
ProcSim: Proxy-based Confidence for Robust Similarity Learning

Oriol Barbany1† Xiaofan Lin2 Muhammet Bastan2 Arnab Dhua2
1Institut de Robòtica i Informàtica Industrial, CSIC-UPC 2Visual Search & AR, Amazon

obarbany@iri.upc.edu, {xiaofanl,mbastan,adhua}@amazon.com

Abstract

Deep Metric Learning (DML) methods aim at learning
an embedding space in which distances are closely related
to the inherent semantic similarity of the inputs. Previous
studies have shown that popular benchmark datasets often
contain numerous wrong labels, and DML methods are sus-
ceptible to them. Intending to study the effect of realistic
noise, we create an ontology of the classes in a dataset and
use it to simulate semantically coherent labeling mistakes.
To train robust DML models, we propose ProcSim, a sim-
ple framework that assigns a confidence score to each sam-
ple using the normalized distance to its class representative.
The experimental results show that the proposed method
achieves state-of-the-art performance on the DML bench-
mark datasets injected with uniform and the proposed se-
mantically coherent noise.

1. Introduction
The problem of quantifying the similarity between im-

ages is typically framed in the context of metric learning,
which aims at learning a metric space in which distances
closely relate to underlying semantic similarities. Deep
Metric Learning (DML) is based on transforming the im-
ages using a neural network and then applying a predefined
metric, e.g., the Euclidean distance, or cosine similarity.

Identifying visual similarities is crucial for tasks such
as image retrieval [31], zero-shot learning [6], and person
identification [51, 53]. Solving these problems with DML
allows the introduction of new classes without retraining, a
desirable feature in applications such as retail [64]. More-
over, the learned similarity model can be easily paired with
efficient nearest-neighbor inference techniques [19].

DML requires labeled datasets, but manual labeling is
cumbersome and, in some cases, infeasible. Automated
labeling, while efficient, introduces errors like duplicates
and irrelevant images, often necessitating manual correc-
tion [54]. Conversely, manual annotations often involve
non-expert annotators on crowdsourcing platforms, leading

† Work performed during an internship at Amazon.

Figure 1. ProcSim handles incorrect labels by reducing the con-
tribution of samples whose learned embeddings are too far away
from their class representatives.

to occasional labeling errors [23]. Labeling mistakes are es-
pecially problematic for DML, which suffer a higher drop
in performance than classification models as the number of
noisy labels increases [10].

While DML with noisy labels has garnered attention,
prior research has mostly focused on building robust mod-
els against uniform noise [27, 68, 72]. However, due to the
annotation techniques in image retrieval, real datasets often
exhibit noise concentrated in clusters of similar images [10].

This paper proposes ProcSim, a new confidence-aware
framework for training robust DML models by estimating
the reliability of samples in an unsupervised fashion. To test
the benefits of our method on noisy datasets, we present a
new procedure for injecting semantically coherent label er-
rors. The empirical results show the superior performance
of ProcSim trained on benchmark datasets injected with
uniform and the proposed semantic noise in front of alter-
native approaches.

The main contributions of this paper are:

• We propose ProcSim, a novel framework for robust vi-
sual similarity learning usable on top of any general-
purpose DML loss to improve performance on noisy
datasets. ProcSim assigns a per-sample confidence that
indicates the reliability of its label and is used to deter-
mine the influence of such a sample during training.

• We introduce a new noise model based on swapping
semantically similar class labels. Sec. 3.6 describes
how to automatically obtain a hierarchy of the classes
in a dataset and use it to inject label noise.

1

2. Related work
2.1. Learning with noisy labels

Some approaches dealing with noisy data estimate the
noise transition matrix [41, 66, 72], which requires prior
knowledge or a subset of clean data. Another class of
methods uses the model predictions to correct the labels
[20, 26, 72]. However, this technique can lead to confirma-
tion bias, where prediction errors accumulate and harm per-
formance [69]. Alternatively, one can estimate which sam-
ples are incorrectly annotated [15, 17, 26]. These methods
typically assume that significant loss instances can be asso-
ciated with incorrect labels, a technique commonly known
as the small-loss trick.

The small-loss trick is rooted in the observation that
deep neural networks often learn clean samples before noisy
samples [1], resulting in inputs with accurate labels exhibit-
ing lower-magnitude losses [7].

Some works on noisy classification train two semi-
independent networks that exchange information about
noisy samples to prevent their memorization [15,25,62,71].
Directly adopting these methods to DML is not feasible
[68], but there exist similar approaches in the DML liter-
ature using self-distillation to determine soft labels [72] or
detect noisy samples [17].

If the noise probability is known and the small-loss trick
assumption is satisfied, one can spot noisy samples as those
whose loss value is over a given percentile determined by
the noise probability [17,27]. However, the amount of noise
present in a dataset is generally unknown.

Under the more realistic case where the noise probabil-
ity is unknown, an interesting approach is to fit a bimodal
distribution to explain the loss values [26]. Then, following
the small-loss trick, the samples belonging to the distribu-
tion with the higher mode are treated as noisy.

Once noisy samples are detected, we can split the train-
ing dataset into disjoint sets representing correct and incor-
rect labels. In the context of DML, when we identify a sam-
ple as noisy, we can discard it [27] or only consider it for
negative interactions [17].

Instead of treating all correct and incorrect samples
equally, an option is to use a confidence-aware loss, in
which the loss amplitude is modulated proportionally to the
sample confidence [37]. Ideally, noisy samples will be as-
signed a low confidence score to reduce or even suppress
their contribution. SuperLoss [5] offers a task-agnostic ap-
proach to converting any loss into a confident-aware loss
without additional learnable parameters.

2.2. Inter-class similarities

Inter-class similarities can be considered by clustering
image features and creating a class tree [13] or promot-
ing the clusters formed during training [70]. Another ap-

proach is to modify a margin-based objective so that the
margin depends on the attribute similarity [31]. One com-
pelling alternative is to distill the knowledge of a Large Lan-
guage Model (LLM) to learn semantically consistent metric
spaces [47]. One can also learn a hyperbolic space [12, 68],
which naturally embeds hierarchies.

2.3. Non-uniform noise generation

Swapping labels using semantic similarities results in
plausible labeling mistakes and noisy samples that are more
challenging to spot [26]. Using this idea, some works on
noisy classification considered injecting class label errors
based on the structure of recurring mistakes in real datasets,
e.g., Truck→Automobile, Bird→Airplane, and Dog↔ Cat
[20, 26]. However, inferring these rules is specific to each
dataset and requires statistics about the errors.

In the context of noisy DML, Liu et al. [27] proposed
an iterative procedure to introduce noise. In each iteration,
they choose a class and group its samples by employing
a similarity measure computed using a pre-trained DML
model. Then, they assign the same class label to all cluster
members. Although this method incorporates a notion of
visual similarity for the clustering step, label assignment is
performed uniformly at random, and the number of classes
decreases at each iteration. Dereka et al. [10] introduced
the large and small class label noise models based on only
corrupting the most frequent or rarest classes. While this
method restricts the set of possible labels assigned (asym-
metric noise), the choice is purely based on class frequen-
cies, not semantics.

3. Methodology
3.1. Preliminaries

Let D := {(xi, yi)}i∈[n] be a dataset with pairs of im-
ages xi ∈ X and class labels yi ∈ [C]. DML aims to learn a
metric space (Ψ, d) with fixed d : Ψ×Ψ→ R and a learned
transformation ϕ : X → Ψ such that d(ϕ(xi), ϕ(xj)) <
d(ϕ(xi), ϕ(xk)) if xi is semantically more similar to xj

than it is to xk [2]. Commonly, the space Ψ is normalized
to the unit hypersphere for training stability [50,51,65], and
d is chosen to be the Euclidean or cosine distance.

Instead of computing the confidence of the sample using
a learnable model [9, 37, 49], we prefer to follow a parsi-
monious approach inspired by SuperLoss [5], a technique
that computes a confidence score from the training loss and
uses it for the task of automatic curriculum learning. In the
curriculum learning training, the samples are fed in increas-
ing order of difficulty, which improves the speed of conver-
gence and the quality of the models obtained [3, 14].

For the DML problem, SuperLoss assigns a confidence
σij to each pair of samples. Doing that requires an objective
expressed as a double sum over pairs, e.g., the contrastive

2

Multi-similarity Proxy-NCA

Noisy
Clean

Figure 2. Distribution of loss values for clean and noisy samples
in the late stages of training on CUB200 [60] with 50% uniform
noise. While the Multi-similarity (MS) loss [61] is a powerful
objective for training DML models, it is unsuited for label noise
identification. Classification of noisy samples using Otsu’s thresh-
old [38] achieved 50% and 90% recall, respectively. More details
in the supplementary.

loss [8]. For a pair of samples (i, j) with loss ℓij , instead of
directly minimizing E(i,j)[ℓij] as in regular training, Super-
Loss proposes to minimize

E(i,j)

[
min
σij

(ℓij − τij)σij + λ(log σij)
2

]
, (1)

where λ ∈ R+, and τij is the global average of all positive
(resp. negative) pair losses across all iterations if yi = yj
(resp. yi ̸= yj). The optimization of the pair confidence has
the closed form solution

σij = exp

[
−W

(
1

2
max

{
−2

e
,
ℓij − τij

λ

})]
, (2)

where W (·) is the principal branch of the Lambert W func-
tion. The authors of SuperLoss [5] use this analytical solu-
tion to compute the optimal confidence and avoid the mini-
mization in Eq. (1). The confidence is treated as a constant,
meaning that they don’t propagate gradients through it.

3.2. Identifying noisy samples

Curriculum learning down-weights the contribution of
challenging samples, sometimes resulting in the omission
of noisy samples [18, 30]. However, inputs considered hard
in the curriculum learning context change across iterations
while the number of incorrect annotations in a dataset re-
main the same. Particularly for DML, the loss is obtained by
considering interactions–pairs, triplets, or tuples of a higher
order–with the other samples in a batch. Hence, large loss
values may be either because of a wrong label of the an-
chor sample or others included in the considered interac-
tions. Therefore, data points that are hard to explain under
the training objective are not necessarily those with an in-
correct class label.

Fig. 2 shows the distribution of noisy and clean samples
when using two well-known DML losses. The MS [61] ob-
jective penalizes the positive pairs with lower similarity and
the negative pairs with higher similarity. Thus, a clean sam-
ple interacting with a noisy one will almost exclusively con-

sider the latter, which will cause large loss values. Hence,
this loss is unsuited for spotting noisy samples.

Let {pi}i∈[C] be a set of points representing classes and
x an unlabeled sample. The nearest neighbor search on ϕ
returns argmaxi∈[C] ⟨ϕ(x),pi⟩. Softmax is a smooth ap-
proximation of argmax, and replacing it in the previous ex-
pression yields a stochastic nearest neighbor classifier. The
Proxy-NCA [34] loss for sample i, which we will refer to as
ℓProxy
i , is precisely the negative log(·) of the probability that

a stochastic nearest neighbor classifier assigns a sample to
its correct label when {pi}i∈[C] are class proxies.

The class proxies are learnable embeddings representing
data groups and have the desirable feature that they are ro-
bust to noisy labels [21]. Therefore, even when some class
contains wrong annotations, their proxies will be close to
the embeddings of the clean samples of that class. Overall,
Proxy-NCA loss is fundamentally a normalized distance to
the class representative. This observation provides a theo-
retical explanation of why large sample loss values can be
associated with a possibly incorrect label.

3.3. Separating noisy and clean samples

In Fig. 2, we present some empirical evidence of the
identifiability of noisy samples under the Proxy-NCA [34].
Indeed, the distribution follows a bimodal pattern, with
wrongly annotated data points falling within the mode ex-
hibiting higher losses. One option to separate clean and
noisy samples is to use a Gaussian mixture model [26].
However, this method assumes that each distribution is a
Gaussian, which is not the case for the skewed distributions
of clean and noisy samples in Fig. 2. Moreover, this ap-
proach requires an iterative procedure to estimate the suffi-
cient statistics of each distribution.

An alternative is using Otsu’s method, a one-dimensional
discrete analog of Fisher’s discriminant analysis. This ap-
proach selects a threshold that minimizes the intra-class
variance (equivalently, maximizing the inter-class variance)
and is typically used to perform image thresholding. Otsu’s
method does not require any optimization, has no hyper-
parameters, and achieves the same result as globally optimal
K-means [28].

In Alg. 1, we describe the procedure to determine the
Otsu threshold for our case. Note that the tested thresholds
T correspond to the midpoints between consecutive loss
values. Each of these thresholds divides the samples into
two groups with at least two items each, which allows for
computing the variance. Then, Otsu’s method [28] exhaus-
tively tests all thresholds and selects the one with a lower
cost.

3.4. Sample confidence

We previously showed that ℓProxy
i behaves as a bimodal

distribution and that we can use Otsu’s method [38] to sep-

3

Algorithm 1 COMPUTATION OF OTSU’S THRESHOLD

1: Inputs: Proxy loss values {ℓProxy
i }i

2: Output: Threshold τ
3: Sort loss values L← sorted(ℓProxy

i)
4: Define thresholds T ← {L[i]+L[i+1]

2 }i∈{2,3,...,|B|−2}
5: for all τ ′ ∈ T do
6: Let C0 ← {ℓProxy

i |ℓProxy
i < τ ′}

7: Let C1 ← {ℓProxy
i |ℓProxy

i ≥ τ ′}
8: Let Cost(τ)← 1

|B| (|C0|Var[C0] + |C1|Var[C1])
9: end for

10: τ ← argminτ ′∈T Cost(τ ′)

arate clean and noisy samples. Having this, we want to de-
sign a confidence score. Unlike SuperLoss [5], we advocate
for computing a confidence score for each data point instead
of doing so for each pair. Concretely, we want a confidence
score σi satisfying the following criteria:

(i) σi is translation invariant w.r.t. ℓProxy
i .

(ii) σi ≥ σj ⇐⇒ ℓProxy
i ≤ ℓProxy

j (i, j in the same batch).

(iii) σi ∈ [0, 1].

(iv) As λ→ 0, σi → 1 if clean, σi → 0 otherwise.

(v) As λ→∞, σi → 1.

Claim 1. The choice

σi := exp

{
−W

([
ℓProxy
i − τ

2λ

]
+

)}
, (3)

where [·]+ is the positive part, and τ computed with Alg. 1
satisfies Conditions (i) to (v).

Equation (3) draws inspiration from SuperLoss [5]. The
reason is that the sample-level version of the SuperLoss
confidence yields a clean expression and already satisfies
Conditions (i), (ii), and (v). While the proposed changes
might seem subtle, they conceptually make a huge differ-
ence and improve the performance by a large margin (see
Tab. 1). Refer to the supplementary material for the proof
of Claim 1 and further discussion.

In stark contrast with SuperLoss [5], the confidence in
ProcSim is not computed from the training loss. Having
a different loss for the confidence computation and the pa-
rameter update can avoid biases, something considered in
the works leveraging two models for unbiased noise sample
identification [15, 17, 25, 62, 71, 72].

3.5. ProcSim

ProcSim can work with any DML objectives writable as
a sum over sample losses, a prerequisite for enabling in-
dependent scaling of the sample loss through σi. In this
scenario, the gradients of the loss monotonously increase

with σi, and low-confidence samples result in diminished
gradient updates.

DML model training typically relies on binary similari-
ties, i.e., identifying whether a pair of samples belong to the
same class. However, evaluation involves unseen classes,
so DML requires learning a notion of similarity rather than
discriminating between training classes.

With this in mind, we add a self-supervised regulariza-
tion loss to implicitly enforce a semantic structure among
classes. Directly applying the confidence score to the regu-
larized objective would alter the magnitude of both the su-
pervised and unsupervised losses. Since the computation of
the unsupervised loss does not rely on labels, we want it to
be unaffected by the confidence.

The final objective then becomes

L =
1

|B|
∑

(xi,yi)∈B

σi · ℓDML
i + ωℓSSL

i , (4)

where ω a hyperparameter weighting the importance of the
regularization loss. Note that setting σi = 1 amounts
to regular training, while for σi = 0 the metric space is
only learned with the semantic knowledge of the LLM. An
overview of the proposed method is presented in Fig. 3.

By default, ProcSim uses MS [61] as the supervised
DML loss, but we also assess the performance using other
losses in Sec. 4.2. In the case of using the MS objective, the
DML sample loss is

ℓDML
i :=

1

α
log

1 + ∑
j∈Pi

e−α(Sij−δ)


+
1

β
log

1 + ∑
j∈Ni

e−β(δ−Sij)

 , (5)

where Sij := ⟨ϕ(xi), ϕ(xj)⟩, which is equivalent to the
cosine distance because we enforce ∥ϕ(xi)∥ = 1 ∀i, and
α, β, δ ∈ R are hyperparameters.

Unless explicitly stated, we choose the Pseudolabel Lan-
guage Guidance (PLG) loss [47] as the self-supervised ob-
jective. To compute the PLG loss images are input to
a classifier pre-trained on ImageNet [48]. For each im-
age, the top−k class names are passed to the language
part of CLIP [43] using the prompt “A photo of a
{label}”. Subsequently, k similarity matrices are gener-
ated from the similarities of text embeddings. The PLG loss
is the row-wise KL divergence between the matrix of visual
similarities and the mean of the k matrices of language sim-
ilarities. We refer the interested reader to the PLG paper for
further details.

3.6. Semantically coherent noise generation

Artificial noise models allow injecting a controlled
amount of noise to assess the robustness of different meth-

4

Laysan albatross

Crested auklet

Crested auklet

Crested auklet

Laysan albatross

Crested auklet

Wrongly annotated

Laysan albatross

Figure 3. ProcSim model overview using an illustrative example. Here, we showcase the ProcSim model’s functionality with four images
{xi}i∈[4] from the CUB200 dataset [60]. These images have class labels y1 = y2 = y3 ̸= y4, where y1 has been erroneously assigned; it
should be y1 = y4 ̸= y2 = y3. The DML model projects images into the metric space, yielding visual embeddings {ψ(xi)}i∈[4]. Then
we compute the proxy loss ℓProxy

i , which is obtained by evaluating the distance from an embedding to its associated proxy. We determine
a threshold for proxy loss values using Alg. 1, and then calculate the sample confidence {σi}i∈[4] using Eq. (3). Samples with proxy
loss values below the threshold possess unit confidence, while others have a smaller value that decreases as they move farther away from
the proxies. Notably, (x1, y1) is assigned a low confidence score, resulting in its limited contribution to updating the model parameters
compared to other samples.

ods. A simple and ubiquitous noise model is the symmet-
ric noise model [57], based on assigning an incorrect label
picked uniformly at random from all the classes. However,
labeling mistakes are often due to the semantic similarity of
the correct and wrong classes. For this reason, noisy labels
contained in real datasets follow a non-uniform distribution
among classes, differing from the symmetric model.

To mimic label errors where semantically similar images
are confused, we propose computing the inherent taxonomy
of the dataset’s classes and using that in the noise injection
process. Among the considered benchmark datasets, Stan-
dard Online Products (SOP) [54] is the only one that pro-
vides a grouping of classes. Concretely, the 22,634 prod-
ucts belong to one of twelve categories. Hence, for SOP,
one can inject semantic noise by swapping the class label of
a training sample to another class in the train partition that
falls within the same category.

To build a semantic taxonomy for the CUB200 [60] and
Cars196 [23] datasets, we group the natural language class
names in the dataset by finding their hypernyms with Word-
Net [33], as done by Rohrbach et al. [44]. Given that a
word can have multiple meanings, captured by WordNet
synsets [33], and hence several potential hypernyms, we
ensure that all the class names are a hyponym of bird and
car, respectively. In other words, we enforce a common
root node grouping all the classes. Refer to the supplemen-
tary material for further details and visualizations of the ob-
tained class hierarchies.

To inject noise into the training splits of the datasets, we
first filter the taxonomy to the training classes and treat each
sample independently. Then, we traverse the class hierar-

chy starting at the leaf node corresponding to the original
label until we find a node with several children. Finally, we
select the incorrect class label uniformly at random among
all children except the original class. We compute the class
taxonomies only once and generate noisy versions of each
dataset offline.

The fact that the noise model differs from the princi-
ples motivating ProcSim has two main reasons. On the
one hand, using the same class hierarchy for noise gener-
ation and training could lead to unfair biases favoring our
method. On the other hand, using word hierarchies such
as WordNet [33] to resolve inter-class similarities empiri-
cally achieves lower retrieval performance than other meth-
ods such as PLG [47].

4. Experiments

4.1. Experimental details

Datasets: We report results on CUB200 [60], Cars196 [23],
and SOP [54]. For all datasets, the sets of train and test
classes are disjoint.
Implementation details: We implement ProcSim using
PyTorch [40], which also provides the utilized ResNet-
50 [16] backbone model with pre-trained ImageNet [48]
weights. We replace the last layer of the backbone model
with a fully connected layer that provides embeddings of
dimension 512. The PLG [47] and the MS losses [61]
are adapted from the original implementations and use the
hyperparameters proposed by the authors for each dataset.
The reported metrics are obtained by retrieving the nearest
neighbors using the cosine similarity. For a fair compar-

5

Table 1. Recall@1 on the CUB200 [60] dataset for different types and levels of noise. The methods included in the ablation study are
classified depending on how the confidence (if any) is computed. All the methods in each group share the same hyperparameters. Best
results are shown in bold. ProcSim and its variants consistently outperform all the other baselines, and ProcSim (base) achieves the best
performance overall in terms of the harmonic mean on all corrupted datasets.

NOISE TYPE→ NONE SEMANTIC UNIFORM HARMONIC
MEANMETHODS ↓ - 10% 20% 50% 10% 20% 50%

Pair-level confidence
SuperLoss [5] 49.8 49.7 48.8 48.3 49.2 48.8 47.3 48.8

Base non-confidence-aware losses
Proxy-NCA [34] 58.0 57.8 56.4 51.9 57.3 56.9 55.7 56.2
MS [61] 67.9 64.8 60.6 49.0 64.0 60.7 49.5 58.6
MS + PLG [47] 69.4 68.7 67.7 62.3 68.5 68.4 55.5 65.4

ProcSim and variants of it (ours)
ProcSim (base) 70.1 72.2 71.0 67.9 69.3 70.4 60.8 68.6
Threshold on MS instead of Proxy-NCA 69.1 69.2 66.9 67.7 67.8 66.0 54.1 65.4
Proxy-NCA instead of MS as DML loss 59.0 58.1 56.9 51.3 58.2 59.2 56.4 56.9
Regularization affected by confidence 65.7 63.4 62.7 56.9 63.0 62.5 52.3 60.6
Global average instead of Otsu’s method 69.6 69.6 69.2 64.1 70.5 71.1 59.0 67.3
Gaussian Mixture Model instead of Otsu’s method 70.2 64.9 69.1 64.4 70.4 71.2 58.0 66.6

ison, we do not apply learning rate scheduling [46]. We
also report the results with fixed hyperparameters for each
dataset to show that our method achieves good performance
without requiring fine-tuning for different types and proba-
bilities of noise. Please refer to the supplementary for addi-
tional implementation details.

4.2. Ablation study

This section presents a study in which we assess the
boost in image retrieval performance obtained with each of
ProcSim’s components. We report the Recall@1 achieved
on the CUB200 [60] dataset and its corrupted versions in
Tab. 1. As baselines, we consider the base DML losses,
which treat all samples equally, and SuperLoss [5].

We implement the SuperLoss framework using the de-
tails provided by Castells et al. [5]: learning rate, weight
decay, scheduling1, contrastive loss [8], and λ hyperparam-
eter. We compute the contrastive loss using the PyTorch
Metric Learning library [36] and weight each loss term by
the confidence in (2) before reducing the loss.

SuperLoss [5] yields poor results, which can be due to
its susceptibility to techniques such as hard-negative mining
and hyperparameter tuning [17]. However, its surprising ro-
bustness to noise motivates the usage of a confidence-aware
objective. Computing confidence scores at the sample level,
as we do in ProcSim, yields much better results than the
pair-level scheme of SuperLoss. Moreover, it can use any
objective written as a sum over samples. Waiving this re-
striction allows the incorporation of more powerful DML
objectives that alone outperform the pair-level confidence
scheme.

1We apply learning rate scheduling to this method since its absence led
to significantly worse results. All the other methods don’t use scheduling
to avoid confounders in the performance boost [46].

Table 2. Recall@1 when ProcSim uses BERT [11] instead of CLIP
[43] for the computation of the self-supervised loss. Difference
with ProcSim inside parentheses.

UNIFORM NOISE (%)→ 10% 20% 50%

CUB200 [60] 71.3 (+2.0) 71.2 (+0.8) 60.3 (-0.5)
CARS196 [23] 86.9 (-0.3) 86.3 (+0.3) 75.6 (+0.4)
SOP [54] 79.1 (-0.2) 77.9 (-0.5) 73.1 (-0.2)

Proxy-NCA loss [34] is preferable for noise identifica-
tion, but its base performance falls behind the MS loss [61].
Adding the PLG term [47] promotes learning a represen-
tation that captures semantics. When using this regular-
ization, we achieve a consistently better performance than
plain MS loss and improved robustness against semantic
noise compared to uniform noise.

We can see that weighting the DML loss by the con-
fidence score and not on the regularization term yields a
consistent improvement. In this case, noisy samples rely
more on the regularization objective than the supervised
DML loss, which is affected by label noise. Finally, us-
ing other thresholding methods like global average, as in
SuperLoss [5], or Gaussian mixtures, as in [26], results in
generally worse performance.

ProcSim does not have a monotonically decreasing per-
formance with noise, a behavior only observed for the
CUB200 dataset [60]. On the one hand, this can be due
to using the same hyperparameters across all corrupted
datasets and Otsu’s method [38] separating the samples into
two groups. Note that this assumes that the Proxy-NCA
loss [34] follows a bimodal distribution, which may de-
crease the contribution of correctly labeled samples when
there are no wrong labels. Solving this is as easy as setting
a larger λ, which accounts for a more equal treatment of
the two sets of samples separated by the threshold. How-
ever, we wanted to show that even if not tuning λ, Proc-

6

Table 3. Recall@K (%) on the benchmark datasets corrupted with 30% uniform noise for different values of K. The reported results for
all methods except ProcSim (ours) are taken from Yan et al. [68], and the asterisk (∗) indicates that their method was applied on top of the
indicated DML loss. Best results are shown in bold. ProcSim achieves a superior performance according to most of the metrics. Note that,
similarly to the runner-up method, ProcSim is a robustness framework built on top of the MS loss [61].

BENCHMARKS→ CUB200 [60] CARS196 [23] SOP [54]

METHODS ↓ R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Triplet [51] 54.3 67.1 77.4 85.6 44.3 57.0 69.0 79.1 51.7 69.2 84.1
Triplet∗ [68] 55.5 68.1 78.2 85.9 46.1 58.2 69.6 79.3 52.9 70.1 84.6
LiftedStruct [54] 61.6 73.0 82.1 89.1 77.1 85.3 91.6 94.8 67.9 82.0 91.5
LiftedStruct∗ [68] 64.3 75.5 83.6 90.1 79.2 87.1 82.0 95.0 69.1 83.0 92.1
MS [61] 62.0 73.8 82.5 89.6 79.5 86.7 91.7 95.1 72.0 85.7 94.1
MS∗ [68] 65.3 76.1 84.7 90.7 82.4 89.5 93.8 95.9 73.6 86.9 94.8
ProcSim (ours) 68.8 79.8 87.4 92.4 84.1 90.6 94.7 97.0 77.7 89.5 95.0

Table 4. Recall@1 (%) on the benchmark datasets corrupted with different probabilities of uniform noise. The reported results for
all methods except ProcSim (ours) are taken from the PRISM paper [27] and rounded to one decimal place for consistency with the other
tables. Best results are shown in bold. While MCL+PRISM [27] performs slightly better than ProcSim for low levels of noise on SOP [54],
our method consistently and considerably outperforms it in the other datasets.

BENCHMARKS→ CUB200 [60] CARS196 [23] SOP [54]

METHODS ↓ 10% 20% 50% 10% 20% 50% 10% 20% 50%

DML with Proxy-based Losses
FastAP [4] 54.1 53.7 51.2 66.7 66.4 58.9 69.2 67.9 65.8
nSoftmax [73] 52.0 49.7 42.8 72.7 70.1 54.8 70.1 68.9 57.3
ProxyNCA [34] 47.1 46.6 41.6 69.8 70.3 61.8 71.1 69.5 61.5
Soft Triple [42] 51.9 49.1 41.5 76.2 71.8 52.5 68.6 55.2 38.5

DML with Pair-based Losses
MS [61] 57.4 54.5 40.7 66.3 67.1 38.2 69.9 67.6 59.6
Circle [55] 47.5 45.3 13.0 71.0 56.2 15.2 72.8 70.5 41.2
Contrastive Loss [8] 51.8 51.5 38.6 72.3 70.9 22.9 68.7 68.8 61.2
MCL [63] 56.7 50.7 31.2 74.2 69.2 46.9 79.0 76.6 67.2
MCL + PRISM [27] 58.8 58.7 56.0 80.1 78.0 72.9 80.1 79.5 72.9
ProcSim (ours) 69.3 70.4 60.8 87.2 86.0 75.2 79.3 78.4 73.3

Sim obtains good results. Note that in any case finding λ
is equivalent to finding the noise level of the data, but to
the severity by which we decrease the importance of noisy
sample. On the other hand, surprisingly, the best results are
achieved with some semantic noise. Note that along with
PLG regularization, having some labels swapped to seman-
tically similar samples can force the model to learn a space
with semantically related groups.

4.3. Influence of the language model

The PLG loss uses the language part of CLIP [43], which
is trained on vision-language paired datasets. While this
means CLIP is well-aligned to learn semantic information
for a visual similarity task, it also means that its training set
might overlap with vision datasets [43]. For this reason, we
tested ProcSim with a pre-trained BERT base model [11] as
LLM. The performance in Tab. 2 shows the generalization
capacity of ProcSim and factors out the possibility of unfair
advantages by using CLIP.

Another possible issue arising from the PLG loss is its
limitation by the performance of the image classification
model. Concretely, the classifier discretizes the number
of language embeddings and limits it by the number of
classes. Moreover, the categories may not align with the
downstream dataset. One possible solution to bypass the
classifier is to distill information from CLIP image embed-
dings. This approach takes advantage of the multi-modality
of the model and achieves comparable performance in all
datasets with slight improvements on SOP. Refer to the sup-
plementary for the results and additional discussions.

4.4. Comparison to state-of-the-art

Previous methods for robust DML report results on the
benchmark datasets corrupted with uniform noise. For an
extensive and exhaustive comparison, we present the im-
age retrieval performance that ProcSim obtains compared
to state-of-the-art approaches. We facsimile the results re-
ported in the papers, which means that although the noise

7

Table 5. Recall@1 (%) on the benchmark datasets injected with different probabilities and models of noise. Best results are shown in bold.
ProcSim obtains a consistently better performance and is significantly more robust to semantic noise than the alternatives.

BENCHMARKS→ CUB200 [60] CARS196 [23] SOP [54]

METHODS ↓ 10% 20% 50% 10% 20% 50% 10% 20% 50%

Uniform noise
LSD [72] 63.0 62.1 57.2 78.5 72.3 65.2 76.6 75.4 68.7
MCL + PRISM [27] 58.1 56.4 54.7 78.7 74.8 68.6 76.4 76.6 72.6
ProcSim (ours) 69.3 70.4 60.8 87.2 86.0 75.2 79.3 78.4 73.3

Semantic noise
LSD [72] 62.8 61.9 58.5 77.5 76.6 73.0 76.8 73.7 69.1
MCL + PRISM [27] 57.7 57.9 50.6 77.8 75.9 63.4 76.6 75.8 72.2
ProcSim (ours) 72.2 71.0 67.9 86.9 86.3 81.1 79.0 77.8 73.3

statistics are the same, the corrupted samples could differ.
We also found methods like MS [61] to be inconsistent
across papers, likely due to different implementations and
hyperparameters.

Tab. 3 presents the results obtained using adaptive hi-
erarchical similarity [68] on top of common DML objec-
tives trained on datasets with a 30% of wrong annotations.
Among all DML objectives augmented with adaptive hier-
archical similarity [68], MS attains the best performance,
further motivating utilizing the MS loss as the base DML
objective for ProcSim. The model trained with ProcSim
outperforms all the other methods in all metrics, proving
to be a better alternative to enhance the MS loss [61].

Liu et al. [27] report results on the benchmark datasets
corrupted with 10%, 20%, and 50% of uniform noise. In
Tab. 4, we report their results along the ProcSim perfor-
mance. We can see further evidence of the superiority of
MS [61] in front of Proxy-NCA loss [34] and of the vastly
higher performance of Procsim on the CUB200 [60] and
Cars196 [23] datasets.

We can observe a slightly lower performance on SOP.
On the one hand, this is because the SOP dataset is much
more fine-grained than the others, and MCL + PRISM [27]
is focusing on it and not on the other datasets, where Proc-
Sim occasionally outperforms it by a 10% difference. On
the other hand, the PLG is less effective on SOP due to its
higher class-to-sample ratio [47].

4.5. Effect of semantic noise

In Tab. 5, we compare the effect of uniform and semantic
noise on the state-of-the-art methods. To assess the perfor-
mance of LSD [72] and MCL + PRISM [27], we use the
code provided by the authors with the proposed hyperpa-
rameters and include the obtained results on uniform noise.
MCL + PRISM [27] requires an estimate of the noise prob-
ability, and although not specified, we used the ground truth
probabilities, thus favoring this method. Doing so achieved
the closest results to those reported by Liu et al. [27] for
CUB200 [60] and Cars196 [23], but not for SOP [54]. We
can observe that the results on the SOP dataset [54] for both

types of noise are alike as expected. The reason being that
semantic noise assigns a label chosen uniformly at random
over only one of the twelve categories for SOP.

ProcSim attains the best performance in all cases. The
competing approaches, especially MCL + PRISM [27], are
more affected by semantic noise. These results show that
semantic noise can be more harmful as it generates samples
with wrong labels that are harder to spot. Instead, ProcSim
shows the opposite behavior, which we attribute to the res-
olution of inter-class relationships.

5. Conclusions

This paper proposed ProcSim, an approach for training
DML models for visual search on datasets with wrong an-
notations. ProcSim is a confidence-aware framework that is
usable on top of any DML loss to improve its performance
on noisy datasets. ProcSim is superior to existing alterna-
tives when applied to datasets with injected noise without
even fine-tuning for different types and levels of noise.

This work also introduced a new noise model inspired by
plausible labeling mistakes. The proposed semantic noise
model yields samples with wrong class labels that are harder
to spot and can occasionally be more harmful than the om-
nipresent uniform noise model. While real noise is complex
and a mixture of different types of noise, including but not
limited to semantic errors, we believe this is a step towards
closing the gap between real-world and simulated noise.

Acknowledgments

The authors thank Amit Kumar K C, Michael Huang,
and René Vidal for fruitful discussions and useful sugges-
tions. O.B. is part of CLOTHILDE (“CLOTH manIpulation
Learning from DEmonstrations”) which has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (Advanced Grant agreement No. 741930). O.B.
thanks the European Laboratory for Learning and Intelli-
gent Systems (ELLIS) for PhD program support.

8

References
[1] Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Bal-

las, David Krueger, Emmanuel Bengio, Maxinder S. Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua
Bengio, and Simon Lacoste-Julien. A closer look at memo-
rization in deep networks. In ICML, 2017. 2

[2] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric
Learning. Morgan & Claypool Publishers (USA), Synthesis
Lectures on Artificial Intelligence and Machine Learning, pp
1-151, 2015. 2

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In ICML, 2009. 2

[4] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan
Sclaroff. Deep metric learning to rank. In CVPR, 2019. 7,
16

[5] Thibault Castells, Philippe Weinzaepfel, and Jerome Revaud.
Superloss: A generic loss for robust curriculum learning. In
NeurIPS, 2020. 2, 3, 4, 6, 13, 14, 15

[6] Binghui Chen and Weihong Deng. Hybrid-attention based
decoupled metric learning for zero-shot image retrieval. In
CVPR, 2019. 1

[7] Pengfei Chen, Ben Ben Liao, Guangyong Chen, and
Shengyu Zhang. Understanding and utilizing deep neural
networks trained with noisy labels. In ICML, 2019. 2

[8] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning
a similarity metric discriminatively, with application to face
verification. In CVPR, 2005. 3, 6, 7, 16

[9] Roberto Cipolla, Yarin Gal, and Alex Kendall. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In CVPR, 2018. 2

[10] Stanislav Dereka, Ivan Karpukhin, and Sergey Kolesnikov.
Deep Image Retrieval is not Robust to Label Noise. In
CVPR, 2022. 1, 2

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACLR, 2019. 6,
7

[12] Aleksandr Ermolov, Leyla Mirvakhabova, Valentin
Khrulkov, Nicu Sebe, and Ivan Oseledets. Hyperbolic
Vision Transformers: Combining Improvements in Metric
Learning. In CVPR, 2022. 2

[13] Weifeng Ge. Deep metric learning with hierarchical triplet
loss. In ECCV, September 2018. 2

[14] Guy Hacohen and Daphna Weinshall. On the power of cur-
riculum learning in training deep networks. In ICML, 2019.
2

[15] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. In NeurIPS, 2018. 2, 4, 15, 16

[16] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CVPR, 2016. 5, 12,
16, 17

[17] Sarah Ibrahimi, Arnaud Sors, Rafael Sampaio de Rezende,
and Stéphane Clinchant. Learning with Label Noise for Im-
age Retrieval by Selecting Interactions. In WACV, 2022. 2,
4, 6, 15

[18] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and
Li Fei-Fei. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labels. In ICML,
2018. 3

[19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with GPUs. IEEE Transactions on
Big Data, 2019. 1

[20] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rah-
navard, Ajmal Mian, and Mubarak Shah. UniCon: Combat-
ing Label Noise Through Uniform Selection and Contrastive
Learning. In CVPR, 2022. 2

[21] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. In CVPR, 2020.
3

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 12

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 1, 5, 6, 7,
8, 12, 15, 16, 17, 19

[24] Anders Krogh and John Hertz. A simple weight decay can
improve generalization. In NeurIPS, 1991. 12

[25] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun
Yang. Cleannet: Transfer learning for scalable image classi-
fier training with label noise. In CVPR, 2018. 2, 4, 15

[26] Junnan Li, Richard Socher, and Steven C.H. Hoi. DivideMix:
Learning with Noisy Labels as Semi-supervised Learning. In
ICLR, 2020. 2, 3, 6

[27] Chang Liu, Han Yu, Boyang Li, Zhiqi Shen, Zhanning Gao,
Peiran Ren, Xuansong Xie, Lizhen Cui, and Chunyan Miao.
Noise-resistant Deep Metric Learning with Ranking-based
Instance Selection. In CVPR, 2021. 1, 2, 7, 8, 15, 16

[28] Dongju Liu and Jian Yu. Otsu method and k-means. In In-
ternational Conference on Hybrid Intelligent Systems, 2009.
3

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 17

[30] Yueming Lyu and Ivor W. Tsang. Curriculum loss: Ro-
bust learning and generalization against label corruption. In
ICLR, 2020. 3

[31] Dipu Manandhar, Muhammet Bastan, and Kim-Hui Yap. Se-
mantic granularity metric learning for visual search. Journal
of Visual Communication and Image Representation, 2020.
1, 2

[32] Timo Milbich, Karsten Roth, Homanga Bharadhwaj,
Samarth Sinha, Yoshua Bengio, Björn Ommer, and
Joseph Paul Cohen. Diva: Diverse visual feature aggrega-
tion for deep metric learning. In ECCV, 2020. 16

[33] George A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38(11):39–41, 1995. 5, 17, 18

[34] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-
ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In ICCV, 2017. 3, 6, 7, 8, 12, 15,
16

9

[35] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. In ECCV, 2020. 16

[36] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Py-
torch metric learning. arXiv:2008.09164, 2020. 6, 12

[37] David Novotny, Samuel Albanie, Diane Larlus, and Andrea
Vedaldi. Self-supervised learning of geometrically stable
features through probabilistic introspection. In CVPR, 2018.
2

[38] Nobuyuki Otsu. A threshold selection method from gray-
level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 1979. 3, 6, 12, 14, 15

[39] Xu Ouyang, Tao Zhou, Rene Vidal, and Arnab Dhua. Swin-
TransFuse: Fusing Swin and Multiscale Transformers for
Fine-grained Image Recognition and Retrieval. In CVPR
Workshop on Fine-Grained Visual Categorization, 2022. 17

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 5, 12

[41] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,
Richard Nock, and Lizhen Qu. Making deep neural networks
robust to label noise: A loss correction approach. In CVPR,
2017. 2, 16

[42] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong
Jin. Softtriple loss: Deep metric learning without triplet sam-
pling. In ICCV, 2019. 7, 16

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
4, 6, 7, 12, 15

[44] Marcus Rohrbach, Michael Stark, and Bernt Schiele. Eval-
uating knowledge transfer and zero-shot learning in a large-
scale setting. In CVPR, 2011. 5

[45] Karsten Roth, Timo Milbich, Bjorn Ommer, Joseph Paul Co-
hen, and Marzyeh Ghassemi. Simultaneous similarity-based
self-distillation for deep metric learning. In ICML, 2021. 16

[46] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-
ing strategies and generalization performance in deep metric
learning. In ICML, 2020. 6, 12

[47] Karsten Roth, Oriol Vinyals, and Zeynep Akata. Integrating
Language Guidance into Vision-based Deep Metric Learn-
ing. In CVPR, 2022. 2, 4, 5, 6, 8, 12, 15, 16

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. IJCV, 2015. 4, 5, 12, 15

[49] Artsiom Sanakoyeu, Vasil Khalidov, Maureen S. McCarthy,
Andrea Vedaldi, and Natalia Neverova. Transferring dense
pose to proximal animal classes. In CVPR, 2020. 2

[50] Artsiom Sanakoyeu, Vadim Tschernezki, Uta Büchler, and
Björn Ommer. Divide and conquer the embedding space for
metric learning. In CVPR, 2019. 2

[51] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 1, 2, 7

[52] Jenny Denise Seidenschwarz, Ismail Elezi, and Laura Leal-
Taixé. Learning intra-batch connections for deep metric
learning. In ICML, 2021. 16

[53] Bing Shuai, Xinyu Li, Kaustav Kundu, and Joseph Tighe.
Id-free person similarity learning. In CVPR, 2022. 1

[54] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep Metric Learning via Lifted Structured Fea-
ture Embedding. In CVPR, 2016. 1, 5, 6, 7, 8, 12, 15, 16, 17,
18

[55] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle
loss: A unified perspective of pair similarity optimization.
In CVPR, 2020. 7, 16

[56] Eu Wern Teh, Terrance DeVries, and Graham W Taylor.
Proxynca++: Revisiting and revitalizing proxy neighbor-
hood component analysis. In ECCV, 2020. 12

[57] Brendan van Rooyen, Aditya Menon, and Robert C
Williamson. Learning with Symmetric Label Noise: The
Importance of Being Unhinged. In NeurIPS, 2015. 5

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 17

[59] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. 13

[60] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 3, 5, 6, 7, 8, 12, 14, 15, 16, 17, 18

[61] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In CVPR, 2019. 3, 4,
5, 6, 7, 8, 12, 15, 16, 17

[62] Xiaobo Wang, Shuo Wang, Hailin Shi, Jun Wang, and Tao
Mei. Co-mining: Deep face recognition with noisy labels.
In ICCV, 2019. 2, 4, 15

[63] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In
CVPR, 2020. 7, 16

[64] Yuchen Wei, Son Tran, Shuxiang Xu, Byeong Kang, and
Matthew Springer. Deep Learning for Retail Product Recog-

10

nition: Challenges and Techniques. Computational Intelli-
gence and Neuroscience, 2020. 1

[65] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and
Philipp Krahenbuhl. Sampling matters in deep embedding
learning. In ICCV, 2017. 2

[66] Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen
Gong, Gang Niu, and Masashi Sugiyama. Are anchor points
really indispensable in label-noise learning? In NeurIPS,
2019. 2

[67] Hong Xuan, Abby Stylianou, and Robert Pless. Improved
embeddings with easy positive triplet mining. In WACV,
March 2020. 16

[68] Jiexi Yan, Lei Luo, Cheng Deng, and Heng Huang. Adap-
tive hierarchical similarity metric learning with noisy labels.
IEEE Transactions on Image Processing, 2023. 1, 2, 7, 8

[69] Jiexi Yan, Lei Luo, Chenghao Xu, Cheng Deng, and Heng
Huang. Noise Is Also Useful: Negative Correlation-Steered
Latent Contrastive Learning. In CVPR, 2022. 2

[70] Zhibo Yang, Muhammet Bastan, Xinliang Zhu, Doug Gray,
and Dimitris Samaras. Hierarchical Proxy-based Loss for
Deep Metric Learning. In WACV, 2022. 2

[71] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang,
and Masashi Sugiyama. How does disagreement help gener-
alization against label corruption? In ICML, 2019. 2, 4, 15,
16

[72] Zelong Zeng, Fan Yang, Zheng Wang, and Shin’ichi Satoh.
Improving Generalization of Metric Learning via Listwise
Self-distillation. arXiv:2206.08880, 2022. 1, 2, 4, 8, 12, 15

[73] Andrew Zhai and Hao-Yu Wu. Classification is a strong
baseline for deep metric learning. In BMVC, 2019. 7, 16

[74] Wenzhao Zheng, Chengkun Wang, Jiwen Lu, and Jie Zhou.
Deep compositional metric learning. In CVPR, 2021. 16

11

A. Additional implementation details
This section provides further details on the implementa-

tion of ProcSim. We use the PyTorch framework [40] for
all the components below.

A.1. Data augmentation

We perform standard data augmentation techniques as
in previous DML works [46, 47, 72]: random cropping to
224× 224 and horizontal flipping with probability 0.5.

A.2. Model

The DML model is a ResNet-50 [16] in which we re-
placed the output classification layer with a fully connected
layer that provides embeddings. The batch normalization
layers have been frozen for improved convergence and sta-
bility across batch sizes [46]. We take the ResNet-50 model
implementation from the PyTorch library for computer vi-
sion torchvision, which also provides weights for Im-
ageNet [48]. In particular, we use the second version of
the pre-trained weights, i.e., IMAGENET1K V2. Through-
out all the experiments, we use an embedding dimension of
512.

A.3. Optimization

We use the Adam [22] optimizer to update the param-
eters of the DML model. For CUB200 [60], we train the
model for 150 epochs with a base learning rate of 10−4.
For both Cars196 [23] and SOP [54], we use a base learn-
ing rate value of 10−5 and train for 250 epochs. In all cases,
we use a weight decay [24] of 4 · 10−4 and the default val-
ues in PyTorch [40] for the rest of the hyperparameters. We
do not apply learning rate scheduling for unbiased compar-
ison [46].

Proxies in Proxy-NCA are optimized independently us-
ing the Adam optimizer with all the default parameters.
This choice is related to the observations Proxy-NCA++
[56], which indicate that using independent optimizers for
updating the class proxies and the model parameters is one
of the main drivers of performance that improves upon
vanilla Proxy-NCA [34].

The training process uses 4 NVIDIA Tesla V100 SXM2
16 GB GPUs with a batch size of 90 each. Note that the
effective batch size is 360, which allows full utilization of
the hardware at disposal for faster training and is typically
not considered an influential factor of variation [46]. While
datasets with many classes like SOP [54] may benefit from
a larger batch size, Wang et al. [61] showed that when train-
ing a model with the MS loss, the performance on dataset
like CUB200 [60] decreases with large batch sizes over 80.

A.4. Loss

The ProcSim loss is composed of two terms, as seen in
Eq. (4). One such term is the supervised DML loss. By de-

fault, we use the MS loss [61], cf . Eq. (5), with the hyper-
parameters proposed in the original paper: α = 2, β = 40,
and δ = 0.1. We adapt the original implementation2 to
perform batch operations and exclude pairs (xi,xi) in P
instead of removing all pairs with a similarity higher than
1− ϵ, where we set ϵ = 10−5.

The PLG loss is computed using the original implemen-
tation3, in which the language part of CLIP [43] (ViT-B/32
variant) is the chosen LLM. In the experiment with the
BERT language model in Tab. 2, we use the model and
weights from hugging face4. The parameter ω scaling the
PLG loss is set to ω = 10 for CUB200 [60] and ω = 5.5 for
Cars196 [23], the values reported in the official code reposi-
tory. For SOP [54], they recommend using ω ∈ [0.1, 1], and
we chose ω = 0.5 after testing with ω ∈ {0.1, 0.5, 1.0}.

To compute the sample confidence, we treat τ and σ as
constant during backpropagation. We calculate the Proxy-
NCA loss [34] using the PyTorch metric learning library
[36] with the default hyperparameters. The value of λ in
Eq. (3) determines how much the confidence of a sam-
ple decreases for losses greater than Otsu’s threshold [38].
Asymptotically, σi → 1 as λ → ∞, and as λ → 0,
σi → 0 if ℓProxy

i > τOtsu, and σi → 1 if ℓProxy
i ≤ τOtsu.

We tested λ ∈ {0.01, 0.1, 1.0, 10.0} and found the values
of λ = 0.1 on Cars196 [23] and SOP [54], and λ = 1.0
on CUB200 [60], to give good performance across different
levels of noise.

Note that a larger λ on CUB200 [60] implies that sam-
ples with a high loss are more penalized. This penalization
explains the behavior observed in Tab. 1, in which Proc-
Sim obtained the best performance on noisy data. That is
because the contribution of clean samples was potentially
decreased in the absence of synthetic noise.

B. Computation of confidence values
Proof of Claim 1. The confidence score in Eq. (3) is
claimed to satisfy Conditions (i) to (v). In the following,
we prove each of these conditions:

(i) σi is translation invariant w.r.t. ℓProxy
i :

Note that each value ℓProxy
i is subtracted by Otsu’s

threshold τ . Thus, proving that τ is equivariant to
translations of the proxy loss suffices (as those trans-
lations get canceled out). τ is computed as the cost
minimizer threshold among those in T (see Alg. 1).
T are the midpoints between consecutive loss values.
Hence, τ is translation equivariant. Finally, the cost is
unaltered as the variance is translation invariant.

2https://github.com/msight- tech/research- ms-
loss

3https : / / github . com / ExplainableML /
LanguageGuidance_for_DML

4https://huggingface.co/bert-base-uncased

12

https://github.com/msight-tech/research-ms-loss
https://github.com/msight-tech/research-ms-loss
https://github.com/ExplainableML/LanguageGuidance_for_DML
https://github.com/ExplainableML/LanguageGuidance_for_DML
https://huggingface.co/bert-base-uncased

(ii) σi ≥ σj ⇐⇒ ℓProxy
i ≤ ℓProxy

j (i, j in the same batch):

Since (i, j) are in the same batch, they will share the
same threshold τ . Then, we have

ℓProxy
i − τ

2λ
≤

ℓProxy
j − τ

2λ
Since λ ∈ R+ . (6)

The function max {0, ·} is increasing and hence the
order is preserved. Its image is R+, and the restric-
tion of W (·) to the domain of positive numbers is
monotonously increasing. Therefore, for a ≤ b

W (a) ≤W (b)⇐⇒ e−W (a) ≥ e−W (b) , (7)

since the exponential function is monotonously in-
creasing.

(iii) σi ∈ [0, 1]:

The image of the restriction of the Lambert W func-
tion to R+ is [0,∞), so the exp(·) will be restricted to
(−∞, 0]. Therefore, σi ∈ [0, 1] as claimed.

(iv) As λ→ 0, σi → 1 if clean, σi → 0 otherwise:

The input of the Lambert W function

lim
λ→0+

ℓProxy
i − τ

2λ
=

{
−∞ If ℓProxy

i < τ

∞ Otherwise
, (8)

where the first case corresponds to the definition of
clean. Note that it cannot happen that ℓProxy

i = τ as the
possible thresholds are mid-points between consecu-
tive loss values. For the first case

lim
x→−∞

exp [−W (max {0, x})] (9a)

= exp [−W (0)] = exp [0] = 1 , (9b)

and for the second case

lim
x→∞

exp [−W (max {0, x})] (10a)

= lim
x→∞

exp [−W (x)] (10b)

= exp [−∞] = 0 . (10c)

(v) As λ→∞, σi → 1:

In this case, the input of the Lambert W function tends
to 0, so we can leverage Eqs. (9a) and (9b).

As acknowledged in the paper, the expression in Eq. (3)
is inspired by SuperLoss [5], which yields a simple and
clean equation for the computation of the confidence that
satisfies Conditions (i), (ii), and (v). In the remainder of this
section, we focus on the key differences between our con-
fidence score and that of SuperLoss. While these changes
might seem subtle, they conceptually make a huge differ-
ence and significantly improve performance (see Tab. 1).

B.1. Constraining the confidence

As stated in Condition (iii), we want to constrain the con-
fidence σi ∈ [0, 1]. Plugging the constraint into the sample-
level confidence version of Eq. (1) with constrained mini-
mization, i.e.

Ei

[
min
σi∈Σ

(ℓi − τi)σi + λ(log σi)
2

]
, (11)

yields an analytical expression to compute the confidence
score corresponding to

σi = exp

[
−W

(
1

2
max

{
β0,

ℓij − τij
λ

})]
, (12)

where β0 = − 2
e when Σ = R, as in SuperLoss [5], cf .

Eq. (2). When Σ = [0, 1] as required by Condition (iii) we
obtain β0 = 0. By constraining the confidence, we avoid
over-weighting the samples with a low loss and, at the same
time, obtain the following desirable properties:

Asymptotic behavior: With β0 = − 2
e as in SuperLoss,

as λ → 0, σi → 0 if ℓi > τ , σi → e if ℓi < τ , and σi → 1
if ℓi = τ . Instead, with β0 = 0, we satisfy Condition (iv).

Numerical stability: The evaluation of W (·) can be-
come inaccurate close to − 1

e , the so-called branch point.
Particularly at the branch point, attained at ℓi − τ ≤ λβ0

with β0 = − 2
e , the estimators used by well-known scientific

computing libraries such as SciPy [59] can fail to converge.
The choice β0 = 0 avoids these numerical problems.

Fig. 4 presents a toy example illustrating the distributions
with both values of β0. When we have a bimodal distribu-
tion with separable modes (Fig. 4b), selecting β0 = 0 as-
signs a confidence of 1 to all samples with loss belonging to
the distribution of a smaller mean. If the small loss assump-
tion is satisfied, these loss values probably belong to clean
samples, so we don’t want to alter their contribution. The
confidence score for the other samples can be controlled by
λ and be made arbitrarily close to 0.

In the non-separable case (Fig. 4a), using β0 = −2/e
assigns diverse confidence scores to the samples belonging
to the same distribution. By contrast, using β0 = 0 assigns a
unit confidence score to all values at the left of the threshold
(the supposedly clean samples).

B.2. Thresholding

Even if the loss can differentiate a wrong label and fol-
lows the ideal bimodal distribution, we can see that the
global average is not suited. In Fig. 5, we include a toy ex-
ample to illustrate this observation, where we only consider
one isolated iteration (so that the change of hard samples
w.r.t. time is not an issue). Otsu’s method selects τ based

13

i =
Distribution of loss values i

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y

0.90 0.95 1.00 1.05 1.10 1.15
Distribution of i's with 0 = 2

e

10
4

10
3

10
2

10
1

Lo
g-

pr
ob

ab
ili

ty

0.875 0.900 0.925 0.950 0.975 1.000
Distribution of i's with 0 = 0

10
4

10
3

10
2

10
1

Lo
g-

pr
ob

ab
ili

ty

(a) Non-separable distributions.

i =
Distribution of loss values i

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ba
bi

lit
y

0.5 1.0 1.5 2.0 2.5
Distribution of i's with 0 = 2

e

10
4

10
3

10
2

10
1

Lo
g-

pr
ob

ab
ili

ty

0.4 0.6 0.8 1.0
Distribution of i's with 0 = 0

10
4

10
3

10
2

10
1

Lo
g-

pr
ob

ab
ili

ty

(b) Separable distributions.

Figure 4. Distribution of sample confidences computed using Eq. (12) with τ being the average of loss values and λ = 1. In this toy
example, the loss values follow a mixture of two Gaussians, shown in different colors. We had to decrease the precision of floating point
numbers from 64 to 32 bits to avoid numerical errors for β0 = − 2

e
.

Distribution of loss values i
0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y Average
Otsu

0.2 0.4 0.6 0.8 1.0
Distribution of i's with Average

10 3

10 2

10 1

100

Lo
g-

pr
ob

ab
ilit

y

0.4 0.6 0.8 1.0
Distribution of i's with Otsu

10 3

10 2

10 1

100

Lo
g-

pr
ob

ab
ilit

y

Figure 5. Distribution of sample confidences computed using
Eq. (12) with τ being either the average as in SuperLoss [5] or
Otsu’s threshold [38] as in ProcSim. In both cases, we set β0 = 0
and λ = 0.1. In this toy example, the loss values follow a mixture
of two Gaussians, shown in different colors.

on the assumption that the distribution of losses is bimodal,
which allows for treating clean and noisy samples differ-
ently.

Regarding the change of hard samples across iterations,
we can also justify the choice of τ with a simple exam-
ple. Imagine that the distribution of sample values is the
same but just gets shifted. In the usual case, loss values de-
crease as training progresses, so the global average is larger
than the average at a given iteration. Under this scenario,
the number of samples whose contribution will be reduced
decreases at every iteration. That is precisely the idea of
curriculum learning, in which harder samples are included
progressively at later training stages. However, it is not jus-
tifiable from the perspective of discerning clean from noisy

0 1000 2000 3000
Iteration

30

40

50

60

70

80

90

100

R
ec

al
l (

%
)

Multi-similarity

0 1000 2000 3000
Iteration

Proxy-NCA

(a) Results on CUB200 [60] with 50% uniform noise.

0 500 1000 1500 2000
Iteration

30

40

50

60

70

80

R
ec

al
l (

%
)

Multi-similarity

0 500 1000 1500 2000
Iteration

Proxy-NCA

(b) Results on CUB200 [60] with 50% semantic noise.

Figure 6. Classification recall (%) for the task of noisy sample
identification using Otsu’s method [38]. The red line shows the
moving average of the values obtained in a window of 100 itera-
tions.

samples since the number of noisy labels in a dataset stays
constant.

14

B.3. Confidence score and training loss

SuperLoss [5] proposes minimizing ℓiσi treating the
confidence score σi as a constant and using any training ob-
jective ℓi for both the parameter update and the computation
of σi. Consequently, if the training objective is composed
of more than one term, they should be treated equally and
as a whole. Instead, ProcSim applies different treatments
to the supervised and self-supervised objectives implicated
in the training loss. This simple modification is motivated
by the fact that the self-supervised objective is unaffected
by wrong annotations. Empirically this improves the DML
performance, as seen in Tab. 1.

Another notable difference with SuperLoss [5] is that
ProcSim disentangles the training loss and the objective
used for the confidence computation. Doing so is similar
to works relying on two independent models for unbiased
noisy sample identification [15, 17, 25, 62, 71, 72]. More-
over, it allows using losses with different properties.

On the one hand, we use Proxy-NCA loss [34] for its
usefulness in noise identification, which is justified from
a probabilistic perspective in Sec. 3.2 and empirically in
Fig. 2. For further evidence, even though ProcSim does
not perform a hard classification into clean and noisy sam-
ples, we evaluated the usefulness of Otsu’s method [38]
over Proxy-NCA [34] and MS [61] in the task of noisy
sample identification. Fig. 6 depicts the evolution of the
classification recall during training. As expected, we cab
correctly identify most noisy samples by thresholding the
Proxy-NCA loss [34]. However, using the same proce-
dure on the MS loss [61] results in random classification.
When the injected noise follows the semantic model pro-
posed in this paper, Fig. 6b shows that Proxy-NCA is also
better at spotting noisy samples, although the classification
recall is significantly lower than when using the uniform
noise model. We expected this behavior as semantic noise
generates wrong labels that are harder to identify.

On the other hand, as shown in Tab. 1, the base perfor-
mance of Proxy-NCA [34] falls behind the MS loss [61].
At the same time, the MS loss is ineffective for spotting
noisy samples, as shown in the example above. The abil-
ity to employ different and independent loss functions en-
hances the flexibility of ProcSim and enables us to leverage
the strengths of various approaches, combining the best of
both worlds.

C. CLIP image embeddings

The PLG objective [47] is a clever way to consider se-
mantics to determine inter-class relationships. However,
the number of ImageNet classes determines the maximum
number of distinct language embeddings we can obtain with
this procedure. ImageNet [48] covers a wide range of items
but, especially when using datasets with low inter-class

Table 6. Recall@1 on the benchmark datasets for different levels
of uniform noise when CLIP [43] image guidance is used instead
of relying on an ImageNet classifier and an LLM. Inside the paren-
theses, we indicate the performance difference with ProcSim.

NOISE LEVEL→ 10% 20% 50%

CUB200 [60] 67.5 (-1.8) 69.1 (-1.3) 60.5 (-0.3)
CARS196 [23] 86.4 (-0.8) 85.5 (-0.5) 74.4 (-0.8)
SOP [54] 79.0 (-0.3) 77.9 (-0.5) 73.2 (-0.1)

variations such as SOP [54], thousands of different classes
fall into the same ImageNet category. The semantic ambi-
guity of those classes given by the language guidance regu-
larization hinders resolving inter-class relations. In general,
when the domain of the downstream task has little overlap
with ImageNet classes, the resolution of inter-class relation-
ships is somehow limited.

ImageNet contains categories covering 2 or 3 classes
in the CUB200 dataset [60], such as hummingbird,
albatross, jay, and pelican. We can observe a
similar coverage for the Cars196 dataset [23], in which,
e.g., sports car, cab, wagon, convertible, land
rover, racing car, and minivan are present in Ima-
geNet. This coverage provides a level of specificity that al-
lows differentiating some of the classes and assessing their
similarity. However, for the SOP dataset [54], we find su-
perclasses such as stapler or kettle that, although
being ImageNet categories, account for thousands of dif-
ferent classes. While some superclasses such as chair,
cabinet, and lamp have multiple ImageNet classes ade-
quate for each, the instance retrieval nature of SOP and its
large number of classes inside a superclass potentially re-
duces the knowledge transfer effectiveness.

Tab. 6 presents the results obtained using CLIP image
embeddings [43] instead of relying on a classifier and a lan-
guage model. In this case, we bypass the ImageNet classi-
fier and directly obtain embeddings encoding semantic in-
formation from images without limiting the number of dif-
ferent embeddings. We can see that this approach performs
on par with standard PLG on SOP [54] but underperforms
it on the other datasets.

D. Additional comparisons

In Tab. 4, we compared ProcSim to the methods reported
in the PRISM paper [27]. For the sake of space, we ex-
cluded the algorithms for image classification under label
noise. However, it may be interesting to compare these
methods, especially those derived from Co-teaching [15],
which also relies on the small loss trick using the loss ob-
tained by another model to have unbiased estimates. For
this reason, we present all the results in Tab. 7.

ProcSim is a method for robust DML on noisy datasets.
Nevertheless, for completeness, in Tab. 8, we include the

15

Table 7. Recall@1 (%) on the benchmark datasets corrupted with different probabilities of uniform noise. The reported results for
all methods except ProcSim (ours) are taken from the PRISM paper [27] and rounded to one decimal place for consistency with the other
tables. Best results are shown in bold. While MCL+PRISM [27] performs slightly better than ProcSim for low levels of noise on SOP [54],
our method consistently and considerably outperforms it in the other datasets.

BENCHMARKS→ CUB200 [60] CARS196 [23] SOP [54]

METHODS ↓ 10% 20% 50% 10% 20% 50% 10% 20% 50%

Algorithms for image classification under label noise
Co-teaching [15] 53.7 51.1 45.0 73.5 70.4 59.6 62.6 60.3 52.2
Co-teaching+ [71] 53.3 51.0 45.2 71.5 69.6 62.4 63.4 67.9 58.3
Co-teaching [15] w/ Temperature [73] 55.6 54.2 50.7 77.5 76.3 66.9 73.7 72.0 64.1
F-correction [41] 53.4 52.6 48.8 71.0 69.5 59.5 51.2 46.3 48.9

DML with Proxy-based Losses
FastAP [4] 54.1 53.7 51.2 66.7 66.4 58.9 69.2 67.9 65.8
nSoftmax [73] 52.0 49.7 42.8 72.7 70.1 54.8 70.1 68.9 57.3
ProxyNCA [34] 47.1 46.6 41.6 69.8 70.3 61.8 71.1 69.5 61.5
Soft Triple [42] 51.9 49.1 41.5 76.2 71.8 52.5 68.6 55.2 38.5

DML with Pair-based Losses
MS [61] 57.4 54.5 40.7 66.3 67.1 38.2 69.9 67.6 59.6
Circle [55] 47.5 45.3 13.0 71.0 56.2 15.2 72.8 70.5 41.2
Contrastive Loss [8] 51.8 51.5 38.6 72.3 70.9 22.9 68.7 68.8 61.2
MCL [63] 56.7 50.7 31.2 74.2 69.2 46.9 79.0 76.6 67.2
MCL + PRISM [27] 58.8 58.7 56.0 80.1 78.0 72.9 80.1 79.5 72.9
ProcSim (ours) 69.3 70.4 60.8 87.2 86.0 75.2 79.3 78.4 73.3

Table 8. Performance of methods with ResNet-50 [16] backbone and embedding dimension 512 on clean datasets. The best results are in
bold. The results are taken from Roth et al. [47]. Inside the parentheses, we indicate the boost in performance of ProcSim w.r.t. the mean
performance of MS+PLG, which is equivalent to setting unit confidence for all samples in the ProcSim framework (by letting λ→ ∞).

BENCHMARKS→ CUB200 [60] CARS196 [23] SOP [54]

METHODS ↓ R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

EPSHN [67] 64.9 75.3 - 82.7 89.3 - 78.3 90.7 -
NormSoft [73] 61.3 73.9 - 84.2 90.4 - 78.2 90.6 -
DiVA [32] 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6
DCML-MDW [74] 68.4 77.9 71.8 85.2 91.8 73.9 79.8 90.8 90.8
IB-DML [52] 70.3 80.3 74.0 88.1 93.3 74.8 81.4 91.3 92.6
MS+PLG [47] 69.6 ± 0.4 79.5 ± 0.2 70.7 ± 0.1 87.1 ± 0.2 92.3 ± 0.3 73.0 ± 0.2 79.0 ± 0.1 91.0 ± 0.1 90.0 ± 0.1
S2SD+PLG [47] 71.4 ± 0.3 81.1 ± 0.2 73.5 ± 0.3 90.2 ± 0.3 94.4 ± 0.2 72.4 ± 0.3 81.3 ± 0.2 92.3 ± 0.2 91.1 ± 0.2
ProcSim (ours) 70.1 (+0.5) 79.6 (+0.1) 69.5 (-1.2) 87.7 (+0.6) 92.4 (+0.1) 72.2 (-0.8) 80.3 (+1.3) 91.4 (+0.4) 89.8 (-0.2)

obtained results on clean data side-by-side with state-of-
the-art approaches. We present the methods with the same
backbone architecture and embedding dimensionality as
our current approach, as these are two of the main DML-
independent drivers for generalization [45]. ProcSim of-
fers comparable performance to state-of-the-art methods on
clean data, although we focus on noisy datasets. In partic-
ular, ProcSim slightly improves the recall obtained without
per-sample confidence, i.e., MS+PLG [47].

Note that Normalized Mutual Information (NMI)
slightly decreases when assigning confidence to samples.
However, NMI varies across implementations and is some-

times uninformative [35], so this metric has to be interpreted
with caution.

The best method for clean data is S2SD+PLG. S2SD
[45] applies feature distillation between the output embed-
dings and embeddings computed with the so-called tar-
get networks, which results in higher-dimensional vectors.
However, S2SD results in an objective expressed as a mean
of losses for each target network. The fact that the mean is
not over samples makes it incompatible with the presented
framework.

16

Table 9. Recall@1 (%) on the benchmark datasets corrupted with different types and probabilities of noise when Swin transformers [29]
are used as backbone model. Best results shown in bold. Inside the parentheses, we indicate the boost in performance of ProcSim.

NOISE TYPE→ NONE SEMANTIC UNIFORM

METHODS ↓ - 10% 20% 50% 10% 20% 30% 50%

CUB200 dataset [60]
MS [61] 87.8 84.7 81.8 77.2 83.7 79.7 72.1 67.6
ProcSim (ours) 88.4 (+0.6) 88.4 (+3.7) 88.5 (+6.7) 87.8 (+10.6) 88.1 (+4.4) 88.2 (+8.5) 87.1 (+15.0) 84.7 (+17.1)

CARS196 dataset [23]
MS [61] 92.0 88.9 85.0 71.5 88.9 83.3 78.1 46.7
ProcSim (ours) 90.5 (-1.5) 89.3 (+0.4) 88.3 (+3.3) 85.1 (+13.6) 89.6 (+0.7) 87.5 (+4.2) 84.1 (+6.0) 69.7 (+23.0)

SOP dataset [54]
MS [61] 84.3 83.5 82.6 77.7 83.4 82.3 81.3 78.3
ProcSim (ours) 84.2 (-0.1) 82.3 (-1.2) 82.3 (-0.3) 77.6 (-0.1) 83.0 (-0.4) 82.1 (-0.2) 81.1 (-0.2) 77.5 (-0.8)

E. Usage with state-of-the-art backbone
For a fair comparison, we performed all experiments us-

ing the standard ResNet-50 backbone [16]. Nonetheless,
when trying to get the best results, one can leverage more
powerful and expressive backbones using modern architec-
tures such as transformers [58]. Swin transformers [29] are
an example of these, and have been successfully applied to
the visual retrieval task [39].

Tab. 9 shows the performance of ProcSim with Swin
transformers [29] as the backbone model and the same hy-
perparameters used in the main paper for all the results with
the ResNet-50 [16] backbone (see details in Appendix A,
where we specify the values for each of the three benchmark
datasets). With no fine-tuning, ProcSim outperforms the
base MS loss under the presence of noise for the CUB200
[60] and the Cars196 [23] datasets. The difference in per-
formance is monotonously increasing with the noise level
and achieves an astounding increment of up to 23% Re-
call@1 for the Cars196 [23] dataset injected with 50% uni-
form noise.

Consistently with the results obtained in the paper, the
performance on the SOP is somehow more limited. In this
case, the base MS loss performs slightly better than Proc-
Sim, although by at most 1.3% of Recall@1. By selecting
ω = 0 and λ→∞, ProcSim becomes MS. We could there-
fore match the performance of the plain MS loss and po-
tentially obtain better results with some fine-tuning. How-
ever, we wanted to show the generalization capabilities of
our method tailored only to each dataset regardless of the
synthetic noise injected and the backbone.

F. Obtaining class hierarchies
Finding class hierarchies is posed as a graph traversal

problem and solved by depth-first search. Given natural
language class names, we use WordNet to search all their
possible meanings (with synsets) and semantic superclasses

(with hypernyms). We consider each synset as a graph
node and the hypernyms as oriented edges and keep explor-
ing the graph according to the depth-first search algorithm.
Among all possible paths in the graph resulting from differ-
ent meanings of the class name or its superclasses, we select
the one with a common hypernym across all dataset classes.
Once we find this path, we stop looking for more possible
synsets and hypernyms.

Note that class hierarchies are not used during training
when applying ProcSim. They are needed only for the se-
mantic noise model proposed in this paper, which aims at
showing the robustness capabilities of ProcSim on bench-
mark datasets corrupted with more realistic noise.

Below, we provide details to obtain the hierarchy of
classes for each dataset. We also show visualizations of
the obtained class hierarchies. In them, we suppressed the
nodes in the graph with a single child for better visualiza-
tion.

F.1. CUB200

The CUB200 [60] dataset provides natural language
class names consisting of bird types, and thus the common
hypernym is bird. We first preprocess the class names to
satisfy the expected input of WordNet [33]. Some classes
are not included in WordNet [33], in which case, we manu-
ally set the family of the species as a hypernym contained in
the word corpora. Fig. 7 depicts the CUB200 [60] hierarchy
found using the described procedure.

F.2. Cars196

The Cars196 dataset [23] contains classes whose com-
mon hypernym is car and have natural language names.
However, the class labels contain other information like car
type, brand, model, and year. Among all the class descrip-
tors, only the car type is usable in WordNet [33]. Some
brands may have different models of the same car type.
Some models can also have different versions released over

17

birdbird
hummingbird 067.Anna_Hummingbird070.Green_Violetear068.Ruby_throated_Hummingbird069.Rufous_Hummingbird

aq
ua

tic
_bi

rd

sea
bir

d

044.Frigatebird
auk auklet 005.Crested_Auklet006.Least_Auklet007.Parakeet_Auklet

008.Rhinoceros_Auklet
058.Pigeon_Guillemot

coasta
l_diving_bird

jaeger

071.Long_tailed_Jaeger

072.Pomarine_Jaeger

larid gull
059.California_Gull

060.Glaucous_winged_Gull

061.Heermann_Gull

064.Ring_billed_Gull

065.Slaty_backed_Gull

066.Western_Gull

062.Herrin
g_Gull

063.Ivory_Gull

084.Red_legged_Kittiw
ake

ter
n

141.Artic
_Te

rn

142.Blac
k_T

ern

14
3.C

asp
ian

_Te
rn

14
4.C

om
mon

_Te
rn

14
5.E

leg
an

t_T
ern

14
6.F

ors
ter

s_T
ern

14
7.L

ea
st_

Ter
n

08
6.P

ac
ific

_Lo
on

pe
lag

ic_
bir

dalb
atr

os
s

00
2.L

ay
sa

n_
Alb

atr
os

s

00
3.S

oo
ty_

Alb
atr

os
s

00
1.B

lac
k_

foo
ted

_A
lba

tro
ss

04
5.N

or
th

er
n_

Fu
lm

ar

pe
lec

an
ifo

rm
_s

ea
bir

d
co

rm
or

an
t

02
3.B

ra
nd

t_C
or

mor
an

t

02
5.P

ela
gic

_C
or

m
or

an
t

02
4.

Re
d_

fa
ce

d_
Co

rm
or

an
t

pe
lic

an

10
0.

Br
ow

n_
Pe

lic
an

10
1.

W
hit

e_
Pe

lic
an

gr
eb

e

05
1.

Ho
rn

ed
_G

re
be

05
3.

W
es

te
rn

_G
re

be

05
0.

Ea
re

d_
Gr

eb
e

05
2.

Pie
d_

bi
lle

d_
Gr

eb
e

10
6.

Ho
rn

ed
_P

uf
fin

du
ck

04
6.

Ga
dw

al
l

08
7.

M
al

la
rd

m
er

ga
ns

er
08

9.
Ho

od
ed

_M
er

ga
ns

er

09
0.

Re
d_

br
ea

st
ed

_M
er

ga
ns

er

go
at

su
ck

er
02

2.
Ch

uc
k_

wi
ll_

W
id

ow
10

5.
W

hi
p_

po
or

_W
ill

09
2.

Ni
gh

th
aw

k
ki

ng
fis

he
r

08
0.

Gr
ee

n_
Ki

ng
fis

he
r

08
1.

Pi
ed

_K
in

gf
ish

er
08

2.
Ri

ng
ed

_K
in

gf
ish

er
08

3.
W

hi
te

_b
re

as
te

d_
Ki

ng
fis

he
r

07
9.

Be
lte

d_
Ki

ng
fis

he
r

cu
ck

oo
03

2.
M

an
gr

ov
e_

Cu
ck

oo
03

3.
Ye

llo
w_

bi
lle

d_
Cu

ck
oo

00
4.

Gr
oo

ve
_b

ille
d_

An
i

03
1.

Bl
ac

k_
bi

lle
d_

Cu
ck

oo

11
0.

Ge
oc

oc
cy

x

passerine

oscine

01
8.

Sp
ot

te
d_

Ca
tb

ird

01
9.

Gr
ay

_C
at

bi
rd

co
rv

ine
_b

ird
cr

ow

03
0.

Fis
h_

Cr
ow

02
9.

Am
er

ica
n_

Cr
ow

jay

07
4.

Flo
rid

a_
Jay

07
5.G

re
en

_Ja
y

07
3.B

lue
_Ja

y

ra
ve

n

10
7.C

om
mon

_R
av

en

10
8.W

hit
e_

ne
ck

ed
_R

av
en

02
8.B

row
n_

Cr
ee

pe
r

finch

03
4.G

ray
_cr

ow
ne

d_
Ro

sy
_Fi

nc
h

bu
nti

ng

01
5.L

az
uli

_B
un

tin
g

01
6.P

ain
ted

_B
un

tin
g

01
4.I

nd
igo

_B
un

tin
g

01
7.C

ard
ina

l

gro
sbe

ak

05
4.B

lue
_G

ros
be

ak

05
7.R

ose
_br

eas
ted

_G
ros

bea
k

055.Even
ing_Gros

beak

056.Pin
e_Grosbeak

076.Dark_
eyed_Ju

nco

new_world_goldfinch0
47.America

n_Goldfinch

048.European_Goldfinch

new_world_sparrow

116.Chipping_Sparrow

119.Fie
ld_Sparrow

129.Song_Sparrow

131.Vesper_Sparrow

132.White_crowned_Sparrow

133.White_throated_Sparrow

035.Purple_Finch

towhee

021.Eastern_Towhee

148.Green_tailed_Towhee

091.Mockingbird

new_world_oriole

013.Bobolink

meadowlark
085.Horned_Lark

088.Western_Meadowlark

new_world_blackbird

009.Brewer_Blackbird

012.Yellow_headed_Blackbird

cowbird026.Bronzed_Cowbird
027.Shiny_Cowbird
010.Red_winged_Blackbird
011.Rusty_Blackbird 095.Baltimore_Oriole 097.Orchard_Oriole 198.Rock_Wren

nuthatch
093.Clark_Nutcracker 094.White_breasted_Nuthatch

old_world_flycatcher
037.Acadian_Flycatcher
038.Great_Crested_Flycatcher

039.Least_Flycatcher
040.Olive_sided_Flycatcher

041.Scissor_tailed_Flycatcher

042.Vermilion_Flycatcher

043.Yellow_bellied_Flycatcher

old_world_oriole
096.Hooded_Oriole

098.Scott_Oriole

104.American_Pipit

shrike

112.Great_Grey_Shrike

111.Loggerhead_Shrike

starling

134.Cape_Glossy_Starling

049.Boat_tailed_Grackle

swallow

136.Barn_Swallow

137.Cliff_Swallow

135.Bank_Swallow

138.Tree_Swallow
tanager

139.Scarlet_Tanager

140.Summer_Tanager

thrasher

150.Sage_Thrasher

149.Brown_Thrasher

vireo

151.Black_capped_Vireo

153.Philadelphia_Vireo

155.Warbling_Vireo

156.White_eyed_Vireo

157.Yellow_throated_Vireo

152.Blue_headed_Vireo

154.Red_eyed_Vireo

warbler

158.Bay_breasted_Warbler

159.Black_and_white_Warbler

160.Black_throated_Blue_W
arbler

161.Blue_winged_W
arbler

162.Canada_W
arbler

164.Cerulean_W
arbler

165.Chestnut_sided_W
arbler

166.Golden_winged_W
arbler

167.Hooded_W
arbler

168.Kentucky_W
arbler

184.Louisiana_W
aterthrush

169.M
agnolia_W

arbler
170.M

ourning_W
arbler

172.Nashville_W
arbler

183.Northern_W
aterthrush

173.Orange_crowned_W
arbler

174.Palm
_W

arbler
175.Pine_W

arbler
176.Prairie_W

arbler
177.Prothonotary_W

arbler
178.Swainson_W

arbler
179.Tennessee_W

arbler
180.W

ilson_W
arbler

181.W
orm

_eating_W
arbler

new_world_warbler
163.Cape_May_W

arbler

109.Am
erican_Redstart

171.Myrtle_W
arbler

020.Yellow_breasted_Chat

099.Ovenbird
182.Yellow_Warbler

200.Com
m

on_Yellowthroat

waxwing

185.Bohemian_Waxwing

186.Cedar_Waxwing

sparrow

113.Baird_Sparrow

114.Black_throated_Sparrow

115.Brewer_Sparrow

117.Clay_colored_Sparrow

120.Fox_Sparrow

121.Grasshopper_Sparrow

122.Harris_Sparrow

123.Henslow_Sparrow

124.Le_Conte_Sparrow

125.Lincoln_Sparrow

126.Nelson_Sharp_tailed_Sparrow

127.Savannah_Sparrow

128.Seaside_Sparrow

118.House_Sparrow

130.Tree_Sparrow

new_world_flycatcher
kingbird

077.Tropical_Kingbird

078.Gray_Kingbird

102.Western_Wood_Pewee

103.Sayornis

wren

193.Bewick_Wren

194.Cactus_Wren

195.Carolina_Wren

196.House_Wren

197.Marsh_Wren

199.Winter_Wren

woodpecker

187.American_Three_toed_Woodpecker

188.Pileated_Woodpecker

189.Red_bellied_Woodpecker

190.Red_cockaded_Woodpecker

191.Red_headed_Woodpecker
192.Downy_Woodpecker
036.Northern_Flicker

Figure 7. CUB200 [60] hierarchy.

several years. With this in mind, we first group the classes
by year, model, brand, and car type. Then, the car types are
fed to WordNet [33] to find the complete class hierarchy,
which we show in Fig. 8.

F.3. SOP

Unlike the other datasets, SOP [54] does not contain nat-
ural language class names. Instead, the class names con-
sist of numerical identifiers of the product. The only natu-
ral language description is in the form of categories. Since

training and testing partitions have multiple classes for each
category, we can inject semantic noise by only relying on
those.

18

carcar
cab

Cadillac Escalade EXT Crew Cab 2007
chevrolet_cab

Chevrolet Avalanche Crew Cab 2012Chevrolet Silverado 1500 Classic Extended Cab 2007
Chevrolet Silverado 1500 Extended Cab 2012
Chevrolet Silverado 1500 Hybrid Crew Cab 2012

Chevrolet Silverado 1500 Regular Cab 2012

Chevrolet Silverado 2500HD Regular Cab 2012

dodge_cab
Dodge Dakota Club Cab 2007

Dodge Dakota Crew Cab 2010

Dodge Ram Pickup 3500 Crew Cab 2010

Dodge Ram Pickup 3500 Quad Cab 2009

ford_cab f-150 regular Ford F-150 Regular Cab 2007

Ford F-150 Regular Cab 2012

Ford F-450 Super Duty Crew Cab 2012

Ford Ranger SuperCab 2011

GMC Canyon Extended Cab 2012

hummer_ca
b

HUMMER H2 SUT Crew Cab 2009

HUMMER H3T Crew Cab 2010

Acura Integra Type R 2001
co

nv
er

tib
le

asto
n-martin

_co
nvertib

le

v8 vantage Asto
n Martin

 V8 Vantage Convertib
le 2012

Asto
n Martin

 V8 Vantage Coupe 2012

vira
ge

Asto
n Martin

 Virage Convertib
le 2012

Asto
n Mart

in Virag
e C

oupe 2
012

au
di_

con
ver

tib
le

Audi
 RS 4

 Conv
ert

ible
 20

08

s5

Aud
i S

5 C
on

ver
tib

le 2
01

2

Aud
i S

5 C
ou

pe
 20

12

Be
ntl

ey
 Co

nti
ne

nta
l S

up
ers

po
rts

 Co
nv.

 Co
nv

ert
ibl

e 2
01

2

bm
w_co

nv
ert

ibl
e

1 s
eri

es

BM
W 1

Se
rie

s C
on

ve
rtib

le
20

12

BM
W 1

Se
rie

s C
ou

pe
 20

12

BM
W 6

Se
rie

s C
on

ve
rti

ble
 20

07

BM
W M

6 C
on

ve
rti

ble
 20

10

BM
W Z4

 Co
nv

er
tib

le
20

12

ve
yro

n 1
6.4

Bu
ga

tti
 Ve

yro
n 1

6.4
 C

on
ve

rti
ble

 20
09

Bu
ga

tti
 Ve

yro
n 1

6.4
 C

ou
pe

 20
09

ch
ev

ro
let

_c
on

ve
rti

ble

Ch
ev

ro
let

 C
am

ar
o C

on
ve

rti
ble

 20
12

Ch
ev

ro
let

 C
or

ve
tte

 C
on

ve
rti

ble
 2

01
2

ch
ry

sle
r_c

on
ve

rti
ble

Ch
ry

sle
r C

ro
ss

fir
e C

on
ve

rti
ble

 2
00

8

Ch
ry

sle
r S

eb
rin

g
Co

nv
er

tib
le

20
10

Ch
ry

sle
r P

T
Cr

ui
se

r C
on

ve
rti

bl
e

20
08

fe
rra

ri_
co

nv
er

tib
le

45
8

ita
lia

Fe
rra

ri
45

8
Ita

lia
 C

on
ve

rti
bl

e
20

12

Fe
rra

ri
45

8
Ita

lia
 C

ou
pe

 2
01

2

Fe
rra

ri
Ca

lif
or

ni
a

Co
nv

er
tib

le
 2

01
2

FIA
T

50
0

Co
nv

er
tib

le
 2

01
2

Fo
rd

 M
us

ta
ng

 C
on

ve
rti

bl
e

20
07

Ge
o

M
et

ro
 C

on
ve

rti
bl

e
19

93

M
ay

ba
ch

 L
an

da
ul

et
 C

on
ve

rti
bl

e
20

12

M
er

ce
de

s-B
en

z 3
00

-C
la

ss
 C

on
ve

rti
bl

e
19

93

M
IN

I C
oo

pe
r R

oa
ds

te
r C

on
ve

rti
bl

e
20

12

Ro
lls

-R
oy

ce
 P

ha
nt

om
 D

ro
ph

ea
d

Co
up

e
Co

nv
er

tib
le

 2
01

2

sm
ar

t f
or

tw
o

Co
nv

er
tib

le
 2

01
2

c8
Sp

yk
er

 C
8

Co
nv

er
tib

le
 2

00
9

Sp
yk

er
 C

8
Co

up
e

20
09

co
up

e

as
to

n-
m

ar
tin

_c
ou

pe
au

di
_c

ou
pe

Au
di

 A
5

Co
up

e
20

12
Au

di
 R

8
Co

up
e

20
12

Au
di

 T
T

RS
 C

ou
pe

 2
01

2
Au

di
 T

TS
 C

ou
pe

 2
01

2

co
nt

in
en

ta
l g

t B
en

tle
y

Co
nt

in
en

ta
l G

T
Co

up
e

20
07

Be
nt

le
y

Co
nt

in
en

ta
l G

T
Co

up
e

20
12

BM
W

 M
3

Co
up

e
20

12
bu

ga
tti

_c
ou

pe

ch
ev

ro
let

_c
ou

pe
Ch

ev
ro

let
 C

ob
alt

 S
S

20
10

Ch
ev

ro
let

 M
on

te
 C

ar
lo

Co
up

e
20

07

Fe
rra

ri
FF

 C
ou

pe
 2

01
2

Fo
rd

 G
T C

ou
pe

 2
00

6

ac
co

rd
Ho

nd
a A

cc
or

d
Co

up
e 2

01
2

Ho
nd

a A
cc

or
d S

ed
an

 20
12

Inf
ini

ti
G

Co
up

e I
PL

 20
12

Jag
ua

r X
K X

KR
 20

12

lam
bo

rgh
ini

_c
ou

pe

La
mbo

rg
hin

i A
ve

nt
ad

or
 Co

up
e 2

01
2

La
mbo

rgh
ini

 D
iab

lo
Co

up
e 2

00
1

La
mbo

rgh
ini

 Re
ve

nto
n C

ou
pe

 20
08

McL
are

n M
P4

-12
C C

ou
pe

 20
12

Merc
ed

es
-Be

nz
 SL

-Cl
as

s C
ou

pe
 20

09

Niss
an

 24
0S

X C
ou

pe
 19

98

Ply
mou

th
Neo

n C
ou

pe
 19

99

spy
ker

_co
up

e

hatchback

Acur
a Z

DX Hatc
hba

ck
20

12

Audi TT
 Hatc

hback
 2011

Eagle Ta
lon Hatch

back
1998

FIA
T 500 Abarth

 2012

hyundai_hatch
back

Hyundai Elantra Touring Hatch
back 2

012

Hyundai Veloster Hatch
back 2012

nissa
n_hatchback

Nissa
n Juke Hatchback 2012

Nissa
n Leaf Hatchback 2012

Scion xD Hatchback 2012

sx4

Suzuki SX4 Hatchback 2012

Suzuki SX4 Sedan 2012

volkswagen_hatchback
Volkswagen Beetle Hatchback 2012

golf

Volkswagen Golf Hatchback 1991

Volkswagen Golf Hatchback 2012

Volvo C30 Hatchback 2012

sedan

acura_sedan

Acura RL Sedan 2012

Acura TL Sedan 2012

Acura TL Type-S 2008

Acura TSX Sedan 2012

audi_sedan
100

Audi 100 Sedan 1994

Audi 100 Wagon 1994

s4
Audi S4 Sedan 2007
Audi S4 Sedan 2012
Audi S6 Sedan 2011
Audi V8 Sedan 1994 bentley_sedanBentley Arnage Sedan 2009 Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011

bmw_sedan3 seriesBMW 3 Series Sedan 2012
BMW 3 Series Wagon 2012
BMW ActiveHybrid 5 Sedan 2012

BMW M5 Sedan 2010

buick_sedan
Buick Regal GS 2012
Buick Verano Sedan 2012

Cadillac CTS-V Sedan 2012

chevrolet_sedan
Chevrolet Impala Sedan 2007

Chevrolet Malibu Sedan 2007

Chevrolet Malibu Hybrid Sedan 2010

Chevrolet Sonic Sedan 2012

Chrysler 300 SRT-8 2010

dodge_sedan

Dodge Charger Sedan 2012

Dodge Charger SRT-8 2009

Fisker Karma Sedan 2012

ford_sedan

Ford Fiesta Sedan 2012

Ford Focus Sedan 2007

honda_sedan

hyundai_sedan

Hyundai Accent Sedan 2012

Hyundai Azera Sedan 2012

Hyundai Elantra Sedan 2007

Hyundai Genesis Sedan 2012

Hyundai Sonata Sedan 2012

Hyundai Sonata Hybrid Sedan 2012

Lincoln Town Car Sedan 2011

mercedes-benz_sedan

Mercedes-Benz C-Class Sedan 2012

Mercedes-Benz E-Class Sedan 2012

Mercedes-Benz S-Class Sedan 2012

Mitsubishi Lancer Sedan 2012

Porsche Panamera Sedan 2012

rolls-royce_sedan

Rolls-Royce Ghost Sedan 2012

Rolls-Royce Phantom
 Sedan 2012

suzuki_sedan

Suzuki Aerio Sedan 2007

Suzuki Kizashi Sedan 2012

Tesla Model S Sedan 2012

toyota_sedan

Toyota Cam
ry Sedan 2012

Toyota Corolla Sedan 2012

Volvo 240 Sedan 1993

wagon

audi_wagon

bm
w_wagon

Daewoo Nubira W
agon 2002

dodge_wagon
caliber

Dodge Caliber W
agon 2007

Dodge Caliber W
agon 2012

Dodge M
agnum

 W
agon 2008

sport_utility

AM
 General Hum

m
er SUV 2000

bm
w_sport_utility

BM
W

 X3 SUV 2012
BM

W
 X5 SUV 2007

BM
W

 X6 SUV 2012
buick_sport_utility

Buick Enclave SUV 2012
Buick Rainier SUV 2007
Cadillac SRX SUV 2012

chevrolet_sport_utility
Chevrolet Tahoe Hybrid SUV 2012
Chevrolet TrailBlazer SS 2009
Chevrolet Traverse SUV 2012

Chrysler Aspen SUV 2009

dodge_sport_utility
durango

Dodge Durango SUV 2007

Dodge Durango SUV 2012

Dodge Journey SUV 2012

ford_sport_utility
Ford Edge SUV 2012

Ford Expedition EL SUV 2009

gm
c_sport_utility

GMC Acadia SUV 2012

GMC Terrain SUV 2012

GMC Yukon Hybrid SUV 2012

hyundai_sport_utility
Hyundai Santa Fe SUV 2012

Hyundai Tucson SUV 2012

Hyundai Veracruz SUV 2012

Infiniti QX56 SUV 2011

Isuzu Ascender SUV 2008

jeep_sport_utility

Jeep Compass SUV 2012

Jeep Grand Cherokee SUV 2012

Jeep Liberty SUV 2012

Jeep Patriot SUV 2012

Jeep Wrangler SUV 2012

land-rover_sport_utility

Land Rover LR2 SUV 2012

Land Rover Range Rover SUV 2012

Mazda Tribute SUV 2011

toyota_sport_utility

Toyota 4Runner SUV 2012

Toyota Sequoia SUV 2012

Volvo XC90 SUV 2007

sports_car
chevrolet_sports_car

Chevrolet Corvette Ron Fellows Edition Z06 2007

Chevrolet Corvette ZR1 2012

Dodge Challenger SRT8 2011

Lamborghini Gallardo LP 570-4 Superleggera 2012

van

chevrolet_van

Chevrolet Express Van 2007

Chevrolet Express Cargo Van 2007

Chevrolet HHR SS 2010

Dodge Sprinter Cargo Van 2009

Ford E-Series Wagon Van 2012

GMC Savana Van 2012

Mercedes-Benz Sprinter Van 2012

minivan

Chrysler Town and Country Minivan 2012

Dodge Caravan Minivan 1997

Ford Freestar Minivan 2007

odyssey Honda Odyssey Minivan 2007

Honda Odyssey Minivan 2012
Ram C/V Cargo Van Minivan 2012
Nissan NV Passenger Van 2012

Figure 8. Cars196 [23] hierarchy.

19

	. Introduction
	. Related work
	. Learning with noisy labels
	. Inter-class similarities
	. Non-uniform noise generation

	. Methodology
	. Preliminaries
	. Identifying noisy samples
	. Separating noisy and clean samples
	. Sample confidence
	. ProcSim
	. Semantically coherent noise generation

	. Experiments
	. Experimental details
	. Ablation study
	. Influence of the language model
	. Comparison to state-of-the-art
	. Effect of semantic noise

	. Conclusions
	. Additional implementation details
	. Data augmentation
	. Model
	. Optimization
	. Loss

	. Computation of confidence values
	. Constraining the confidence
	. Thresholding
	. Confidence score and training loss

	. CLIP image embeddings
	. Additional comparisons
	. Usage with state-of-the-art backbone
	. Obtaining class hierarchies
	. CUB200
	. Cars196
	. SOP

