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Abstract— When robots interact with humans, limitations in
their internal models arise due to the uncertainty and even
randomness of human behavior. This has led to attempts to
predict human future actions and infer their intent. However,
some authors argue for combining inference engines with
communication systems that explicitly elicit human intention.
This work builds on our Perception-Intention-Action (PIA)
cycle, a framework that considers human intention at the same
level as perception of the environment. The PIA cycle is used in
a collaborative task to compare the effect on different human-
robot interaction aspects of using a force predictor that infers
human implicit intention versus a communication system that
explicitly elicits human intention. A study with 18 volunteers
shows that allowing humans to directly express themselves can
achieve the same improvement as an intention predictor.

Index Terms— Physical Human-Robot Interaction, Intent
Detection, Human-in-the-Loop, User Study

I. INTRODUCTION

Since the dawn of robotics, attempts have been made to
enable robots to autonomously perform increasingly complex
tasks. The Perception-Action (PA) cycle played a funda-
mental role in this evolution by enabling the functional
decomposition of robot control [1]–[3]. This has led us to
design and develop more and more elaborate control systems
and architectures based to a greater or lesser extent on how
the human brain works [4]. Thus, the correct perception,
representation and understanding of the environment has
become critical to enable the robot to make the correct
decisions when navigating an urban environment [5] or
choosing the appropriate tool [6].

However, when we made robots cease to be isolated
machines and start interacting with humans, these systems
started to encounter certain limitations, mainly motivated
by the inherent uncertainty of human behavior [7]–[9].
Perception of the world ceases to be sufficient as the human’s
intention must also be known. This is when we start trying
to predict the human’s future actions with increasing success
over the years and process these predictions to try to infer
their intent [10], [11]. This process is also similar to how we
humans tend to work. We learn to detect clues and subtleties
in the behavior of our fellow humans by trying to ”read”
them, usually falling into countless misunderstandings. These
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same misunderstandings are reproduced in the inference
models we have programmed causing errors in the robot’s
behavior that are usually blamed on limitations in the model
or lack of sufficient data to train them when this errors
can simply occur because the human has multiple ways of
modeling the information they perceive [12], causing two
agents to represent the same environment differently.

This has caused some authors [13]–[15] to start consid-
ering that it is not enough to achieve human-like robots
with a correct perception of their environment but that it
is necessary to combine inference engines with communi-
cation systems that allow explicit elicitation of the human’s
intention. This raises the following questions: Can we really
achieve a perfect inference engine? And if so, is it really
necessary? Would not it be more useful (and computationally
less expensive) to foster a more fluid human-robot interac-
tion that would allow obtaining the necessary information
explicitly from the human?

This work arises to try to answer some of these questions.
Specifically, it is the continuation of our previous work [16]
in which we presented our Perception-Intention-Action (PIA)
cycle as a framework that allows us to take into account
the human intention obtained both implicitly and explicitly
at the same level as the perception of the environment.
Subsequently, it allows the combination of all sources of
information by means of the Situation Awareness (SA)
concept, thus keeping only the task-relevant information.
This cycle was validated in a human-robot collaborative
object transportation task. However, the implicit intention
of the human was directly inferred from the actual force
being exerted by the human. In this article, our cycle will
be used in the same collaborative task to compare the effect
on different human-robot interaction (HRI) aspects of using
a force predictor that infers the human’s implicit intention
during the next second versus a communication system that
explicitly elicits the human’s intention.

In the remainder of the document, we present the related
work in Section II. Section III includes our definition of
implicit and explicit intention as well as the most relevant
details about the two systems used in this work. Section IV
presents the hypotheses we wish to test, the setup of the
experiments and the results obtained. Finally, Sections V
and VI present a brief discussion and the conclusions.

II. RELATED WORK

It is relatively common to find different models in the
literature that attempt to infer the human’s intention [17]–
[22]. In general, they use the human’s gaze or their previous



movement, either of the whole body or just the hand in
manipulation tasks, to generate a prediction of the object of
interest or the trajectory they will follow and thereby infer the
human’s intention. These models use multiple architectures
ranging from Gaussian Mixture Models (GMM) to more
recent Artificial Neural Networks (ANN) in all their varieties.
However, all of them have non-negligible error rates due
to the reasons discussed above (limitations of the model,
lack of data, etc.). It is also often pointed out that these
errors can be reduced with more complex architectures [23]
ignoring that allowing the other agent to explicitly indicate
their intention when uncertainty is too high could have more
beneficial effects.

This second point of view is the one used by Mullen et
al. [24] in which they present a system in which a robot
is performing a task autonomously but when it encounters
a high uncertainty, it asks the human explicitly in order to
reach its goal. Che et al [25] take this idea a step further in a
navigation task and make a robot to indicate its intention both
implicitly (through legible motions) and explicitly (through a
vibration on a wristband on the wrist of each nearby human)
when it is in the presence of humans whom it may disturb.
While that work uses the opposite approach (it is the robot
that reports its intention both implicitly and explicitly rather
than asking the human), among their results is that the use
of both communication systems increases trust in the robot.
What they do not test is which of the two systems is preferred
by the human or in what proportion they should be used. The
same idea is used in [26] to improve object manipulation
between two robots by communicating their plans implicitly
through the force exchanged and explicitly by exchanging
wireless messages. A final work that demonstrates the use-
fulness of explicitly relying on the human’s intention is [27]
in which they perform a collaborative search task in urban
environments relying on a smartphone app [28] through
which the human can indicate which areas they are going
to explore or would like the robot to explore. Without this
system, the occlusions of the environment would drastically
reduce the performance of the task as each agent would be
unaware of the areas explored by their partner.

In the case of tasks involving physical contact, and specif-
ically in collaborative transportation, it is common to find
models based on control techniques [29]–[31]. Some of these
include some kind of prediction of the human’s intention,
understood as the human’s desired trajectory [21] or the
speed profile they would like to follow [32]. To the best of
our knowledge, there is no study that analyzes the possibility
of eliciting the human’s intention explicitly in this task or the
effect it has on human-robot interaction.

III. IMPLICIT INFERABLE INTENTION VS. EXPLICIT
INTENTION

Starting from what in [13] is called explicit communica-
tion (direct communication in Che et al. [25]) and implicit
communication (indirect in [25]), we introduce the concepts
of implicit and explicit intention in [16]. We consider implicit
intention to be that which can be inferred or deduced from

Fig. 1. Human-robot pair with the transported object. Top Left
- Human-robot pair collaboratively transporting an aluminium bar. Goal
marked with a chequered flag. Top Right - Designed setup for experiments.
Different walls and columns that create at least eight routes to the goal.
Camera icon represents picture’s point of view on the left. Bottom - Handle
of the transported object for better ergonomics for the human. Five buttons
of which the first three are used to explicitly tell the robot which route the
human wants. The last two buttons are not used. Meaning of each button
annotated next to the handle.

the actions of the other agent. In the case of a collaborative
transportation task, this intention, understood as the route
that each agent wants to follow, can be inferred through the
force they exerts on the transported object. However, the
environment must also be taken into account, as the same
force to the right may mean that the agent wants to turn to
the right or simply that they want to avoid the obstacle on
the left. Likewise, the previous experience collaborating with
each agent is also decisive to know whether the same force
to the back indicates the intention to brake completely or
simply to slow down.

On the other hand, we consider explicit intention to be that
obtained using a direct communication channel between both
agents using a code known to both. Thus, a system that took
into account all of the above considerations when inferring
the implicit intention of the human would still make errors
simply because the casuistry is almost infinite. Whereas a
system that obtained the explicit intention by directly asking
the human which route to take when the uncertainty is too
high, or simply allowing the human to indicate their intention
when they deem it necessary, would reduce the uncertainty
and thus the mistakes and the computational burden.

Due to all of the above, in this work we confront two
systems. Both are based on the same navigation system used
in [16] in which the force exerted by the human is combined
with a representative force of the environment perceived by
the robot (more technical details in [33]) to navigate through
a complex scene with several routes to the goal (Fig. 1 -
Top). However, each of this systems will obtain the human’s
intention in a different way.

A. Implicit Intention through Force Prediction

The first of the two systems makes use of our own force
predictor to infer the force that the human will exert during
the next 1 s and with this deduce their path. It uses a



Deep Learning model that combines Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM)
units. This model receives as input the evolution during the
last 2 s of 4 factors: 1) the robot’s LiDAR reading, 2) the
representative force of the environment, 3) the robot’s speed,
4) the human’s exerted force. In this way, multiple aspects
of the context are taken into account. For the sake of brevity,
we will leave the details concerning the architecture of the
predictor outside the scope of this article.

The experiments performed in [16] are used to train
this predictor. Finally, we obtain an accuracy in the testset
ranging from 94.4% for the force the human is about to
exert in the next sampling period to 92.3% for the force
to be exerted in 1 s. With this force prediction, the human’s
desired path is inferred and this inference is used to condition
the robot’s planner so that it adapts to the human’s desires
and replans as soon as it detects that these have changed.

B. Explicit Intention trough Buttons

The second system replaces the previous inference engine
by allowing the human to express which route to follow
when they consider it appropriate. For this purpose, five
buttons are enabled on the handle created to provide greater
ergonomics to the human carrying the object. These buttons
allow establishing a direct communication channel through
which the human can explicitly indicate when they want to
go straight, turn right or left (Fig. 1 - Bottom).

IV. EVALUATION

We conducted a round of experiments to test the extent
to which using a predictor to achieve effective HRI can be
beneficial and what aspects can be improved by allowing
humans to express themselves explicitly.

A. Hypothesis

The first hypotheses we want to test or reject are in line
with what can be found in the literature:

H1 - Adding a predictor to the robot’s decision making
system reduces the human’s effort.

H2 - Adding a way to explicitly indicate the human’s
intention improves the perceived safety and trust in the robot.

H3 - The human prefers the robot to infer their intention
rather than having to explicitly indicate it to the robot.

In addition, we posit a fourth hypothesis based on the
thesis we advocate in the previous sections as well as in our
previous work [16]:

H4 - A system that allows the human to directly express
their intention improves multiple aspects of an effective HRI
just as much as a system that attempts to infer it.

B. Experiments Setup

Three experiments are performed in which volunteers
execute the same collaborative transportation task in the
same scenario (Fig. 1 - Top). The first experiment serves
as a baseline for statistical purposes and to allow the human
to become familiar with the robot, including its control, its
response and movement speed and its tendency to approach

Fig. 2. Three main objective measures considered. Mean force exerted
in orange, maximum force exerted in blue and duration in gray for the three
experiments. Left axis in Newtons associated to both forces and right axis
in seconds associated to duration. Statistical significance marked with *:
p < 0.05

or move away from the obstacles. The second experiment
uses the same navigation system (technical details in [33])
with the difference of adding the force predictor discussed in
Section III-A. This predictor allows to obtain an estimation of
the trajectory desired by the human. This allows to condition
the robot’s planner to try to adapt to the human’s wishes.

The third experiment again makes use of the navigation
system used in the first experiment. Instead of adding the
previous predictor, it enables the buttons present on the han-
dle discussed in Section III-B to allow humans to explicitly
express themselves. This information is used to condition
the planner so that at the next fork it is forced to follow
the choice indicated by the human1. To avoid statistical
distortions, the order of the second and third experiments
is randomized so that approximately half of the volunteers
perform first the experiment with the predictor and then with
the buttons and the other half in reverse order. The robot used
is the PAL Robotics’ TIAGo++2.

After each experiment, the volunteers are given a hand-
made questionnaire to valuate, both numerically and by
choosing among the different experiments, different aspects
of the interaction to evaluate them afterwards using ANOVA
tests. All variables analyzed by variance tests are normally
distributed according to the Shapiro-Wilk test unless other-
wise indicated. Additionally, after finishing the questionnaire,
a brief interview with open questions is performed with each
volunteer allowing them to express their thoughts about the
experiments.

C. Participants

Eighteen volunteers, aged between 21 and 55 (µ = 29.44,
σ = 7.67), were recruited from our research institute as well
as from different schools of the partner university. Fourteen
were male and their self-valuated subjective knowledge of
robotics from 1 (none) to 7 (expert) was 3.63 (σ = 1.36).
No volunteers were paid for participating in this study,

1Experiments example: https://youtu.be/hriC-rz_fKY
2https://pal-robotics.com/robots/tiago/



Fig. 3. Comparison between using our force predictor and explicit intention communication. Left - Election made by the volunteers instead of
valuate aspects numerically Right - Election made by the volunteers with respect to which system they consider performs better at the task at hand. The
maximum is 18 in both cases as it is the number of volunteers.

Fig. 4. Assessment of the main aspects involved in the interaction. Comparison among the baseline experiment (without predictor or explicit intention
buttons) in gray, experiment with the force predictor in blue and experiment with the buttons in the handle in red. Valuation from 1 (very low) to 7 (very
high). Statistical significance marked with *: p < 0.05, **: p < 0.01, ***: p < 0.001.

ensuring that there is no conflict of interest, and all of them
have signed an informed consent form. They perform 54
experiments (exposing each volunteer to the 3 conditions).
All the experiments reported in this document have been
performed under the approval of the ethics committee of the
Universitat Politècnica de Catalunya (UPC)3 in accordance
with all the relevant guidelines and regulations (ID: 2021.10).

D. Results

To demonstrate hypothesis H1 we performed several
objective measurements taking advantage of the fact that
the three experiments are performed in the same scenario.
Specifically we looked at the mean and maximum force
exerted as well as the duration of each experiment. Fig. 2
shows the values obtained.

The duration of each experiment has a high variability
due to two main factors. First, the high number of possible
routes means that the human does not always choose the
shortest route. Second, each volunteer has a natural tendency
to perform more or less force, which results in a higher
or lower robot’s movement speed. This implies that the
variable ”Duration” did not satisfy the Saphiro-Wilk test. A
non-parametric Mann-Whitney U-test was performed without
obtaining significant results. This same variability is also

3Ethics committee URL: https://comite-etica.upc.edu/en

present in the maximum force so another Mann-Whitney U-
test was necessary. No significant results were found either.

The mean force does meet the normality condition so that
an ANOVA test can be run revealing a statistically significant
variance: F=3.129, p-value=0.035. A post hoc Tukey’s HSD
(Honest Significant Difference) test was performed showing
a statistically significant reduction according to the criterion
of p < 0.05 (p=0.019) in the mean force between the
experiment with the predictor (µ=8.00, σ=2.67) and with
the buttons (µ=5.15, σ=2.01) but not between the baseline
and the experiment with the predictor (p=0.052). Therefore,
hypothesis H1 was rejected.

To test hypotheses H2 and H3, in addition to asking the
volunteers to rate from 1 to 7 various parameters associated
with an effective HRI, at the end of the three experiments
they were asked to choose between the system with the
predictor and the other with the buttons with respect to vari-
ous aspects. They were also asked which mode of operation
seems more appropriate for the task they were performing.
Fig. 3 shows the results.

They considered safer and easier to execute the experiment
in which they had the buttons over the option with the
predictor, confirming part of hypothesis H2. This preference
changed radically when they were asked which system they
consider allows a more fluid or more natural interaction,
opting for the predictor. Likewise, there were a technical



tie when choosing which system subjectively allows the task
to be executed faster or which is more similar to how two
humans interact. As for H3, Fig. 3 - Right shows that there
were no preference for the system with the predictor when
executing the task as a whole, so hypothesis H3 is rejected.

To test hypothesis H4, and to find out to what extent
both systems can improve HRI, volunteers were asked to
numerically rate different parameters after each experiment.
The result is shown in Fig. 4. Applying ANOVA tests to
the perceived contribution of the robot to the task, there is
a statistically significant increase in both the contribution to
fluency (F=16.57, p < 0.001) and performance (F=10.99,
p < 0.001). Applying a Tukey’s HSD test to both param-
eters, it was obtained that both systems present statistically
significant increases with respect to the baseline for the con-
tribution to fluency (with predictor: p < 0.001; with buttons:
p < 0.001) and performance (with predictor: p=0.008; with
buttons: p=0.022). This impacted in a statistically significant
increase in the consideration that the robot contributes to the
task in equal proportion to the human (F=8.904, p < 0.001)
both for the system with predictor (p=0.014) and using
buttons (p=0.033) if we compare them with the baseline.

Analyzing human’s responsibility, that is, how responsible
the human is for the task to be correctly executed, there was
a reduction with both systems but it was not statistically
significant (F=2.118, p=0.106). The same did not occur
when we analyzed with the same previous procedure the
trust that the human has in the robot. There was a statistically
significant increase (F=12.94, p < 0.001) with both systems,
being more pronounced using buttons to explicitly indicate
intention (p=0.002) than with the force predictor (p=0.025).
This ends up confirming hypothesis H2.

Finally, the comfort rating also showed a statistically
significant increase (F=11.02, p < 0.001) both using our
predictor (0.035) and with the buttons (p=0.021) with re-
spect to the baseline. The coincidence in practically all the
analyzed aspects corresponding to an effective HRI between
the system with the predictor and the other one with the
buttons makes hypothesis H4 be confirmed.

The post-experiment interview shed some light on the
previous results. Volunteer 8 indicated ”I would like the
robot to be able to do the task without me having to tell
it anything”. This explains the perspective on the part of
the volunteers that makes them choose the system with the
predictor as the most appropriate for the task. However,
volunteer 10 commented ”It’s good that the robot can predict
my intentions but it can be wrong” in a clear allusion to
the human’s understanding that the robot is not perfect and
therefore can make mistakes. This is what pushes the other
half of the volunteers to choose the system with the buttons
to express themselves explicitly when necessary. This was
confirmed by volunteer 15: ”I prefer to have a way to take
control when necessary, it makes me feel more relieved”. This
justifies the choice of the system with buttons to indicate their
intention as the safer of the two and reaffirms hypothesis H2.
It also fulfills the point made in [16] that humans prefer to
always have some way to take control.

V. GENERAL DISCUSSION

We have implemented two systems to obtain the human’s
intention in a human-robot collaborative transportation task.
The first system makes use of a force predictor to estimate
the force to be exerted by the human and, with this estimate,
to infer their intention, i.e., the route they wish to follow.
The second system makes use of buttons that allow the
human to explicitly express their intention when they deem
it appropriate. Looking at Fig. 4, it can be stated that the use
of a predictor improves the quality of the HRI. However,
the interesting part is that allowing the human to express
themselves directly achieves practically the same results.

First, it should be noted that the predictor used has an
error rate that, although small, is not negligible. Furthermore,
it is a force predictor that is used to estimate the human
desired trajectory, not a trajectory predictor. This is because
the entire robot control system is based on the correct
combination of the force exerted by the human and the
understanding of the environment through attractive and
repulsive forces [33], making it much more natural to predict
forces. The estimation of the human trajectory can therefore
be improved, not only by improving the predictor used but
also by adding other inputs that could be relevant such as
the person’s gaze. However, it is pertinent to ask whether we
really want a perfect predictor.

That hypothesis H1 cannot be affirmed and hypothesis H3
is rejected goes against further improvement of our predictor.
At the same time, the comments expressed by the volunteers
advise against looking for a perfect predictor because they
prefer to continue to have some way that makes them feel
they are in control of the task, as we had already observed
in [16]. This advises to have a good enough predictor (still
necessary in situations where communication is not possible)
and to go for better communication methods, which allow
this exchange of explicit intentions in the most natural
way possible, e.g., with natural language processing [34] or
gesture communication [35].

In the end, this approach is closer to how we humans tend
to work. It is true that we try to predict and infer as much as
we can. However, when our task becomes complicated and
the risk or cost of being wrong is high, we tend to prefer to
ask our peers to reduce uncertainty or simply ask for help. If
we aspire to create robots that are perceived as companions
and not just machines, we should not forget this approach.
In any case, this work should not be understood as being
against the use of predictors, as they are still necessary when
communication is not possible.

Finally, it is worth mentioning that one of the weaknesses
of this work is that, although the population sample is varied
in age and educational background, it may be small. In turn,
the result in Fig. 3 regarding naturalness is largely dependent
on the abstraction capacity of each volunteer to understand
that the buttons used are equivalent to talking directly to
the robot. Further experiments using a ”more human-like”
communication system (for example, with natural language
processing) should be done to see if any difference occurs.



VI. CONCLUSIONS

In this article we have challenged the current trend of
creating increasingly accurate predictors to try to infer more
and more details of the human’s intention or future actions.
Through a collaborative transportation task we have found
that, while using a force predictor can improve multiple
aspects associated with effective HRI, giving the human the
ability to express their intention explicitly obtains virtually
the same results. Furthermore, the option with the predictor
has not been shown to be preferred by volunteers.

These results support the idea that we should pivot towards
methods that seek to improve human-robot communication
rather than attempting to infer it in the best possible way.
However, limitations observed in the task indicate that further
experiments should be conducted on other tasks or using
methods of eliciting the human’s explicit intention that are
more natural to the human to confirm this approach.
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and tracking people in urban environments with static and dynamic
obstacles,” Robotics and Autonomous Systems, vol. 98, pp. 147–157,
2017.

[6] N. Saito, T. Ogata, S. Funabashi, H. Mori, and S. Sugano, “How
to select and use tools?: Active perception of target objects using
multimodal deep learning,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2517–2524, 2021.

[7] A. D. Dragan, “Robot planning with mathematical models of human
state and action,” arXiv preprint arXiv:1705.04226, 2017.

[8] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan,
“On the utility of model learning in hri,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
2019, pp. 317–325.

[9] G. R. Ghosal, M. Zurek, D. S. Brown, and A. D. Dragan, “The effect
of modeling human rationality level on learning rewards from multiple
feedback types,” arXiv preprint arXiv:2208.10687, 2022.
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