Improving Human-Robot Interaction Effectiveness in Human-Robot
Collaborative Object Transportation using Force Prediction

J. E. Dominguez-Vidal and Alberto Sanfeliu

Abstract—1In this work, we analyse the use of a prediction
of the human’s force in a Human-Robot collaborative object
transportation task at a middle distance. We check that this
force prediction can improve multiple parameters associated
with effective Human-Robot Interaction (HRI) such as percep-
tion of the robot’s contribution to the task, comfort or trust
in the robot in a physical Human Robot Interaction (pHRI).
We present a Deep Learning model that allows to predict the
force that a human will exert in the next 1 s using as inputs
the force previously exerted by the human, the robot’s velocity
and environment information obtained from the robot’s LiDAR.
Its success rate is up to 92.3% in testset and up to 89.1% in
real experiments. We demonstrate that this force prediction, in
addition to being able to be used directly to detect changes in the
human’s intention, can be processed to obtain an estimate of the
human’s desired trajectory. We have validated this approach
with a user study involving 18 volunteers.

Index Terms— Physical Human-Robot Interaction, Object
Transportation, Human-in-the-Loop, Force Prediction

I. INTRODUCTION

Robotics research has improved the behavior and abilities
of robots extensively, enabling them to perform increasingly
complex tasks with increasing accuracy. However, when the
robot must work together with a human and a Human-Robot
Interaction (HRI) occurs, the human is often a source of
uncertainty that hinders the robot’s decision making.

In order to solve this problem, different methods have
been developed to estimate the human’s preferences [1],
[2] or their intention (which among several items they
will choose [3], which action they will perform [4], which
trajectory they will describe [S5]-[7]...), usually focusing on
specific tasks. Thus, in a collaborative search we want to
know in which area the human is going to search [8], in
a handover task we want to know the delivery point [9] or
the path the human will follow [10] and in a collaborative
transport task, where the human wants to take the object or
how fast they wants to move [11].

Focusing on the latter task, in this work we take a different
approach to that usually found in the literature. Instead of
using a controller or some way of obtaining the speed with
which the human wishes to move, we take advantage of
the fact that this is a task involving physical contact and,
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Fig. 1. Human-robot pair transporting an object. Both agents must
navigate through a complex environment with multiple walls and columns
to transport an aluminium bar until the goal Left - Designed setup. At least
eight possible routes. Camera icon represents picture’s point of view on the
right. Right - Real setup. Goal marked with a chequered flag.

therefore, the transfer of information between the two agents
takes place through the exchange of forces. Thus, we develop
a predictor of the force to be exerted by the human during
the next second based on the force recently exerted and
different information from the environment. We believe that
this prediction can serve as a good source of information as
it can be used to detect when the human’s intention disagrees
with that of the robot, the speed with which they wants the
task to be executed or the trajectory they want to follow.

Specifically, this article is a continuation of our previous
work [12], in which we used a collaborative transportation
task to present our Perception-Intention-Action (PIA) cycle
although without exploring the advantages of having a pre-
diction of the human’s future intention. In this work, we
present our force predictor and use it in a first round of
experiments (see Fig. 1) to condition the robot’s planner, so
that its movements take into account not only the current
force being exerted by the human but also the estimation of
the force they will make.

In the remainder of the article, Section II presents the re-
lated work. Section III presents our force predictor, including
its architecture based on known Deep Learning models and
how the dataset used to train it was obtained. Section IV
shows the results obtained both regarding the performance of
the predictor and its effect on HRI through real experiments.
Finally, Section V presents the conclusions.

II. RELATED WORK

Tasks originally involving manipulation and later human-
robot collaborative transport have generally been analyzed
with purely control-based approaches. Admittance control
systems are common [13], both directly [14] or using two-



level control schemes [15], and obtaining the reference
of their admittance controller from an equilibrium trajec-
tory [16] or even visual servoing [17]. Their complementary
implementations of the same control goal, i.e., impedance
controllers, are also common [18]-[20]. However, in general,
these solutions are based on adapting to the human in the
best way and as fast as possible, but they do not seek to be
anticipatory or proactive, as this would require a prediction
of the human’s future behavior.

Other works do rely on some form of prediction to
improve their performance. In [21] and [22], they use a
prescribed performance estimation of the human’s desired
trajectory for the transported object as an input of an
impedance controller. A similar approach is followed in [23]
where they make a Bayesian estimation of both human’s
impedance and their motion intention as extra inputs to an
adaptive impedance control scheme.

Focusing on models based on Deep Learning, in [24] and
later in [25] they use a Radial Basis Function Neural Network
to estimate the trajectory that the human’s limb wishes to
follow and even to adapt to sudden changes in the desired
trajectory. Meanwhile, [26] uses Reinforcement Learning to
estimate and adapt in real-time the damping coefficient for a
variable admittance controller. Learning from Demonstration
(LfD) is used in [27] where Gaussian Mixture Models are
the workhorse to learn a model of the task and then integrate
it in an impedance controller. [11] also uses LfD to allow the
robot to predict the speed profile that the human would like
to follow to complete the task, in this case using Weighted
Random Forrest.

While some work like [24] or [11] use the force exerted by
the human as an input, to the best of our knowledge there is
no work that predicts the force to be exerted by the human
rather than the speed or the position to which the human
wants to carry the object. Even less so if it is a task in which
the transported object has to be moved over a middle distance
while avoiding obstacles on the way and being able to change
route on the fly. We consider that this force prediction can
be a very valuable source of information since it is the
dominant form of communication in this type of task and
allows subsequently estimating the speed or position desired
by the human. We use the force that the human has exerted
recently as in [11], but we also seek for inspiration in [28]—
[30] to create a model that combines convolutional and Long
Short-Term Memory (LSTM) layers while considering more
contextual information than either of them and using it to
predict the next force to be exerted instead of the human’s
movement.

III. HUMAN FORCE PREDICTOR FOR COLLABORATIVE
OBJECT TRANSPORTATION

As mentioned above, in a collaborative human-robot trans-
port task, both agents communicate mainly through the force
they exchange. Therefore, being able to predict the force that
the human is going to exert can serve as input to subsequently
understand their intention and detect the changes that may
occur during the task. To visualize this, we will use as a use
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Fig. 2. Occupancy map from LiDAR. Left - Simulation in Gazebo of a
robot in an indoors environment. Middle - Environment detection with front
LiDAR (in red) and rear LiDAR (in blue). Right - Occupancy map with the
obstacles detected. Pixel in black if there is an obstacle in the corresponding
10x10 ¢m equivalent cell.
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Fig. 3. Forces involved in the considered collaborative transportation
task. Left - Main forces considered. Goal attractive force in green, obstacle
repulsive force in red, environment force in light blue, human real force in
orange, human’s measured force in yellow and task force in dark blue. Right
- Example of real experiment at the same situation. Robot avoids corner and
human impulses towards the goal. The object is an aluminium bar.

case a task where human and robot must transport a light
object a middle distance of 6 — 8 m with walls and columns
in the way and where there are multiple possible routes.

A. Problem definition

To obtain our prediction of the force to be exerted by the
human, we process five sources of information.

First, we need information about the environment in which
the task takes place. This environment is perceived in two
ways. On the one hand, we use the LiDAR/LaserScan present
in virtually all mobile robots to obtain an occupancy map
around it. This map has a size of 100x100 pixels and each
pixel represents whether or not the equivalent 10x10 c¢m cell
in the real world is occupied by an obstacle (see Fig. 2). This
image can be processed with a convolutional neural network
(CNN) pipeline to extract the most representative features.
This feature extraction is achieved through sequential con-
volution between the kernels at each layer and the feature
maps produced in the preceding layer.

The second way to obtain information from the environ-
ment is to represent it by repulsive and attractive forces,
taking advantage of the fact that the task is fundamentally
governed by the exchange of forces between the two agents.
Based on [31], we make each of the O obstacles detected
by the robot to generate a repulsive force fc,obs € R? that
makes the robot move away from them. Likewise, a global
planner generates a route to the task goal (known location to
which the pair takes the object). This plan is split into a series
of waypoints that generate an attractive force fc goar € R?
so that the robot tends to follow this route. The combination



of these forces generates the force fr,c € R2 that the robot
exerts on its end C of the transported object:

O0—-1

FE,C’ = WRep " Z Wobs fC,obs +wage .fC,goal (D
obs=1

Fig. 3 shows an example. More information about how to
calculate each of these forces in our previous work [32]. This
force from the environment shows how the robot interprets
that the task should be performed based on its perception.
The third source of information we consider is the force
exerted by the human on the other end of the object and
perceived by the robot via a force sensor on its wrist,
F H,C € R2.

The combination of these two forces in eq. (2) is sent to a
controller [32] to generate the fourth source of information
we consider: the linear and angular velocity of the robot.

Frosk,c = wg - Fg,c +wy - Fy,c )

Finally, since we know the location of the task goal, our
fifth source of information is the distance in modulus and
angle of the human-robot pair to the goal. These last four
sources of information are normalized to fit the range [—1, 1],
concatenated and fed into a second branch of LSTMs. To
normalize the human and robot force, a maximum modulus
for each force of 12 N is considered. To normalize the
velocities, the maximum linear and angular velocity of the
robot in this experiment are considered: 0.65 m/s and
1 rad/s. And to normalize the distance to the goal, a
maximum distance in the scenario of 7 m is considered.

Our objective is to predict the 7' future forces exerted
by the human, Yyi1.8447 € R2N, using for this purpose
the N last occupancy maps perceived by the robot, X717y,
and the N last concatenations of the force exerted by the
human, the force from the environment, the angular and
linear velocity of the robot, and the distance and angle to the
goal, X7\ = [af 2], .., )] with 2/ € R®. We consider a
sampling frequency of 10 Hz and N = 20 and T" = 10, so
we use the information of the last 2 s to predict the force
exerted during the next 1 s.

B. Force Predictor Model

Fig. 4 shows the architecture of our model. Based on [29],
[30], we use two parallel streams. One receives X"y and
processes it as a CNN, while the other receives X5 and
processes it with two layers of LSTMs. The output of the first
stream is flattened and delivered to a Fully Connected (FC)
layer to reduce its dimensionality. It is then concatenated
with the output of the other stream. The resulting vector
is delivered to a structure inspired in [5] with three addi-
tional layers of LSTMs. Finally, two FC layers are used to
obtain the desired Yy 1.n4+7 vector. The model has been
programmed using the TensorFlow library and the Keras
API. Dropout is used with a probability p = 0.3 in the first
two layers and p = 0.35 in the last three.

| input_1 | input: | [(None, 20, 100, 100, 1)] | Last N
| InputLayer | output: | [(None, 20, 100, 100, 1)] | occupancy map

[ time_distributed(conv2d) [ input: | (None, 20,100, 100, 1) |
| TimeDistributed(Conv2D) | output: | (None, 20, 100, 100, 16) |

[ time_distributed_1(conv2d_1) | input: | (None, 20, 100, 100, 16) |
[ TimeDistributed(Conv2D) | output: \ (None, 20, 96, 96, 32) |

[time_distributed 2(max_pooling2d) | input: [ (None, 20, 96, 96, 32) |
| TimeDistributed(MaxPooling2D) _| output: | (None, 20, 32, 32, 32) |

[ time_distributed_3(conv2d_2) [ input: [ (None, 20, 32, 32, 32) |
| TimeDistributed(Conv2D) | output: | (None, 20, 32, 32, 32) |

[ time_distributed_4(conv2d_3) [ input: [ (None, 20, 32, 32, 32) |

Last N Human's force
| TimeDistributed(Conv2D) [ output: | (None, 20, 28, 28, 32) |

Last N Robot's envir. force,
Last N Robot's velocity,

Last N positions of the goal
[output: | (None, 20, 14, 14, 32) || ke l

[ input_2_ [ input: [ [(None, 20, 8)] |
[ putLayer | output: | [(None, 20, 8)] |

[ time_distributed_5(max_pooling2d_1) [ input: [ (None, 20, 28, 28, 32) |
| TimeDistributed(MaxPooling2D)

[time_distributed 6(conv2d_4) [ input: | (None, 20, 14, 14, 32) |
| TimeDistributed(Conv2D) | output: | (None, 20, 14, 14, 32) |

[ time_distributed_7(conv2d_5) [ input: [ (None, 20, 14, 14, 32) |
| TimeDistributed(Conv2D) [ output: | (None, 20, 10, 10, 64) |

[(1stm T input: | (None, 20, 8) |
| LSTM | output; | (None, 20, 64) \

\ time_distributed_8(max_pooling2d_2) \ input: \ (None, 20, 10, 10, 64) \
\ TimeDistributed(MaxPooling2D) \ output: \ (None, 20, 5, 5, 64)

[ dropout | input: [ (None, 20, 64) |
| Dropout | output: | (None, 20, 64) |

[ time_distributed_9(flatten) | input: | (None, 20, 5, 5, 64) |
| TimeDistributed(Flatten) |m|tput:| (None, 20, 1600) \

[1stm_1 [ input: [ (None, 20, 64) |
[ LST™ [ output: | (None, 20, 64) |

[ time_distributed_10(dense) [ input: | (None, 20, 1600) |
| TimeDistributed(Dense) | output: | (None, 20, 512) |

[dropout_1 [ input: [ (None, 20, 64) |
| Dropout | output: | (None, 20, 64) |

< =
[ concatenate | input: [ [(None, 20, 512), (None, 20, 64)] |
(None, 20, 576) |

| Concatenate | output: |

(None, 20, 576)

(None, 20, 128)

[[dropout_2 | input: [ (None, 20, 128) |
| Dropout | output: [ (None, 20, 128) |

Nome, 20, 128)

(None, 20, 128)

[ dropout 3 | input: [ (None, 20, 128) |
| Dropout | output: [ (None, 20, 128) |

(None, 20, 128)
(one, 5

Noe, 96
None, 96

Fone, 50
None, 120

Next T dense_2 | input: | (None, 128)
Human's force Dense | output: | (None, 20)

Fig. 4. Model architecture. Two streams in parallel. Left one (in blue)
to process occupancy map obtained from LiDAR and right one (in orange)
to process other inputs (previous human’s force, environment force, robot’s
velocity and task’s goal position). Both streams concatenated to finish the
processing (in green).

C. Dataset Acquisition and Training

In our previous work [12], 27 volunteers (age: ©=28.3,
0=6.58) performed this same collaborative transport task
with the same TIAGo++ robot in four different scenarios,
having in all of them to carry an object collaboratively with
the robot to different positions in each scenario and facing
different dispositions of the obstacles present. In all these
experiments the information obtained by the LiDAR was
recorded from which the occupancy map and the force of the
environment was obtained at all times. The force measured
by the force sensor on the robot’s wrist was also recorded as



TABLE I
PERFORMANCE OBTAINED WITH DIFFERENT GRAPHIC CARDS

FPS
(min./avg./max.)

Time Delay [ms]

Graphic Card (min./avg./max.)

GTX 1060

Mobile (80 W) 70.1 - 71.8-75.2 13.3-139- 143
GTX 1660 Ti 499 -53.0-553 18.1-18.9-20.0
Desktop

RTX 3060

Mobile (80 W) 412 - 438 -46.1 21.7-22.8-243
RTX 3080 i 16.0 - 169 - 18.1 553 -59.2 - 62.5
Desktop

TABLE I
EVOLUTION OF MEAN ERROR AND PERCENTAGE OF CORRECT
PREDICTIONS IN TESTSET

Measure Time [ms]
100 300 500 1000
Error F, [N] 0,210 0,243 0,249 0,282
Error Fy [N] 0,101 0,126 0,126 0,151
Error |F'| [N] 0,226 0,269 0,273 0,313
Error ZF [°] 6,731 7,081 7,132 7,527

Error |F| < 1.2 N

& 94,4 93,5 93,3 92,3

Error ZF < 18° [%]

well as the speed commands delivered to the robot’s wheels.
To increase the variability, a fifth scenario is designed with
a higher number of possible routes (see Fig. 1) and 13 new
volunteers (age: p = 31.28, 0 = 8.61) perform the same
collaborative transportation task, in this case twice each, and
the same information is recorded as in the previous cases.
All the recorded sequences are split into sub-sequences of
N + T samples with an overlapping between sub-sequences
of (N+T)/2 samples so that the model receives as input the
first NV samples and tries to predict the force exerted by the
human in the last 7' samples. In total, 12239 sub-sequences
are obtained, which are divided into the classic splits of train-
ing (90%: 11015 sub-sequences), validation (5%: 612 sub-
sequences) and testing (5%: 612 sub-sequences) datasets.
The training is performed using Adam as the optimizer
with its default parameters. Learning rate decay is used up
to a minimum [r = 3 x 107° with a decay factor of 0.96.
The model is trained for a maximum of 65 epochs, although
using early stopping to avoid overfitting. Training was not
observed to exceed epoch 60. An NVIDIA RTX 2080 Ti
graphics card was used, training for 75-80 minutes.

IV. RESULTS

Once our force predictor has been trained, we first check
its ability to correctly predict the force that the human will
exert during the next second using the testset split. After that,
we perform a new round of experiments in which 18 new
volunteers (age: p = 29.44, 0 = 7.67) perform the same
collaborative transport task in the fifth scenario developed,
as this is the scenario with the most possible routes and
therefore the most demanding for the predictor. This new
round of experiments allows us to test the generality of our
predictor with different candidates who may have different
preferences. In addition, it also allows us to perform a first
user study of how the use of our predictor can improve
different parameters associated with an effective HRI. All
the experiments reported in this work have been performed
under the approval of the ethics committee of the Universitat
Politécnica de Catalunya (UPC)! in accordance with all the
regulations and relevant guidelines (ID: 2021.10).

IUPC ethics committee: https://comite-etica.upc.edu/en

TABLE III
EVOLUTION OF MEAN ERROR AND PERCENTAGE OF CORRECT
PREDICTIONS IN REAL EXPERIMENTS

Measure Time [ms]
100 300 500 1000
Error F, [N] 0,282 0,312 0,316 0,352
Error Fy [N] 0,152 0,165 0,168 0,182
Error |F'| [N] 0,314 0,344 0,348 0,395
Error ZF [o] 7,547 7,863 7,903 8,296

Error |F| < 1.2 N

& 92,2 91,2 90,8 89,1

Error ZF < 18° [%]

For this purpose, our predictor is encapsulated in a ROS
(Robot Operating System) node that receives the necessary
information flows, formats them and delivers them to the
trained model so that it can deliver its prediction of the
force to be exerted. This prediction is used to condition the
robot’s global planner so that it takes the prediction into
account when choosing the route to follow. Thus, each new
volunteer performs the task twice, once without the predictor
and once with the predictor conditioning the robot’s planner.
After each execution, they fill out a short questionnaire to
analyze their perception of the interaction.

For the sake of transparency, this ROS node also allows
us to test the response speed of our predictor using different
graphics cards. Table I shows a summary of the time it takes
to execute the line of code that calls our model and generates
a new prediction once a new sample of all information
inputs has been received. Since we have tested with cards
corresponding to different generations, we could not use the
same drivers in all of them. Instead, the most recent driver
as well as the latest version of CUDA compatible with each
driver has been used with each one. As can be seen, even
a 2016 laptop card can deliver the desired 10 FPS for this
task. For the real experiments reported in this section, an
MSI GS66 laptop with an RTX 3060 (80 W) was used.



a)

b)
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Fig. 5. Trajectory estimation and real trajectory for 1 s in different situations. Estimation in red and actual trajectory in blue. A - Correct estimation
in normal situation. B - Bad estimation of trajectory (even with correct force prediction) when human’s force goes against normal operation, in this case,
over-avoiding the obstacle in the left. C - Bad estimation of trajectory (even with correct force prediction) when human is exerting an extremely low force.

TABLE IV
COMPARISON OF MEAN ERROR ESTIMATING HUMAN TRAJECTORY WITH
DIFFERENT MODELS. * MARKS VALUES OBTAINED BY INTERPOLATION
FROM LAPLAZA EL AL. [10].

L2 [m]
Model 500 ms 1000 ms
Martinez el al. [6] 0.159* 0.317*
Mao et al. [7] 0.081* 0.161*
Laplaza et al.. [10] 0.072* 0.142%
2nd order polynomial 0.121 0.273
With our force predictor  0.092 0.198

A. Human Force Predictor Accuracy

We compute the absolute error in Cartesian coordinates
between our predicted human force and the ground truth
force for the same input sub-sequence. Table II contains the
temporal evolution of the computed errors along the testset
split. In addition to the error in each axis, we also calculate
the absolute error between the modulus of the predicted and
the actual force. The same calculation is performed with the
angle. Finally, Table II also shows the percentage of samples
that present an error in the modulus and angle of less than
10%, that is, 1.2 N in the modulus since the maximum force
considered is 12 N and 18° since the angle moves between
—180° and 180°.

As it can be seen, more than 90% of the samples remain
within the desired threshold even after 1 s. It is observed that
the main source of error is due to the angle. This is explained
by the fact that abrupt changes in the force exerted by the
human usually involve changes in the direction of the force
rather than changes in its modulus.

The previously mentioned new round of experiments al-
lows us to use the experiment in which the predictor is not
used to obtain the same measurements but with candidates
that did not appear in the training dataset. Table III shows

2Experiments example: https://youtu.be/6kBZwlt3aEg

that the error made when estimating the force is higher in
both axes. This results in a higher error in both the modulus
and angle of the predicted force for all time intervals. This
translates into a reduction of between 2.2% and 3.2% in the
number of samples that fall within the previous threshold.
This reduction is due to two factors. First, the samples
obtained in the previous experiments had been shuffled to
generate the training and testing datasets so that, although
the testing dataset was not seen by the model during training,
its samples corresponded to the same volunteers. By using a
different population sample, we can test the true generality of
the model. Secondly, only the fifth scenario is being tested,
which is more demanding for the predictor as more routes
are available, whereas in the training and subsequent testing
samples of all five scenarios were used, including the four
used in our previous work [12] with fewer possible routes.
Overall the model is shown to be quite general with a good
performance in both testset and real experiments.

B. Force Predictor used for Movement Estimation

As discussed in section III-A, the combination in eq. (2)
of the force exerted by the human, Fyy ¢, and the robot force
due to its interpretation of the environment, Fg c, is sent
to a controller to generate the velocity commands that the
robot follows. For simplicity, we will consider the force on
the X-axis determines the linear velocity of the robot and the
force on the Y-axis the angular velocity. Thus, the considered
maximum force of 12 N on the X-axis would cause the
maximum linear velocity of 0.65 m/s and this same force
of 12 N on the Y-axis would cause the maximum angular
velocity of 1 rad/s. More details in [32].

Therefore, this prediction of the human’s force can be
used to know the trajectory that the human would like to
follow, i.e. to obtain an estimate of the intended motion.
For this purpose, the force prediction can be given to the
same controller and the resulting velocity can be integrated
to obtain the estimated trajectory. It is worth mentioning
that this estimation is only taking into account the force of
the human, while the actual trajectory is determined by the
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Fig. 6. Assessment of different aspects involved in an effective HRI. Valuation from 1 (very low) to 7 (very high) of the user experience. Statistical

significance marked with *: p < 0.05, **: p < 0.01, ***: p < 0.001.

combination of the force exerted by both agents. This implies
that this estimation will be correct as long as human and
robot collaborate and interpret the environment in the same
way. Fig. 5 - A shows an example of this case.

If the human chooses to follow a sub-optimal route or
to avoid an obstacle at all costs even though this may lead
the couple to collide with another, this prediction will not
coincide with the trajectory that is finally followed (see
Fig. 5 - B) but it will still constitute a valuable source of
information to be able to interpret the human’s intention
demonstrating the usefulness and versatility of using a force
predictor. A final case worth mentioning is when the human
exerts a very slight force. The robot will complete the task
by performing most of the effort so that prediction and actual
trajectory will disagree (see Fig. 5 - C).

To get a qualitative idea of how good this motion esti-
mation is, Table IV shows a comparison with other models
of human motion estimation first and with a system that
estimates the trajectory in this task by approximating a
second order curve to the previously described trajectory.
The values shown in the first three methods are obtained by
interpolation of the values reported by Laplaza et al. in [10].
The comparison with these methods is not entirely fair since
they are based on predicting the motion that the human
will describe in tasks other than ours and typically having a
camera pointed at the human instead of estimating it through
the force exerted on an object as in our case. Anyway, they
allow us to get an idea of what values the state of the art is
moving at and show that our force predictor used to estimate
the trajectory that the human-robot pair will follow does an
acceptable job.

If we compare the results of this estimation made with our
force predictor with one obtained by fitting a second degree
curve to the trajectory described during the last second (the
last 1 s is used instead of the last 2 s as in the case of our
predictor so that this fit is more sensitive to the most recent
variations), we can observe that even our course system is
able to improve the result significantly.

C. Real Experiments User Study

This estimation of the human’s desired trajectory can be
used to condition the robot’s global planner by making the
following waypoints adapt to this estimation. This causes
the attractive force in (1) to tend to go in the direction

desired by the human making the robot force in (2) more
like the predicted force exerted by the human. This system
is used in one of the two experiments performed by the 18
new volunteers. After each of the experiments, they fulfill
a short questionnaire to assess different aspects of the HRI.
Fig. 6 shows the results. All variables shown have passed a
Saphiro-Wilk test for normality so that ANOVA tests can be
applied to check for statistically significant variations (using
the criterion of p <0.05).

Looking at the robot’s contribution to the task, we observe
a statistically significant increase in both its contribution to
interaction fluency (baseline =3.83, 0=0.86; with force pre-
dictor 4=5.06, 0=0.87; p < 0.001) and to task performance
(baseline ;1=3.89, 0=0.90; with force predictor p=4.94,
0=1.06; p=0.008). Similarly, the subjective perception that
the robot contributes to the task in equal proportion to the
human also increases (baseline =3.06, 0=1.00; with predic-
tor u=4.17, 0=1.30; p=0.014). This results in a decrease in
perceived human responsibility, that is, in how attentive the
human must be for the task to be successfully executed, al-
though not statistically significant (baseline p=5.11, 0=0.90;
with predictor p=4.44, 0=1.10; p=0.216).

If we ask the human to rate the quality of the solutions
proposed by the robot, the use of the predictor produces
an increase although not statistically significant (baseline
p=4.11, 0=1.02; with predictor p©=4.83, 0=0.92; p=0.215).
However, there is also a significant increase in perceived
robot aggressiveness (baseline ;=3.06, 0=1.16; with predic-
tor u=4.11, 0=1.41; p=0.038). We believe this is because the
robot reacts earlier to changes in the human’s intention by
detecting and taking them into account through the predictor.

Finally, a statistically significant increase is also observed
in trust in the robot (baseline pu=4.11, 0=1.08; with predictor
1#=5.06, 0=0.94; p=0.025) and in comfort running the task
(baseline p=4.44, 0=0.98; with predictor p=5.22, 0=0.81;
p=0.035) demonstrating the usefulness of our predictor to
obtain an effective HRI even using it in a simple way as
shown here.

V. CONCLUSIONS

We have approached the middle distance collaborative
transport task from a different point of view by generating a
force predictor instead of trying to predict the velocity profile
or the human’s desired trajectory. This predictor based on a



Deep Learning model has proven to provide predictions of
up to 1 s with an acceptable error over 89% of the time in
real experiments. This prediction of the force to be exerted
by the human can be further processed and used to obtain an
estimate of the human’s intended trajectory. This opens the
door to improve the estimates made in other works in the
literature as well as to obtain a better understanding of the
human’s intention. This is due to the fact that this predictor
allows to quickly detect changes of tendency in the force
exerted by the human and, with it, their preferences regarding
the route to follow, when to brake, when to accelerate or
when to move more or less away from an obstacle.

Through a simple conditioning of the robot’s planner to
take this prediction into account, it has been proven through
a user study that the use of our force predictor can improve
multiple parameters associated with a successful HRI such as
the perception of the robot’s contribution to the task, comfort
or trust in the robot.
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