunch and peduncle dataset split used for training.

Images Cluster masks Peduncles masks Total masks

Training 984 1434 1434 2868
Validation 274 342 342 684
Test 68 109 109 218

Table 2
WGISD dataset split used for training.

Images Cluster masks

Train 110 1612
Test 27 408

and with the estimated RGB-D images. Three different models were
trained with each dataset, and the metrics obtained by each set of
models (as seen in Eqs.(1), (2)) were compared.

The dataset was divided into 75% for training, 20% for validation
and 5% for testing. Table 1 shows the dataset split for the CANOPIES
Grape Bunch and Peduncle Dataset, displaying the number of images
and instances of each class contained in each one of the sets. Addition-
ally, Table 2 shows the dataset split used for the WGISD dataset. Note
that the WGISD dataset does not provide the peduncle class.

For training the model with the RGB dataset, the weights of the
network were initialized with a pretrained model on the COCO dataset.
For training the model with the RGB-D dataset, the weights of the
model that obtained the best metrics with the RGB dataset were used
instead, and the model was fine-tuned for the RGB-D images. To do this,
the weights of the first layer of the model had to be modified, since
the input size was different (now the images had 4 channels instead of
3). Therefore, the last layer of the first convolutional layer has to be
determined. It was decided to initialize it as the average of the other
three channels. Another option that was considered was to randomly
initialize the first layer of the network and keep the weights in the rest
of the layers, but the former methodology showed much better results
in a faster way.

To further enhance the results obtained by the network and to avoid
over-fitting, data augmentation techniques were used. The techniques
were selected such that the variations obtained are similar to those that
could be seen in a real field scenario. Among the set of enhancements
included there is gaussian blur, dropout (some pixels), image rotation
(±20 degrees), image scaling (from 50 to 150 degrees), horizontal flip
and multiplication (to lower or raise the brightness of the image). From
these filters, 0 to 3 (uniform distribution) are applied to each image.
In Fig. 11, some examples of the image variations obtained after the
augmentation process are shown.

The Mask R-CNN implementation in Keras/Tensorflow developed
by Matterport, Inc (Abdulla, 2017) was used. The input images were
resized to a size of 1024 × 1024 by rescaling the image and cropping a
square section of the image. The training was performed on an NVIDIA
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GeForce RTX 2080Ti GPU (12 GB memory), placed on a server with an
Intel Xeon Silver 4214 CPU and a total of 128 GB RAM. The network
weights were initialized with a pre-trained model on the COCO dataset.
Three different training stages were used, each training a different set of
network layers. In the first stage, only the heads (RPN and the branches
for classification, box regression and mask generation) were trained,
for 50 epochs. In the second stage, the heads and stage 4 and up of
the Resnet backbone were trained for another 150 epochs. Finally,
all layers were trained for another 200 epochs, reducing the learning
rate by a factor of 10. The total training time following the presented
schedule was approximately 13 h.

3.7. Depth estimation of table grapes and peduncles

As we commented previously, the depth estimation of the bunches
and peduncles can be very complex, where for example, the bunch can
be detected but not the peduncle. This is the case of Fig. 12, where the
peduncle is partially occluded by a leaf.

Considering the above complexities, there is a clear need to apply
different methods for peduncle depth estimation, taking into account
whether the peduncle has been detected or not. For cases where it is
not detected, a 3D reconstruction of the bunch is performed and an
approximation of the peduncle location is obtained based on the size
and pose of the bunch.

To tackle the problem of depth is also crucial to make a good
selection of the sensor to use. The most commonly used sensors to
address the problem of depth estimation in the real world are LIDAR
sensors or stereo cameras. These sensors have different characteristics
that will determine which one is the most suitable for this project.

Regarding LIDAR sensors, the first thing to take into account is
that they are generally more expensive than stereo cameras. Among
LIDARs there are different models in terms of resolution, usually having
4, 16, 64, 128, or 256 beams. For the detection of vine stalks, these
resolutions are not sufficient. However, the range is up to 300 m.

Stereo cameras have more depth points than a 16-beam LIDAR.
However, resolution remains a problem when dealing with peduncle
depth measurement, due to its small size. In tests with a RealSense
D435i camera, only a few depth points could be obtained from the
peduncle. Another key point is the minimum measurement distance.
For the RealSense D435i, the ideal range is 30 centimeters to 3 m.

After a preliminary field study with different sensors, the LIDAR
sensor proved not to be a good solution, while the D435i stereo camera
had good resolution and had the advantage of providing a dense RGB
image for detection. The RealSense D435i was therefore chosen to
address the depth problem.

3.7.1. Depth estimation of the peduncle based on grape bunch size
This section explains the method used to estimate the peduncle po-

sition and orientation. The method uses the depth map obtained by the
stereo vision camera and the segmentation obtained with Mask R-CNN
to perform a 3D reconstruction of the bunch and obtain an approximate
position of the peduncle. As mentioned in the introduction, this method
can be useful when the peduncle depth cannot be measured directly
with the stereo camera, because the camera is far away from the cluster
and no peduncle measurements are obtained or when the peduncle is
partially occluded.

Description of the method
The input data is a set of individual masks of each bunch and

peduncle in the scene and associated depth map. Fig. 13 shows the
starting image segmentation step, with the input image on the left and
the segmentation obtained on the right. As it can be seen, the peduncle
is not detected, being an example of a detection failure when the
distance to the grapes exceeds the limitations of the detection method.

The diagram of the method is shown in Fig. 14, where all the
main computational steps of the method are shown. The first step is
to multiple pixel by pixel the mask results by the depth map values.
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Fig. 11. Image variations obtained by a single dataset example by applying the augmentations used in training.
Fig. 12. Example of a bunch peduncle partially occluded by a leaf.

Fig. 13. Left, original RGB image. Right, segmentation obtained from the RGB image.

Although this operation is simple, some problems can occur. Usually,
the mask does not fit perfectly the grape bunch, which produces the
appearance of some close or distant points that are not part of the
bunch. Moreover, it can occur that there is a small partial occlusion of
a branch or a leaf in front of the bunch that also will affect the result.
The result of this multiplication in the case that there are not problems
is shown in Fig. 15 left.

Because of the mentioned problems, the next step is a filtering
process. This process has different operations: (1) all points with a
distance higher than 3 meters and lower than 25 centimeters are
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filtered out; and (2) to filter the noise in the bunch itself, all points
that are more than 8 centimetres away from the median are eliminated.
Doing this and keeping only the bunch information, the result obtained
is shown in right side of Fig. 15.

As shown in Fig. 14, the next step is to estimate the bunch diameter.
We define 𝑘 as 1% of 𝑁 , where 𝑁 is the number of 3D points that
compose the bunch. To calculate the diameter (𝐷) of the bunch, the
median of the x-coordinates of the rightmost 𝑘 points (𝑥𝑀 ) and the
median of the x-coordinates of the leftmost 𝑘 points (𝑥𝑚) are calculated.
The diameter is calculated as the difference of these two values, as
shown in Eq. (4). The next step is to determine the point of the bunch
closest to the camera. The z-coordinate (𝑧𝑚) of this point is obtained
by calculating the median of the 𝑘 points with the lowest 𝑧, as shown
in Eq. (5). Finally, the z-coordinate of the peduncle is obtained by
adding the bunch radius (𝐷∕2) to the z-coordinate of the nearest bunch
point, as shown in Eq. (6).

Set of N 3D points: 𝑥 = [𝑥1,… , 𝑥𝑁 ], 𝑦 = [𝑦1,… , 𝑦𝑁 ], 𝑧 = [𝑧1,… , 𝑧𝑁 ]

𝑘 = ⌊0.01𝑁⌋

𝑥𝑀 = median (sort(𝑥,descending)[1 ∶ 𝑘])

𝑥𝑚 = median (sort(𝑥)[1 ∶ 𝑘])

𝐷 = 𝑥𝑀 − 𝑥𝑚

(4)

𝑧𝑚 = median (sort(𝑧)[1 ∶ 𝑘]) (5)

𝑧 = 𝑧𝑚 + 𝐷
2

(6)

The final estimated position of the peduncle and its reconstruction
can be seen in Fig. 16.

One good feature of this method is that it could be used for other
fruits. In fact, the process is useful to know the depth of the centroid
of symmetrical objects.

The detailed algorithm of this method can be seen in Algorithm 1.

3.7.2. Depth estimation of peduncle using the depth map
This section explains the peduncle depth estimation method using

the depth map of the stereo camera.
Description of the method
Fig. 17 shows the diagram of the method, where the main computa-

tional steps are shown. The input data are the segmented image and the
depth map. As it was done in the previous method, the first step is to
multiply the mask by the depth map, so that only the depth information
of the peduncle is preserved.
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Fig. 14. Diagram of the peduncle depth estimation from bunch method.
Fig. 15. Left, 3D points from a cluster. Right, 3D reconstruction after filtering.
Algorithm 1 Peduncle from cluster algorithm
Input: image_depth ← depth image from the Realsense
Input: imshape ← shape of the image
Input: masks ← (height × width × n) structure with the masks of the
clusters and peduncles detected, being n the number of detected objects
Input: ids ← array of classes of the detected objects ⊳ ids = 2 means
that the mask corresponds to a cluster
Input: scores ← array of scores of the detected objects
Output: index ← array of indexes of the processed objects
Output: depths ← array of depths of the processed objects
for 𝑖 < 𝑙𝑒𝑛(𝑠𝑐𝑜𝑟𝑒𝑠) do

if ids[i]==2 then
index.append(i)
roi ← image_depth * masks[i] ⊳ Get the information of depth
from the ROI
roi_filtered ← filterByDistance(roi,25,300) ⊳ Erase points
closer than 25 cm and further than 3 meters
median_value ← median(roi_filtered)
roi_filtered ← filterByMedian(roi_filtered,8) ⊳ Erase point that
have a deviation of 8 cm with respect to the median
(left_border,right_border) ← obtainBorders(roi_filtered,1) ⊳
This function gets the borders of the mask using the percentage
of points to take into account
depth ← obtainDepth(roi_filtered,left_border,right_border) ⊳
This function applies Equation (4)
depths.append(depth)

end
end
11
The next step is filtering the outliers of the resulting point cloud,
by deleting the depth values that are not between 25 cm and 1 meter.
The result of this process is that the majority of the depth values (75%
of them) are from the background, due to segmentation errors and
pointcloud errors of the stereo camera. The next step is to select a depth
value that is in the 10% of the closest values, to be sure that is not a
depth value of the background. Then finally, we obtain the 𝑧 coordinate
of the (𝑥, 𝑦, 𝑧) point.

The detail of this method can be seen in Algorithm 2.

Algorithm 2 Direct measure algorithm
Input: image_depth ← depth image from the Realsense
Input: imshape ← shape of the image
Input: masks ← (height × width × n) structure with the masks of the
clusters and peduncles detected, being n the number of detected objects
Input: ids ← array of classes of the detected objects ⊳ ids = 1 means
that the mask corresponds to a peduncle
Input: scores ← array of scores of the detected objects
Output: index ← array of indexes of the processed objects
Output: depths ← array of depths of the processed objects
for 𝑖 < 𝑙𝑒𝑛(𝑠𝑐𝑜𝑟𝑒𝑠) do

if ids[i]==1 then
index.append(i)
roi ← image_depth * masks[i] ⊳ Get the information of depth
from the ROI
roi_filtered ← filterByDistance(roi,25,100) ⊳ Erase points
closer than 25 cm and further than 1 meters
median_value ← median(roi_filtered)
depth ← percentile(roi_filtered,10)[z] ⊳ Get z coordinate of the
point corresponding to the tenth percentile of the roi_filtered

end
end
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Fig. 16. Peduncle position estimation ant its reconstruction.

4. Results

4.1. Experimental setup

The experiments performed for this article has been done in a field
located at Aprilia, Italy. The field uses as structure the double-roof
system as can be seen on Fig. 18.

The varieties of the grapes used to carry out the experiments are the
‘‘Pizzutello Bianco’’ and the ‘‘Red Globe’’ shown in Fig. 20.

The robot used is an evolution of the Tiago++ robot manufactured
by PAL Robotics. This robot was specifically designed for the CANOPIES
European project. It has one Realsense D435i stereo camera placed on
the wrist and another one placed in the head. For these experiments
the most used one is the one on the wrist.

The Realsense D435i camera sensor was configured with the fol-
lowing parameters. For the RGB sensor, the resolution was set to
1280 × 720 pixels, and frames were captured at a rate of 30 frames
per second. The camera used a rolling shutter mechanism, while the
RGB sensor had a field of view (FOV) of 69 degrees horizontally and
42 degrees vertically. In terms of depth settings, the camera used
stereoscopic depth technology, providing a depth field of view of 87
degrees horizontally and 58 degrees vertically. At maximum resolution,
the minimum depth distance (Min-Z) was set to 28 cm. The depth
output resolution was configured to be 1280 × 720 pixels, the same
as the RGB camera, and the depth images were captured at a rate of 30
frames per second. Additionally, as an alternative to the camera-based
depth measurements, a STANLEY TLM130i laser range finder was used
to obtain ground truth depth information. This laser system provided a
resolution of ±2 mm for accurate depth measurements.

Fig. 19 shows the process of obtaining ground truth depth values
using a laser meter located in one of the arms of the CANOPIES robot.

4.2. Instance segmentation results

In this section, we present the instance segmentation metrics ob-
tained with the Mask R-CNN models trained with the images obtained
by combining the RGB images with the monodepth, following the
method specified in Section 3.6.2 To analyze whether the proposed
method improves the segmentation as hypothesized, the metrics ob-
tained by training only with the RGB images are also presented. The
dataset used for training was the CANOPIES Grape Bunch and Peduncle
Dataset presented in Section 3.3.

Due to the possibility that the training can bring the network to
a local minimum, comparing the results obtained based on a single
example can lead to incorrect conclusions. Instead, we trained Mask
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Table 3
Instance Segmentation results for the best model trained with the RGB images, obtained
for the validation and test subsets (confidence score threshold set to 0.8).

IoU P R F1 mAP

0.3 0.593 0.676 0.631 0.725
0.4 0.582 0.667 0.622 0.701
0.5 0.561 0.651 0.602 0.654
0.6 0.498 0.598 0.543 0.542
0.7 0.366 0.509 0.415 0.365
0.8 0.263 0.433 0.288 0.230
0.9 0.037 0.269 0.058 0.027

IoU 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐹1𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐴𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑃𝑝𝑒𝑑 𝑅𝑝𝑒𝑑 𝐹1𝑝𝑒𝑑 𝐴𝑃𝑝𝑒𝑑

0.3 0.582 0.683 0.629 0.647 0.603 0.668 0.634 0.802
0.4 0.564 0.667 0.611 0.608 0.600 0.667 0.632 0.793
0.5 0.523 0.635 0.574 0.537 0.598 0.666 0.630 0.771
0.6 0.414 0.547 0.471 0.387 0.583 0.649 0.614 0.696
0.7 0.164 0.379 0.229 0.141 0.567 0.639 0.601 0.589
0.8 0.015 0.274 0.029 0.009 0.511 0.591 0.548 0.450
0.9 0.000 0.269 0.000 0.000 0.075 0.268 0.117 0.054

R-CNN three times with RGB images and three times with RGB images
combined with monodepth, obtaining two groups with three distinct
models each. As it was mentioned in Section 3.6.2, the dataset was
divided into 75% for training, 20% for validation and 5% for testing
(see Table 1).

Table 3 presents the instance segmentation results for the model
that obtained a higher mAP from the group of models trained with
RGB images alone. The upper table shows the overall metrics (P, R,
F1 and mAP) of the method for different 𝐼𝑜𝑈𝑠. The lower table shows
the metrics for each class, also for different 𝐼𝑜𝑈𝑠. Table 4 presents the
same set of metrics but for the model that obtained a higher mAP from
the group of models trained with RGB-D images. Fig. 21 shows the
comparison of the mAP and AP of each class obtained by all models
trained with RGB images and with RGB-D images. As can be seen in
them, the use of estimated RGB-D images produces an increase of the
model performance. The AP for the cluster class (𝐼𝑜𝑈 = 0.3) increases
its value from 0.647 for RGB, to 0.688 for RGB-D (6.3% better). For
the peduncle class, the AP (𝐼𝑜𝑈 = 0.3), increases its value from 0.802
for RGB, to 0.845 for RGB-D (5.4% better). Overall, the mAP value
increases from 0.725 for RGB to 0.767 for RGB-D (5.8% better). This
trend continues for other 𝐼𝑜𝑈 values. After comparing, it can be seen
that the proposed method has succeeded in increasing the metrics.

Fig. 22, shows the segmentation obtained with the Mask-RCNN
model trained with RGB-D images. Only detections with a confidence
score above 0.95 are shown, discarding those with a lower score. As
explained in Section 3.3, bunches whose peduncle was not visible were
not labeled in the dataset. As a consequence of this condition, the model
tends (as intended) to detect cluster/peduncle pairs that are in the
foreground and with a visible peduncle.

Table 5 compares the performance of Mask R-CNN and YOLACT
using the instance segmentation metrics used in the previous examples.
The metrics are those obtained by training the models only on the RGB
images (without RGB-D augmentation) in the Canopies dataset. Two
different backbones were used in the YOLACT tests: ResNet-101 and
ResNet-50 (abbreviated in the table as R-101 and R-50, respectively).
A confidence threshold of 0.8 was used for comparison, and the table
shows the results for an IoU threshold of 0.3. As can be seen, Mask
R-CNN outperforms YOLACT in each of the metrics. A point worth
noting is the low performance when the backbone was ResNet-101.
The performance is significantly lower than ResNet-50 for this dataset,
contrary to what would be expected with more parameters in the
backbone. As this is beyond the scope of this paper, this fact was not
analyzed further.

4.2.1. WGISD dataset
After analyzing in our dataset how the method of combining the

RGB images with the monodepth depth map affects the segmentation,
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Fig. 17. Diagram of the direct measure method.
Fig. 18. Double-roof system.

Fig. 19. CANOPIES robot handled by a human.

Fig. 20. Left, Pizzutello Bianco variety. Right, Red Globe variety.
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Table 4
Instance Segmentation results for the best model trained with the RGB-D images.
Obtained for the validation and test subsets (confidence score threshold set to 0.8).

IoU P R F1 mAP

0.3 0.663 0.575 0.616 0.767
0.4 0.639 0.551 0.592 0.722
0.5 0.580 0.505 0.540 0.619
0.6 0.481 0.435 0.456 0.473
0.7 0.367 0.372 0.358 0.338
0.8 0.277 0.311 0.256 0.231
0.9 0.019 0.145 0.028 0.012

IoU 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐹1𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐴𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑃𝑝𝑒𝑑 𝑅𝑝𝑒𝑑 𝐹1𝑝𝑒𝑑 𝐴𝑃𝑝𝑒𝑑

0.3 0.649 0.587 0.617 0.688 0.678 0.563 0.615 0.845
0.4 0.605 0.543 0.572 0.614 0.674 0.558 0.611 0.829
0.5 0.500 0.460 0.479 0.451 0.659 0.551 0.600 0.788
0.6 0.322 0.338 0.329 0.245 0.640 0.533 0.582 0.701
0.7 0.111 0.222 0.148 0.063 0.623 0.521 0.567 0.612
0.8 0.014 0.181 0.026 0.007 0.539 0.442 0.486 0.455
0.9 0.000 0.175 0.000 0.000 0.037 0.114 0.056 0.025

this method was also studied in the WGISD dataset. In order to evaluate
whether the proposed method improves the segmentation or not, it was
used the same procedure explained before. Three models were trained
on the RGB images and three others on the combined images (RGB-D).
We used the same dataset split for training and test of the original work,
as is shown in Table 2.

Table 6 shows the metrics obtained by the model that obtained
a higher mAP from the group of models trained with RGB images
alone (left table) and the one that obtained a higher mAP from the
group of models traind with RGB-D images (right table). Note that the
WGISD dataset does not contain peduncle information, so only bunch
class metrics are available. As can be seen, the proposed method also
produces an increase in the performance, increasing the mAP (IoU =
0.3) from 0.891 using RGB images to 0.949 when using RGB-D images
(6.5% better). For other IoU values, the results present the same trend.
Fig. 23 shows the comparison of the metrics obtained by all models
trained on the WGISD dataset.

In conclusion, the proposed method has been successfully applied
to two distinct scenarios: the WGISD dataset, characterized by isolated
vineyards where grape bunches hang freely from the vineyard trees,
and the CANOPIES Grape Bunch and Peduncle dataset, where grape
bunches are constrained by the canopy. These scenarios exhibit sig-
nificant variations in terms of bunch height, distribution, illumination
conditions, and background characteristics. Remarkably, the method
outperformed state-of-the-art techniques in both scenarios, demonstrat-
ing its effectiveness and robustness across diverse grape harvesting
settings.
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Fig. 21. Metrics comparison.
Fig. 22. Segmentation obtained with the Mask-RCNN model trained with RGB-D images. It is only shown the detections with a confidence score above 0.95.
Table 5
Instance Segmentation metrics comparison between Mask R-CNN and YOLACT (with two different backbones). Results obtained by training only
with the RGB images of the CANOPIES dataset. A confidence threshold of 0.8 and an IoU threshold of 0.3 have been used.

Model P R F1 mAP

Mask R-CNN 0.593 0.676 0.631 0.725
YOLACT (R-50) 0.517 0.579 0.546 0.632
YOLACT (R-101) 0.177 0.202 0.188 0.216

Model 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐹1𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐴𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑃𝑝𝑒𝑑 𝑅𝑝𝑒𝑑 𝐹1𝑝𝑒𝑑 𝐴𝑃𝑝𝑒𝑑

Mask R-CNN 0.582 0.683 0.629 0.647 0.603 0.668 0.634 0.802
YOLACT (R-50) 0.502 0.580 0.538 0.565 0.537 0.578 0.553 0.699
YOLACT (R-101) 0.174 0.204 0.187 0.193 0.180 0.199 0.189 0.239
Table 6
Instance Segmentation results for the model trained with the WGISD dataset.

(a) Metrics WGISD (RGB) (b) Metrics WGISD (RGB-D)

IoU P R F1 mAP IoU P R F1 mAP

0.3 0.971 0.875 0.920 0.891 0.3 0.956 0.938 0.947 0.949
0.4 0.964 0.868 0.913 0.887 0.4 0.956 0.938 0.947 0.949
0.5 0.931 0.839 0.882 0.859 0.5 0.933 0.814 0.924 0.925
0.6 0.887 0.799 0.841 0.816 0.6 0.906 0.888 0.897 0.895
0.7 0.799 0.720 0.758 0.728 0.7 0.839 0.822 0.830 0.823
0.8 0.515 0.464 0.488 0.434 0.8 0.564 0.553 0.558 0.511
0.9 0.104 0.102 0.103 0.076 0.9 0.073 0.066 0.069 0.039

4.3. Depth estimation results

The results of the depth estimation were evaluated using different
data sequences of the real vineyard, containing images and pointclouds.
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The real depth of the peduncle was known for each sequence. These
measurements were done using a laser meter and they ranged between
35–100 cm. The total number of measurements used for the experi-
ments were approximately 600. A scheme of the interface for displaying
the results of the methods presented in this work can be seen in Fig. 24.
On the left image is shown the original image and in the left image, the
segmented image with the depth distance.

On Table 7, it can be seen a summary of the depth results obtained
with the peduncle from cluster and from direct measure methods. It
was a project requirement that the estimated depth error falls inside
the range of ±3 cm.

The precision of the direct measure method is superior, as it in-
corporates information about the actual peduncle. Nonetheless, this
method requires the robot to be in close proximity to the bunches
in order to identify the peduncle. In instances where this condition
is not met, the peduncle from bunch method provides an accurate
approximation of the peduncle location.
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Fig. 23. Comparison of the 𝑚𝐴𝑃 obtained in the WGISD dataset.

Table 7
Results of the depth estimation.

Method Valid
measurements
(%)

Mean absolute
error (cm)

Root mean
squared error
(cm)

Peduncle from
cluster

74.7 2.18 2.66

Direct measure 85.0 1.82 2.25

To see how the error of the method is distributed over the distances,
a plot of the deviations for different distances has been made. The plot
corresponding to the clustering method can be seen in Fig. 25. Note that
the horizontal axis shows the ground truth distance measured using the
laser range sensor, and the vertical axis shows the distance measured
by the peduncle from cluster method.

The results obtained show a substantial level of accuracy and pre-
cision, with negligible deviations, except for the limited range where
the stereo camera performs suboptimally. The plot corresponding to the
direct measurement method can be seen in Fig. 26, where the vertical
axis shows the results of the direct measure method. The results in this
case show the same problem as in the peduncle from bunch method.
Although we have only shown the experiments to obtain the depth to
the peduncle, we also did experiments to obtain the (𝑥, 𝑦, 𝑧) coordinates
of the peduncle, because this data is required for the robot to reach the
picking peduncle point. In this case, the ground truth was to reach the
peduncle with the CANOPIES robot, and the experiments that we did
shown that the robot was able to reach the peduncle, within the error
interval.

Regarding computational efficiency, the entire process of segmen-
tation and depth estimation was executed in 1.42 s, with a standard
deviation of 0.31 s, on a laptop equipped with an Intel Core i7-10750H
processor, 16 GB of RAM memory, and a Nvidia RTX2060 graphics
card.

5. Discussion

Regarding the bunch and peduncle segmentation, it can be seen
from Fig. 21 that the proposed method of combining RGB and mon-
odepth images improves the segmentation. A similar performance was
obtained for the peduncle class. On the other hand, using the RGB-D
images improves the mAP both in general (maximum mAP of 0.767
instead of 0.725) and by class (from 0.647 to 0.688 in the bunch class
and from 0.802 to 0.845 in the peduncle class).

As shown, the proposed method also improves the results on the
WGISD dataset. A maximum mAP of 0.949 was obtained in the model
trained with this technique, in contrast to the maximum mAP of 0.891
obtained in the model trained with RGB images only (for an IoU
threshold of 0.3). The only metric that has a small decrease is the
precision, from 0.971 to 0.956 (for an IoU threshold of 0.3).
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Table 8
Computation time (in seconds) and frames per second (FPS).

Mask Mask+Boost

Mean 0.2646 1.9249Time (s) StDev 0.0188 1.7831

Mean 3.7792 0.5195FPS StDev 0.0188 1.8161

However, this performance improvement is not without a cost.
Table 8 shows the computational time required to perform the different
techniques. It was found that it took an average of 1.6603 s per image
(with a standard deviation of 0.6783 s) to estimate the depth map using
Boosting Monodepth. This brings the total computation time (depth
map estimation and Mask R-CNN segmentation) to 1.9249 s per image.

The proposed method has certain limitations. In real-world condi-
tions, the detection step works well up to a distance of 2 m. However,
between 70 centimeters and 2 m, it becomes difficult to accurately
detect the peduncle due to its small size. In terms of depth estimation,
the method achieves reliable results in the range of 30 centimeters to
1 meter, with an error of less than 3 centimeters. This level of accuracy
meets the required accuracy for the project.

Moreover, the methods developed in this project enable the esti-
mation of depth even when the peduncle is not directly visible due to
either distance or occlusions. These represent the primary challenges
encountered in accurately estimating the depth of the peduncle.

The methods have been tested with different grape varieties in
different growth moments. According to the different experiments, the
most accurate measure to do the approach to the peduncle is the one
obtained by the direct method.

In terms of computation time, it is observed that the depth estima-
tion process introduces a significant increase in the standard deviation,
about 15 times higher compared to the segmentation step. This vari-
ation is due to the direct dependence of the computation time on
the number of detected bunches and peduncles in an image. As the
complexity of the scene increases with more instances to process, the
computation time for depth estimation tends to become more variable.

The improvement in instance segmentation of grape bunches and
peduncles in cluttered backgrounds is attributed to the effective com-
bination of RGB and monodepth images. It should be noted that the
computation of the monodepth map significantly contributes to the
overall computational time. However, the continuous advancements in
monodepth algorithms have resulted in reduced computational over-
head and enhanced performance. This progress paves the way for more
accurate measurements using cost-effective hardware. Another way to
improve the performance is using more precise and smaller RGB-D
sensors with smaller minimum depth distance.

These techniques, initially developed for grape bunches and pe-
duncles, can be readily applied to a wide range of fruits, vegetables,
flowers, and other produce. The precise detection of peduncles is
crucial in various harvesting and pruning operations, especially in
cluttered environments characterized by densely intertwined branches.

6. Conclusions

In conclusion, this paper provides a complete functional solution for
the perception needed to perform a grape harvesting process. By com-
bining instance segmentation and monocular depth estimation tech-
niques, we have obtained a method that is able to detect grape bunches
and peduncles in cluttered environments, with better results than other
state-of-the-art methods. Regarding the estimation of the distance to
the peduncle, a technique was developed that was able to locate the
3D coordinates of the peduncle using an inexpensive stereo camera,
thus allowing the implementation of this technique for precision agri-
culture techniques. The proposed technique perfectly met the accuracy
specifications required by the project.
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Fig. 24. Scheme of the display used to show the results.
Fig. 25. Peduncle from bunch results.

Fig. 26. Direct measure results.

This solution has been designed to work with a common robotics
framework such as ROS, making it suitable for use with any robotic
platform designed for vineyard harvesting. The solution has not only
been developed and tested in the laboratory, but has also been tested
and optimized to work in real fields with different grape varieties. The
16
results are analyzed in terms of accuracy, but also include performance
information related to computing time.

Although the solution is fully functional, there are things that can
be improved as future work. One of them is to migrate the code to C++
for better performance. In addition, it will be essential to expand the
datasets for segmentation and distance measurement in order to obtain
better models and also to have more data to evaluate the results. In
addition to enriching the dataset with more positive detection cases,
it is crucial to add more negative cases that should not be falsely
detected as bunches or peduncles: humans, machines, animals, etc..
This is crucial to ensure the robustness of the method.
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