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Abstract. This work proposes a human motion prediction model for
handover operations. The model uses a multi-headed attention architec-
ture to process the human skeleton data together with contextual data
from the operation. This contextual data consists on the position of the
robot’s End Effector (REE). The model input is a sequence of 5 seconds
skeleton position and it outputs the predicted 2.5 future seconds posi-
tion. We provide results of the human upper body and the human right
hand or Human End Effector (HEE).
The attention deep learning based model has been trained and evaluated
with a dataset created using human volunteers and an anthropomorphic
robot, simulating handover operations where the robot is the giver and
the human the receiver. For each operation, the human skeleton is ob-
tained using OpenPose with an Intel RealSense D435i camera set inside
the robot’s head. The results show a great improvement of the human’s
right hand prediction and 3D body compared with other methods.
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1 Introduction

In order to further integrate robots in human society, they are required to better
understand how humans move and interact with the environment. Both Robot-
Human interaction [7] and Robot-Human Collaboration [19] require a set of
skills, such as perception, navigation or anticipation. In this work we will focus
on this last skill.

Humans anticipate the movement of other humans when they need to interact
with them. Delivering a tool, practicing sports, playing games or simply opening
a door for a someone else are some examples of activities that involve human
motion prediction. Our goal is to improve the quality of human-robot interaction
by enabling robots to predict human motion.
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For this reason, we focus on prediction related to a human-robot handover
task (see Fig. 1). We aim to fuse information from the human skeleton and
contextual data from the operation (Sec. 3.2). Regarding the human skeleton
we fuse data from the whole upper body skeleton and data from each part of
the upper body separately (left arm, right arm and middle body). Regarding
context we fuse data from the Robot End Effector (REE).

Our approach allows us to add as much information queues as desired since
we use a multi-head attention channel to focus independently on each one of
these queues, so further context information could be added, such as the human
gaze or the position of obstacles placed in the scenario.

Fig. 1. Left: Model predicted trajectory. Right: Ground truth trajectory. In both cases,
the blue dot shows the REE location and the motion trajectory in gray. Both skeletons
start from the same position.

The data used to train the model was collected in our own laboratory, us-
ing an anthropomorphic robot named IVO (see Fig. 2) and a group of human
volunteers. 7 human volunteers participated in the data collection. Each one of
these volunteers recorded several sequences of a handover operation, featuring
different behaviors during the operation.

In section II we explain the related work. In section III the model architecture
is detailed, for both the skeleton and context information. The dataset creation
is described in section IV. In section V we discuss the experimental results and
finally, in section VI we draw some conclusions.
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Fig. 2. The IVO robot shown in the figure has been used to create a human-robot
handover dataset used to train our model.

2 Related Work

There are interesting attempts to include contextual information in human mo-
tion prediction.

The approach from [6] is philosophically very similar, since the model pre-
dictions are conditioned on the objects around the humans, such as tables or
doors. The model uses a GAN architecture to exploit this added information.

Another very remarkable work is the one presented by [17], where they use
Transformer VAE, which also uses attention, to predict the human motion, but
they condition their prediction with the action that the human is performing,
which can also be considered as context.

If we look at the human motion prediction field in a wider sense, we can find
different approaches that take advantage of different model architectures.

In [15] by Martinez et al., the problem is approached as a time series algo-
rithm, proposing a RNN architecture able to generate a predicted human motion
sequence given a real 3D joint input sequence. Although the results obtained in
this model are quite promising, the work raises attention in very particular case:
a non-moving skeleton can often improve results in a L2 based metric. This is
commonly the most studied approach, used in [8], [11], [1].

The work done in [4] by Bütepage et al. shows how advances in latent vari-
able models such as Variational Autoencoders can be used in order to produce
relevant results. In this work, the upper body motion is predicted up to 1660 ms.
The main idea is to predict the future time steps given some previous time steps.
Thus, a joint probability is modeled, using these two variables and a number of
hidden variables who governs the unobserved dynamics.

In [2], Barsoum et al. take a similar approach, modifying the structure to
introduce GANs. By feeding the network with a skeleton input sequence plus
a random z vector drawn from a uniform or Gaussian distribution z ∼ pz, a
predicted sequence is computed. They add two losses to the architecture to try
to get consistent skeletons in their predictions: consistency loss (to ensure that
no drastic movements between frames appear) and bone loss (to ensure that
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bone lengths from the predicted skeleton don’t change). In [9], GANs are used
to reconstruct skeletons in sequences with occlusion problems.

The same study of the field can be done in the robotics side, where there
have been previous attempts to introduce the prediction in human-robot tasks,
specifically handovers.

In [10], Hoffman et al. compare anticipatory versus reactive agents. The first
methods tend to feel more fluent and natural to humans that collaborate with
robots, stressing the importance of being able to predict the intention of the
human partner.

In [12], Lang et al. use a Gaussian Process clustered with a stochastic clas-
sification technique for trajectory prediction using an object handover scenario.
Real 6D hand movements are captured during human-human handovers to clas-
sify the grasping position of both humans using a maximum likelihood estima-
tion. Although obtaining interesting results, our goal is to obtain the motion of
all the body joints or, at least, the upper body joints. Furthermore, we argue
that using human-human datasets would not represent the real behavior of a
human moving around a robot. Other studies about the handover task which
focus on human-human handovers are [16] and [3].

3 Model Architecture

Fig. 3. We modify the original model to add additional information using C channels.
Each channel experiments the same operations. First the data from each channel are
embedded using the function fk,i, fq and the Discrete Cosine Transform (orange layer).
The output of each funcion is fed to the corresponding multi-head attention module
(green layer), which is then passed through a linear transformation (yellow layer) before
being fused with the outputs of the other information channels. Then, the fused output
is fed to the predictor, where the predicted skeleton trajectory is generated.
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The model proposed here (Fig. 3) is inspired in the work published by Mao
et al. [14] where we have introduced some modifications to achieve our goals. We
change the attention module by a multi-head attention module, in a similar way
that is used in the original Attention paper by Vaswani et al. [18]. By doing this,
we increase the attention capacity of the model, allowing the network to exploit
more patterns from the data. We also modify the architecture to add multiple
attention channels side by side that allow the model to use data from different
sources. Finally, the processed information is then merged following different
strategies and then fed into a predictor module to obtain the human skeleton
prediction.

The model uses an attention deep learning based neural network able to
discover sub-sequences inside the main sequence.

Let us consider X1:N = [x1, x2, x3, ..., xN ] as the input sequence consisting of
N human upper body skeleton 3D poses xi ∈ Rk for each time frame i, where K
is the number of parameters required to represent the human pose. The model
goal is to predict the future T 3D upper body skeleton poses, XN+1:N+T .

We also consider a vector XP = [xP,1, xP,2, xP,3, ..., xP,N ] XP ∈ R3,k, where
data from each body part are considered independently. The body parts defined
were the right arm (right wrist, right elbow and right shoulder), the left arm
(left wrist, left elbow and left shoulder) and the middle body (right hip, left hip,
chest and head).

Similarly, a vector XE = [xE,1, xE,2, xE,3, ..., xE,N ] xE,i ∈ R3 defines the
position of the REE during the same time frames.

Since the model goal is to predict the future T poses given the M previous
poses, the data can be arranged to comply with the classical attention formula-
tion: all the recordings are divided into sub-sequences of M +T frames, creating
N −M − T + 1 sub-sequences {Xi:i+M+T−1}N−MT+1

i=1 .
Each of these sub-sequences consist on a key (the first M) and a value (the

whole M+T sub-sequence), composing a key-value pair. The last M frames from
the input sequence is considered to be the query and will be used to predict
the following T frames the same way the network was trained to do in all the
previous sub-sequences.

3.1 Multi-headed Attention

We define a channel Ci with a multi-head attention module for each input se-
quence X,XP and XE , each channel consisting on Nheads heads. Each sequence
is fed to its corresponding multi-head attention module, and each head of the
multi-head performs the classical scaled dot product operation, shown in Eq. 1
to compute the attention scores (a):

aC,Nheads,i =
qkTi∑N−M−T+1

i=1 qkTi
(1)

Before this operation, the query (q) and keys (k) are mapped to vectors of the
same dimension d with two functions fq : RKxM → Rd and fk : RKxM → Rd,
modeled with convolutional neural networks:
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q = fq(XN−M+1:N ), ki = fk(Xi:i+M−1) (2)

Where q, ki ∈ Rd with i ∈ {1, 2, ..., N −M − T + 1}.
The model also maps the values (V ) to trajectory space using a Discrete

Cosine Transform on the temporal dimension.
The output of the attention model (U) is then computed as the weighted

sum of values:

UC,Nheads
=

N−M−T+1∑
i=1

aC,Nheads,iVC,Nheads,i (3)

Where U ∈ Rk,(M+T ).
Then, the output of each head is fed into a single linear transformation layer

h:

UC = h(UC,1 ∥ UC,2, ... ∥ UC,Nheads
) (4)

Where ∥ signals the concatenation of the outputs of each head.

3.2 Information Channels Fusion

Each information channel Ci computes its own attention scores related to the
data it was fed (whether skeleton or context) and then the outputs are fused.

We took three different strategies to fuse the data:

1. Directly concatenating the scores U = U1 ∥ U2... ∥ UC and then feeding the
concatenated outputs to a predictor module in charge of the prediction.

2. Each channel output is weighted by a trainable parameterW = W1,W2, ...,WC

and merged with the rest. The weighted output is then passed to the pre-
dictor module in order to estimate the future skeleton poses.

3. Each channel has a corresponding predictor module, which outputs a differ-
ent trajectory. These trajectories are then weighted and merged to obtain a
result trajectory.

The fusion strategy that yielded better results was the second one, so we
opted to use it for our experiments.

3.3 Predictor Module

We used the same predictor module than Mao et al. [14]. The predictor module
uses the discrete cosine transform representation to encode temporal informa-
tion of each joint coordinate and graph convolutional networks with learnable
adjacency matrices to learn the spatial dependencies among them.

Thus, the predictor output is the last M frames of the input sequence followed
by the predicted T frames encoded in the frequency domain. By using an Inverse
Discrete Cosine Transform (IDCT) we obtain the skeleton poses in cartesian
coordinates.
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3.4 Loss

We use a L2 loss function to minimize the cartesian distance between our pre-
dictions and the ground truth data:

L( ˆpt,j , pt,j) =
1

J(M + T )

M+T∑
t=1

J∑
j=1

∥ ˆpt,j − pt,j∥2 (5)

Where pt,j is the ground truth position and ˆpt,j is the output trajectory from
the predictor.

4 Dataset

In our previous work [13] we created a custom dataset in our laboratory. Here
we used the same dataset in order to compare the new model to the previous
one.

The dataset was collected using the anthropomorphic robot IVO and human
volunteers performing a handover task where the human is the receiver and the
robot the giver (see Fig. 4). The human and the robot approach towards each
other and extend their arms to reach their partner. The delivered object is a
10 cm sided cube handed to the human using the robot left arm. The human
always picks the object using the right arm.

A video of each sequence is recorded using an Intel RealSense D534i camera
placed inside the robot’s head. The video is recorded at a framerate of 10 fps.
The recording is finished when the human is about to remove the object from
the robot end effector REE.

Fig. 4. Example of two sequences recorded for the dataset. Left: Third person view
of the experiment. Right: Robot point of view, showing the detected skeleton in the
image.

The skeleton of the human is obtained from each sequence using OpenPose
(Cao et al. [5]) to extract the 2D joint locations on the image. These 2D joints
and the camera depth map data are used to obtain the 3D coordinates of each
joint.

Only the upper body (from the hips to the head) of the human is used to
avoid occlusions of the legs when the human is close to the robot.
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The volunteer recreates five different behaviors: (1) picking the object stand-
ing close to the robot from the beginning (close); (2) picking the object as they
would naturally do (natural); (3) picking the object delaying the arm motion
once they are in range to pick the object (delay); (4) picking the object and
then holding the hand still with the object grabbed (hold); and finally, (5) pick-
ing the object doing a free arm movement, while he/she approaches, such as
checking their smartphone, waving their hands or stretching.

The robot also performed three different behaviors: the robot could be of-
fering the object from the beginning, the robot could offer the object while the
human was approaching, or the robot could approach to the human while simul-
taneously offering the object while the human was approaching.

Once all the sequences were recorded, we performed a sanity check of the
data by visual inspection.

We used seven volunteers (3 women and 4 men, ages ranging from 25 to
60 years old) to perform the recordings. Each volunteer records all the possible
scenarios, 15 scenarios in total, repeating each scenario once, which means 30
sequences for each volunteer, 210 sequences in total, ranging from 4 to 30 seconds.
Considering that we use sub-sequences of 75 frames in the model and that data
was visually inspected to discard corrupted data, we end up with 7.214 samples
using data augmentation, each one containing 75 frames.

Depending on the scenario, the human initial position is 1.3 meter in front of
the robot (close scenarios), 5 meters (scenarios where the robot moves towards
the human) or 3 meters(the rest of cases), with no obstacles between the robot
and the human.

5 Experimental Results

5.1 Experimental details

We use our dataset and split the subjects in training dataset (subjects 2 to 7)
and validation dataset (subject 1).

For training, we use 50 frames (5 seconds) as input and output 25 frames
(2.5 seconds). We choose this time windows to compare directly with the model
presented in [14]. We perform an ablation study considering each single feature
of the model separately, more specifically how the number of heads and the
channels affect the results.

In order to compare with other methods, we train and validate other human
motion prediction models in our dataset. All the results shown in Table 1 are
obtained using our training and validation dataset.

5.2 Experiments

We compute the L2 distance in Cartesian coordinates between our predicted
sequences and the ground truth sequences for the same input sequence. Table 1
contains the computed errors along the test dataset before overfitting over the
training dataset.
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We also compute how many frames in the sequence have an error equal or
less than 0.15m and 0.25m, and give the percentage of successful frames.

Finally, we check the L2 error for the right hand of the human (HEE), since
it is the most important joint in the handover task.

The first two rows of the table corresponding to the (RNN ) and the (Hist.
Rep.Itself ) are used as baseline. We use the models presented in [15] and [14]
respectively and train them in our dataset. Note that the disparity in the results
shown here with the presented in their corresponding papers comes from the
differences between our dataset and the datasets where these models were trained
(the H36M dataset), where actions and framerates are quite different.

From third to seventh row we show the results presented in our previous work
[13].

From the eighth row to the last one, we show the results from our ablation
study. We decided to compare the multi-head attention module using 1 head
and 4 heads, since it is a way to compare the model with and without the
”multi-head” feature (the case with 1 head).

Some remarks should be made before discussing the results: the row showing
the better accuracies is the seventh row, corresponding to a configuration evalu-
ated in [13]. This configuration evaluated a certain model using only data from
the skeleton that was really close to the robot, so the motion of those sequences
was relatively small. In all the configurations evaluated in this work we use the
entire sequence, hence our results are slightly worse in the shown metrics.

One remarkable feature from the results is that the average accuracy of all
the joints has increased significantly compared to the other models, obtaining
accuracies ranging from 16.8 to 13,4 cm compared with the accuracies around 20
cm obtained by the other models. We believe that this improvement is related
to a smarter use of the attention structure used in the presented model. Scores
obtained in the number of samples with errors below 15 and 25 cm have also been
improved, and more importantly, the right hand accuracy has also improved.

In our ablation study we see that using the multi-head module usually in-
creases the accuracy of the results. Part conditioning doesn’t seem to improve
significantly the accuracy of the model, although it scores the best in the ”error
below 25 cm” metric.

The addition that seems to obtain better scores overall is the one that adds
only the information of the robot end effector, obtaining and error of 13.5 cm in
the overall joint metric and a 17.7 cm error for the right hand metric.

We also did some preliminary implementation of the model in the IVO robot
in order to check if the model returns meaningful results. Thus, the model was
encapsulated in a ROS node and tested with 2 human volunteers that didn’t
participate in the dataset collection.

The results obtained in this real experiment showed realistic predictions while
the human was approaching the robot, allowing the robot to use this predicted
motion (Fig. 5).
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Model L2 (m) % ≤ 0.15m % ≤0.25m Right Hand L2 (m)

RNN [15] 1.19 4.35 12.78 1.45

Hist. Rep. Itself [14] 0.213 56.03 70.82 0.348

End Effector conditioning [13] 0.207 58.67 72.78 0.349

Prob. Distr. modelling [13] 0.224 58.78 71.21 0.365

End Effector cond
+ Prob. Distr. modelling [13] 0.221 68.16 76.97 0.264

End Effector cond
+ Prob. Distr. modelling

(Approaching) [13] 0.222 66.35 76.18 0.228

End Effector cond
+ Prob. Distr. modelling

(Pre-contact) [13] 0.100 85.61 91.5 0.073

Multi-head module (1 head) 0.168 72.37 83.72 0.219

Multi-head module (4 heads) 0.152 73.07 85.09 0.206

1 head + Body Part channel 0.151 71.98 87.93 0.210

4 head + Body Part channel 0.155 73.58 84.71 0.211

1 head + End Effector Channel 0.135 73.93 84.67 0.177

4 head + End Effector Channel 0.139 73.22 83.77 0.189

1 head + Body Part channel
+ End Effector Channel 0.137 72.96 83.73 0.186

4 head + Body Part channel
+ End Effector Channel 0.134 73.18 84.28 0.186

Table 1. Results obtained across the validation dataset.

Fig. 5. We tested the predictor on the real robot during a handover operation. Top:
Video sequence of the operation. Bottom: Visualization with ROS of the predictor
output (Blue dots are the current human position, green dots are the predicted human
position.
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6 Conclusions

We presented an attention based neural model to characterize the motion of
a human skeleton 2.5 seconds in the future, performing a handover task with a
robotic partner and obtaining the future human motion predictions using contex-
tual information, specifically the human body parts and the position information
of the REE.

We proposed a modular approach to add contextual queues to the model to
enhance predictions in handover tasks, but the same idea can be extrapolated to
other tasks and new contextual information such as gaze or obstacle positions.

We obtained better results than previous models both for the average body
joints and the human right hand.

Futhermore, we implemented the prediction model in the IVO robot and
obtained feasible predictions replicating handovers with a small group of humans.
This opens a future research line where the convenience of using the prediction
of the human during collaborative tasks can be explored.

References

[1] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. “Structured Pre-
diction Helps 3D Human Motion Modelling”. In: CoRR abs/1910.09070
(2019). arXiv: 1910.09070. url: http://arxiv.org/abs/1910.09070.

[2] Emad Barsoum, John Kender, and Zicheng Liu. “HP-GAN: Probabilistic
3D human motion prediction via GAN”. In: CoRR abs/1711.09561 (2017).
arXiv: 1711.09561. url: http://arxiv.org/abs/1711.09561.

[3] P. Basili et al. “Investigating Human-Human Approach and Hand-Over”.
In: Human Centered Robot Systems, Cognition, Interaction, Technology.
2009.
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