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Abstract

The underwater domain is a challenging environment for robotics because widely used

electromagnetic devices must be substituted by acoustic equivalents, much slower and

noisier. In this paper a two‐dimensional pose simultaneous localization and map-

ping (SLAM) system for an Autonomous Underwater Vehicle based on inertial sensors

and a mechanical profiling sonar is presented. Two main systems are specially designed.

On the one hand, a dead reckoning system based on Lie Theory is presented to track

integrated pose uncertainty. On the other hand, a rigid scan matching technique

specialized for acoustic data is proposed, which allows one to estimate the uncertainty of

the matching result. Moreover, Bayesian–Gaussian mixtures models are introduced to the

scan matching problem and the registration problem is solved by an optimization in Lie

groups. The SLAM system is tested on real data and executed in real time with the robotic

application. Using this system, section maps at constant depth can be obtained from a

three‐dimensional underwater domain. The presented SLAM system constitutes the first

achievement towards an underwater Active SLAM application.
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1 | INTRODUCTION

Localization is a fundamental problem in achieving true autonomy for

robotic applications. In the underwater domain this problem is even

more challenging as global localization systems, like, Global Position-

ing System (GPS), or widely used communication systems, like, WiFi,

are not available due to water attenuation of electromagnetic waves.

Moreover, Visual Odometry is not viable due to the poor visibility

conditions in the water. Therefore, Autonomous Underwater Vehi-

cles (AUVs) often have to only relay on dead reckoning navigation

that drifts over time. Drifting is problematic when mapping using

scanners because when an explored region is revisited it appears in a

different position generating inconsistencies in the map. To prevent

maps from inconsistencies a simultaneous localization and mapping

(SLAM) problem, reviewed in Durrant‐Whyte and Bailey (2006) and

Bailey and Durrant‐Whyte (2000), must be solved fusing exterocep-

tive data from the surroundings of the robot with proprioceptive data

from the robot. In this way, previously observed regions can be

related maintaining the map consistency.

When solving an SLAM problem using a range sensor, over-

lapping scans are registered to get its correct alignment and find a

relative pose constraint between both viewpoints. Landmarks are

missing in this SLAM problem formulation, leading to a Pose SLAM

problem, presented in Lu and Milios (1997), which only estimates the
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robot trajectory. Therefore, the map is implicit in the trajectory and is

formed by the composition of all the scans, each one related to a

pose of the robot trajectory.

Many techniques to solve a Pose SLAM problem are available

nowadays. On the one hand, filtering techniques only estimate the

current robot pose, marginalizing all the old observations in a prior on the

current state. Many filters have been proposed to solve the SLAM

problem, such as the Extended Kalman Filter (EKF) applied in Solà (2014)

or the Rao‐Blackwellized Particle Filter, implemented in the well‐known

GMapping library presented in Grisetti et al. (2007). On the other hand,

smoothing techniques estimate the whole robot trajectory and all

observations are taken into account in a least‐squares problem. As

explained by Dellaert and Kaess (2017) smoothing techniques express the

SLAM problem by a factor graph, a bipartite graphF = ( , , ) with two

types of nodes and and edges . Variable nodes xi ∈ represent

estimated variables while factor nodesϕj ∈ represent observations on

the variables. Edges eij ∈ can only connect variable nodes with factor

nodes. This graphical representation of the SLAM problem allows one to

divide it into two layers: the SLAM Front‐End and the SLAM Back‐

End. The SLAM Front‐End is in charge of building the factor graph,

where each sensor measure is modeled by a factor ϕj and each

robot pose is modeled as a variable xj. This is a practical way to solve

sensor fusion, as every sensor is modeled by a particular type of

factor and every sensor measurement is an instance of its

corresponding factor. The SLAM Back‐End is in charge of solving

the defined problem, searching the Maximum a Posteriori (MAP)

estimate of the trajectory X given all the measurements Z . Using the

factor graph and its factorization properties, the MAP inference

problem can be defined as

∏ϕ= argmax ,
X j

j
MAP

which is equivalent to solve a nonlinear least‐squares problem.

Therefore, general‐purpose tools for least‐squares optimization can be

used as an SLAM Back‐End, like, the GTSAM library available in Dellaert

(n.d.), the SLAM++ solver from Ila et al. (2017), or the Ceres solver

available in Agarwal and Mierle (n.d.). As discussed by Dellaert (2021),

these solvers can be applied to other big problems in robotics, such as

Structure from Motion, Bundle Adjustment, Optimal Control, Calibra-

tion, Inertial Measurement Unit (IMU) Preintegration, or Path Planning.

In the underwater domain, the capabilities of perception

sensors that use electromagnetism as their working principle—

such as optical cameras or light detection and ranging (LIDAR)

sensors—are hugely reduced due to the water attenuation of

electromagnetic waves. In its place, acoustic devices are the

alternative. For example, in point cloud perception, the LIDAR

sensor, widely used in ground or aerial robotic applications, must be

substituted by a Forward‐Looking Sonar or a Profiling Sonar.

However, due to the high difference between the light velocity

and the sound velocity, acoustic sensors are slower and less

accurate in comparison with their electromagnetic counterpart.

Hence, they produce sparser point clouds with a large quantity of

outliers that make scan matching a more complicated problem.

Few SLAM problems using range sensors have been attempted in

the underwater domain. Mallios et al. (2009) proposed to register

scans obtained from a Mechanical Scanning Imaging Sonar by

applying the probabilistic Iterative Correspondence method and to

fuse the result with dead reckoning using an EKF. Johannsson et al.

(2010) solved an online Pose SLAM problem using the Normal

Distributions Transforms (NDTs) technique to register point clouds

extracted from acoustic images obtained using an Imaging Sonar.

Following this localization framework, Hover et al. (2012) proposed

an exploration method for ship hull inspection using an AUV. Keeping

in ship hull inspection, VanMiddlesworth et al. (2015) and Teixeira

et al. (2016) used a Multibeam Profiling Sonar to construct and

register overlapping submaps using the Iterative Closest Point (ICP)

method to solve a Pose SLAM problem. Finally, Vallicrosa and Ridao

(2018) used a mechanical profiling sonar to learn a Hilbert Map that

models occupancy and a Rao‐Blackwellized Particle Filter was used

to solve the Pose SLAM problem. However, none of these algorithms

combine a full robot trajectory estimation using a smoothing

technique properly defined using Lie groups to represent pose (see

Solà et al., 2020 for an introduction to this topic) with a scan

matching technique specialized for the key features of acoustic point

clouds and able to provide the uncertainty of the registration

according to the structure implicit in the scan.

In this paper we solve an online Pose SLAM problem using an

AUV equipped with a mechanical profiling sonar applying smoothing

techniques. The use of smoothing techniques allows one to close

loops in the factor graph when loop closure events are detected,

which means that we are able to detect when the AUV revisits some

previously mapped region and register the current views against the

previous ones to avoid map inconsistencies. As a mechanical profiling

sonar provides plain scans, only layer maps of the environment can

be generated and, in consequence, an SLAM problem in the Special

Euclidean SE(2) group is solved. Two main innovations are introduced

in the SLAM algorithm. First, we propose a new dead reckoning

system formulated using Lie Theory able to measure integrated pose

uncertainty in the Special Euclidean SE(n) group. This system is

specially designed for the underwater environment as it is based on

angular velocities, measured by gyroscopes, and linear velocities,

measured by a Doppler Velocity Log (DVL); in contrast to usual

IMU used in ground and aerial applications based on gyroscopes and

accelerometers. Second, we present a new scan matching technique

to register sonar scans, specially designed taking into account the

nature of acoustic data. Apart from providing a registration result,

this technique also returns an estimation of the uncertainty of the

scan matching result based on the structure implicit in the scan; a

feature not common in most registration techniques and necessary

when applying scan matching in an SLAM problem. Moreover,

considering the sparsity and the noisy nature of acoustic point clouds,

the proposed registration technique applies Gaussian mixtures

models (GMMs) to model and register scans. In this line, for the first

time we propose to use the Bayesian‐GMM algorithm, presented in

Attias (2000), to automatically learn the optimal number of clusters

needed to model a scan using a GMM, achieving a flexible tool to
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autonomously adapt to different environments with different

structures. Finally, the registration problem is also properly formu-

lated using Lie groups to represent pose. The remainder of this paper

is organized as follows. Section 2 presents a survey of the available

point cloud registration techniques and SLAM Back‐End solvers.

Section 3 presents the dead reckoning and the scan matching

systems used by the SLAM Front‐End, described in Section 4.

Section 5 presents the data sets used to test the SLAM system, while

the results of these experiments are shown in Section 6. Finally,

Section 7 presents the conclusions and suggests future work.

2 | RELATED WORK

In this section, the state‐of‐the‐art techniques related to the

proposed SLAM system are presented. First, point cloud registration

algorithms used to align overlapping scans obtained by a range sensor

are summarized. These techniques are the key components for the

proposed SLAM Front‐End. Second, the available open‐source

solvers that can be used for the SLAM Back‐End are presented.

2.1 | Point cloud perception

Two broad categories of point cloud registration algorithms exist:

those that do direct point‐to‐point matching, and those based on

probabilistic fields. The former category includes the widely used ICP

algorithm, presented in Besl and McKay (1992), and all its variants,

being Generalized ICP from Segal et al. (2009) the most popular. The

latter category refers to registration algorithms where point clouds

are represented by GMMs, a probabilistic model that gives a

continuous representation of a scan. Fitting point clouds into GMMs

has many advantages, such as data compression or sensor noise

modeling by the covariance matrix of each Gaussian component.

Mathematically, the field representation means that the scan is

modeled by a function p X( ) : →D ∞∈  —where D is the point

cloud dimension—which enables the use of gradient‐based methods

to solve the registration problem. Moreover, the analytic derivatives

of the model allow one to explicitly track the uncertainty of the

problem during the registration process.

The most popular field‐based scan matching technique is the

NDTs. The key characteristic of all NDT‐based algorithms is that the

GMM is just fitted by sampling the point cloud into a Cartesian grid.

NDT was first proposed by Biber and Strasser (2003) to align two‐

dimensional (2D) point clouds. Magnusson (2009) extended it to

three‐dimensional (3D) registration. This method, called Point to

Distribution (P2D), fits the first scan into a GMM and finds the robot

motion which provides the maximum likelihood (ML) solution for the

points of the second scan falling in the probabilistic field that models

the first scan. P2D was applied in many problems involving LIDAR

sensor. For example, Li et al. (2010) solved a localization problem

using an EKF inside a mine, Saarinen, Andreasson, and Stoyanov

(2013) solved a localization problem using a Particle Filter in an

industrial environment or Stoyanov et al. (2010) solved a path

planning problem based on an NDT map of a mine.

Stoyanov et al. (2012) proposed an improved method called

Distribution to Distribution (D2D). This method fits each scan into a

GMM and the 2 distance between both models is minimized to

solve the registration problem. This is a similar approach to ICP

because the cost function for each component is evaluated only with

the closest component of the other scan. However, D2D uses a

probabilistic cost function, instead of the Euclidean distance of the

ICP algorithm, and a reduced number of associations must be done

due to the compression of the point clouds given by the GMM

representation.

To use the NDT framework in mapping and path planning

applications, Saarinen, Andreasson, Stoyanov, Ala‐Luhtala et al.

(2013) proposed the Normal Distributions Transform Occupancy

Maps (NDT‐OM) to keep explicitly the information about the free

space, as NDT only models the shape of the contour of the free space

and does not label explicitly the free space. The NDT‐OM method

fuses the NDT representation into the OctoMap framework,

presented by Hornung et al. (2013). To do so, a global probabilistic

Octree is generated to store occupancy information but, instead of

only saving the probability of occupation for each voxel, occupied

voxels also store a component of a global GMM. This fusion allows

one to use a coarser grid than an OctoMap, because each Gaussian

component models the shape of the contour of the free space, and

also allows one to work in dynamic environments, thanks to the

probabilistic occupancy information of an OctoMap. NDT‐OM has

been used, for example, by Stoyanov et al. (2013) to solve a mapping

problem in an industrial environment with the presence of dynamic

objects, where, first, the scan is registered against the global map using

D2D algorithm and, then, the scan is added to the global NDT‐OM.

Moreover, Einhorn and Gross (2013) applied NDT‐OM to solve a Pose

SLAM problem in a domestic environment, where the loop closure

registration between submaps is attempted applying the D2D

algorithm solved using heuristic optimization methods to handle bad

initialization and local minima. At this point, it has to be noted that all

presented NDT methods are solved using the Newton Method, which

is not able to guarantee global minima and, consequently, find the true

alignment between two misaligned scans. To handle this, Bouraine

et al. (2021) proposed a Particle Swarm Optimization solver for the

D2D method (NDT–P2D–PSO), which is able to numerically guarantee

global minima and can be run in real time to solve an SLAM problem.

All NDT‐based methods described up to here have been derived

for and applied on LIDAR sensors and depth cameras. However,

other kinds of range sensors exists which return point cloud data. The

radar sensor is a well‐known example. It has a similar behavior to the

aforementioned sensors, however, it returns point cloud data with

additional noise but it allows one to work in low vision conditions,

such as dusty, smoky, or foggy environments. In Mielle et al. (2019)

D2D has been applied to radar sensor data and it was concluded that

it works well without any change to the registration algorithm.

Another kind of point cloud data sensor is the sonar sensor. Sonar

sensors, instead of relying on electromagnetic waves, they use
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mechanical waves as their working principle, which changes a lot of

their capabilities. First, its sampling rate is on the order of seconds, as

opposed to the order of hundreds of milliseconds of the aforemen-

tioned sensors, which means that two successive scans are further in

space and its overlap is lower. Also, scans are wrapped by robot

motion, which has to be compensated in some way. Second,

mechanical waves generate more noise and a bigger quantity of

outliers on the output point clouds. To handle this situation Burguera

et al. (2009) defined the filtered sNDT–P2D method, where a filter to

detect spurious points and a methodology to check the continuity

between GMM components are defined. The former is based on a

random sample consensus algorithm that checks whether the points

fit a Gaussian distribution and the latter is based on the analysis of

the eigenvalues and the eigenvectors of the covariance matrix of

each component.

As appointed in the beginning of this section, the key

characteristic of all NDT‐based algorithms is that GMM components

are derived just by sampling the point cloud into a Cartesian grid.

However, a rigid sampling of the point cloud into a grid is not the best

way to capture the implicit structure of a point cloud. To fix that,

unstructured methods could be used. Jiang et al. (2019) proposed to

use K‐means algorithm to fit a point cloud into a GMM. They use a

fixed number of components K—depending on the number of points

in the scan—and, instead of minimizing the 2 distance like in the

D2D algorithm, they minimize the Kullback–Leibler (KL) divergence

between the GMMs that represent the two registering scans. This

technique is known as the Symmetrical Kullback–Leibler Divergence

Distribution to Distribution (SKLD‐D2D). However, K‐means algo-

rithm is a heuristic method that does not solve the clustering problem

based on probability theory. To improve that, one can use a

ML estimator to fit a GMM of fixed K components into a point

cloud applying the Expectation‐Maximization (EM) algorithm, pro-

posed by Dempster et al. (1977). Tabib et al. (2018) proposed to use

the EM algorithm to fit a GMM to each scan. Also, a registration

method which improves the D2D algorithm is proposed: converting

anisotropic covariance matrices into isoplanar matrices—to improve

the convexity of the cost function—and using a more complex

objective function—avoiding simplifications on the 2 distance for

the Gaussian. To determine the number of components K for the

model that best captures the intrinsic structure of the scan, Eckart

et al. (2016) proposed a hierarchical EM algorithm, called Expectation

Sparsification, which starts with a low number of K0 components and,

then, the data are soft partitioned into more components following

an Octree structure until the likelihood of the model does not

improve or a maximum number of levels is reached. Using this

framework, in Eckart (2017) REM‐Seg, MLMD and MDME methods

are proposed to solve the registration problem using the EM

algorithm to assign points or components of one scan to points or

components of another scan, depending on the specific method.

Our registration proposal follows this line of development using

the EM algorithm to fit a GMM into a point cloud, but giving a

Bayesian treatment to the model parameters reaching a MAP

estimator, as it was proposed in Attias (2000). The most interesting

implication of this improvement is that now the fitting process allows

one to also learn the optimal number of components K for the GMM

that best models the structure of the scan and its measurement noise.

In this way, the number of K components will be adjusted optimally

for each point cloud. To do so, Variational Inference is needed to be

able to use the EM algorithm to fit a GMM with priors on its

parameters. Then, a gradient‐based method is used to solve the

registration problem using cost functions from NDT‐based algorithms

reviewed for general GMM.

The proposed method shares structure with the ICP algorithm, as

both are based on the EM algorithm. As it is observed in Jiang and

Vemuri (2011), in the E‐step of the ICP algorithm, correspondences

point‐to‐point are established and, in the M‐step, the Euclidean

distance is minimized—a collapse of the KL divergence for Gaussian

mixtures where both mixtures shares the same spherical covariances

in all components. In our approach, the EM algorithm is also used but,

instead of using it to solve the registration, it is used to cluster the

point cloud and fit a GMM into the scan. Then, the registration is

solved by means of gradient‐based methods thanks to the continuous

representation given by the fitted model.

2.2 | SLAM back‐end solvers

An SLAM problem modeled by a nonlinear factor graph can be

numerically solved if it is, first, linearized and, then, solved applying

least‐squares optimization by means of the Gauss–Newton Method

(see Grisetti et al., 2020 for a further explanation). Many general‐

purpose solvers implemented in open‐source libraries have been

used in the graph SLAM community, such as g2o from Kümmerle

et al. (2011), Ceres available in Agarwal and Mierle (n.d.), SAM

from Dellaert and Kaess (2006), iSAM2 from Kaess et al. (2012) and

SLAM++ from Ila et al. (2017). However, some differences exist

between them, which allows us to classify them into two broad

categories: batch solvers and incremental solvers. Batch solvers solve

the problem from scratch every time the solver is called, making them

useful in offline applications. In contrast, incremental solvers reuse

the solution from the last solver call and only recalculate parts of the

solution affected by the new factors added to the factor graph. This

preservation of information allows one to improve the computational

efficiency of the algorithms, making this type of solvers suitable for

online applications where measurements arrive as a temporal

sequence and intermediate solutions are needed.

Many batch solvers are available. SAM solver, presented in

Dellaert and Kaess (2006) as part of the GTSAM library available in

Dellaert (n.d.), applies the Levenberg–Marquard (LM) method and

uses QR decomposition to perform matrix inversion. To deal with the

problem sparsity, it uses the COLAMD algorithm to get a favorable

factorizing order to favor sparsity in the factorized matrix R. On the

contrary, g2o solver, presented in Kümmerle et al. (2011), also

applies the LM method but uses Cholesky factorization to perform

matrix inversion. g2o solver was the first solver to consider Lie

Theory (see Solà et al., 2020) to treat rotation correctly from an
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analytical point of view in an on‐manifold optimization framework,

since orientation belongs to a non‐Euclidean space. Finally, Ceres

solver, available in Agarwal and Mierle (n.d), is a general framework to

perform nonlinear batch optimization. It takes advantages of vector

operations in Central Processing Units (CPUs) and its most relevant

feature is the efficient use of Automatic Differentiation, which

consists of the algorithmic computation of derivatives.

The most popular incremental solver is iSAM2, presented by

Kaess et al. (2012) and included in the GTSAM library available in

Dellaert (n.d.). This solver is based on an incremental QR decomposi-

tion and uses a Bayes Tree to encode the structure of the matrix R to

detect the affectation of the newly added factors into the last

factorization. Thus, only the affected parts of R are recovered. In

iSAM2 the factorization algorithm is done by graph manipulation on

the graphical model of the problem and the relinearization and the

variable ordering are performed incrementally as needed. To choose a

favorable variable ordering for the incremental factorization, Con-

strained COLAMD algorithm is used to maintain at the end of the

list the newest nodes as they are the most sensitive to be affected by

the new factors. To maintain a good linearization of the problem, the

nodes for which its estimate diverges from the current linearization are

incrementally relinearized. SLAM++, presented by Ila et al. (2017), is

another incremental solver. Contrary to iSAM2, SLAM++ uses an

incremental Cholesky factorization and it avoids matrix‐graph conver-

sions to perform the factorization. In SLAM++ also the variable

ordering of the affected parts of R by an update is computed

incrementally to favor factorization. A key feature of this solver is its

module for efficient marginalization of the solution uncertainty for an

isolated set of nodes. However, new versions of iSAM2 also

incorporate this capability.

In this paper, a Pose SLAM problem is solved online and,

consequently, an incremental solver is needed. We chose iSAM2 as

the SLAM Back‐End because the explicit graphical representation of

the problem seems interesting in the future when solving an active

SLAM problem and updates on an occupancy map must be done due

to SLAM updates. In addition, GTSAM library has a larger active

community which simplifies the implementation.

3 | AUV NAVIGATION AND PERCEPTION
SYSTEMS

We concretize the proposed SLAM system for use on the Sparus II

AUV, presented by Carreras et al. (2018), a torpedo‐like shape

vehicle. It is a nonholonomic vehicle with three degrees of freedom:

surge, heave, and yaw. When it is equipped with a mechanical

profiling sonar, the depth is fixed and the AUV follows a plain motion

with a minimum change in depth. To navigate the robot uses an

IMU—from Analog Devices—and a DVL—from Teledyne RDI—

pointed at the seabed. The robot has a PC104 embedded computer,

which runs an Ubuntu Linux distribution with the Robotic Operation

System (ROS) open framework, that manages all systems. A partially

open‐source control architecture called COLA2, presented by

Palomeras et al. (2012) and currently distributed by IQUA Robotics

S.L. (see Iqua Robotics SL, n.d.), manages all equipment and systems of

the vehicle and allows the integration of new software components.

In the following subsections we describe the software compo-

nents that we implemented to convert sensor measurements to

inputs to the Pose SLAM system. Figure 1 shows how these systems

are connected and which data are exchanged.

3.1 | Probabilistic dead reckoning system

To integrate the inertial data of the AUV proprioceptive sensors, a

probabilistic dead reckoning system is built to get the robot pose

expectation and its related uncertainty. As the underwater domain is

a GPS‐denied environment and Ultra‐Short Baseline (USBL) systems

are not considered, no absolute sensors are available and no updates

to a pose filter can be performed. Therefore, only covariance

propagation on sensed velocities can be computed, which implies

that robot pose uncertainty can only grow in time. This is equivalent

to only performing prediction steps in an EKF. To build this system,

some software components available on COLA2 architecture are

used. On the one hand, COLA2 incorporates a filter which

compensates IMU's gyroscopes biases using roll and pitch measures

F IGURE 1 Software components that build the Pose SLAM system Front‐End. On the left AUV sensors are listed and on the right the factor
graph encoding the SLAM problem is shown. AUV, Autonomous Underwater Vehicle; DVL, Doppler Velocity Log; SLAM, simultaneous
localization and mapping.
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obtained from IMU's accelerometers and yaw measures obtained

from IMU's magnetometer, previously corrected from soft and hard

iron. On the other hand, COLA2 implements an EKF which filters

DVL measures and returns filtered linear velocities in the robot

frame. However, as the IMU works at a higher frequency than the

DVL, the dead reckoning system is divided into two components to

avoid losing information. As shown in Figure 2, first, a faster system—

shown in the left block of the figure—is in charge of performing the

integration of the angular velocities ω measured by IMU's gyroscopes

to get robot orientation increment RΔ between DVL readings. Then, a

slower component—shown in the right block of the figure—fuses the

integrated orientation increment θΔ between two DVL readings with

the linear velocities v measured by the DVL and integrates them

jointly to get the AUV pose T given an initial condition T0. As it can be

seen, linear accelerations from IMU's accelerometers are not

integrated twice to get the robot position due to the noisy nature

of this sensor.

To build the orientation integrator, unbiased angular velocities

ω ω ω ω= ( , , )x y z
T provided by COLA2 architecture are integrated

according to the IMU sampling time τimu. Following Lie Theory (see

Solà et al., 2020), orientation belongs to the Special Orthogonal SO(3)

group. Therefore, covariance propagation in this group follows

R R ω τ R ω τ

P F P F F P F

= Exp( ),

= + ,

i i i i i

θ x θ x
T

u u
T

+1 imu imu

imui i i i i i+1

⊕ ≜
(1)

where

F ω τ

F J ω τ

= = Ad Exp( ) ,

= = ( ).

x
R

R ω τ i
T

u
R

ω i

∂

∂ Exp( )
−1

imu

∂

∂ r imu

i
i

i i imu

i
i

i

+1

+1

≜

Ri is a 3D rotation matrix which represents robot orientation, Pθi
is a covariance matrix expressing the uncertainty of the Rodrigues

parameters θi related to the rotation matrix Ri and Pimu is the angular

velocity covariance matrix. θ θ θ θ= ( , , )T1 2 3 parameterizes the tangent

space of the SO(3) group and θExp( ) and Ad θExp( ) are, respectively, the

exponential map and the adjoint matrix of the group defined as

θ I
θ

θ
θ

θ

θ
θExp( ) = Ad = +

sin( )
[ ] +

1 − cos( )
[ ] ,θExp( ) 3×3 × 2 ×

2∥ ∥

∥ ∥

∥ ∥

∥ ∥
(2)

where













θ θ θ θ

θ

θ θ

θ θ

θ θ

= + + ,

[ ] =

0 −

0 −

− 0

.

2
1
2

2
2

3
2

×

3 2

3 1

2 1

∥ ∥

J θ( )r is the right Jacobian of the SO(3) group defined in Appendix

B of Solà et al. (2020).

When the pose integrator receives a DVL measurement, the

orientation integrator is reset to the identity element of the SO(3)

group R IΔ =0 3×3. Then, the received angular velocities ωi—with

i N= 0, …, —are integrated till a new DVL reading is available. At

this point, the orientation state RΔ N+1—which quantifies the

orientation increment between two DVL readings—is projected to

the tangent space to get the rotation increment using Rodrigues

parameters

θ RΔ = Log(Δ ).L
N+1 (3)

RLog( ) is the logarithm map of the SO(3) group

F IGURE 2 Probabilistic dead reckoning system combining inertial measurements from IMUs gyroscopes and DVL working at different rates.
Left part is in charge of integrating angular velocities ω giving orientation increments ΔΘ represented at the tangent space of the SO(3) group.
Right part combines orientation increments with linear velocities v returning AUV pose increments TΔ represented on the SE(3) group.
AUV, Autonomous Underwater Vehicle; DVL, Doppler Velocity Log; IMU, Special Orthogonal; SE, Special Euclidean; SO, Special Orthogonal.
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R
θ

θ
R RLog( ) =

2 sin
( − )T V

∥ ∥

∥ ∥
(4)

with







θ

R
= cos

trace( ) − 1

2
−1∥ ∥

and the vee operator ()V is the inverse of the hat operator []×. The

rotation increment θΔ L and its corresponding uncertainty PθN+1 are

defined in the local frame where the last integration was performed.

However, the DVL reading vk and its related uncertainty are defined

in the frame where the orientation integration started (or the frame

of xk) which corresponds with the Lie algebra, as orientation

integration started at the identity of the group. To map the

orientation increment and its corresponding uncertainty between

these two frames, the adjoint matrix Ad θExp( ) of the SO(3) group is

used (see Solà et al., 2020):

θ θ

P P

Δ = Ad Δ ,

= Ad Ad ,

G
θ

L

θ θ θ θ
T

Exp(Δ )

Δ Exp(Δ ) Exp(Δ )

L

G L N L+1

(5)

where Ad θExp( ) is the adjoint matrix defined in Equation (2). However,

assuming some properties of the SO(3) group

θ R θ R θ R RRR R

θ

Exp(Ad Δ ) = Exp( Δ ) = Exp(Δ ) = =

= Exp(Δ ),

θ
L L L T T

L

Exp(Δ )L

which implies that for this Lie Group θ θΔ = ΔG L and no map is

needed.

Once we are sure that DVL measurements and gyroscopes

integrations are in the same frame, pose can be integrated. To do it,

filtered linear velocities v u v w= ( , , )T provided by COLA2 architecture

and orientation increments θ θ θ θΔ = (Δ , Δ , Δ )G T
1 2 3 are fused by

covariance propagation in the Special Euclidean SE(3) according to

the DVL sampling time τdvl:

T T u T u

P F P F F P F

= Exp( ),

= + ,

k k k k k

η x η x
T

u u u
T

+1

k k k k k k k+1

⊕ ≜
(6)

where











( )u v τ θ

P
P

P

F

F J u

= , Δ ,

=
0

0
,

= = Ad ,

= = ( ).

k k k
G

T

u
θ

x
T

T u

u
T

u k

dvl

dvl 3×3

3×3 Δ

∂

∂ Exp( )
−1

∂

∂ r

k G

k
k

k k

k
k

k

+1

+1

Tk is a four‐dimensional homogeneous transformation matrix that

represents robot pose, Pηk is a covariance matrix expressing the

uncertainty of the pose parameters ηi related to the transformation

matrix T P,k dvl is the linear velocity covariance matrix obtained from

COLA2 velocity EKF and P θΔ G is the orientation covariance matrix

defined in Equation (5). u η ρ ρ ρ θ θ θ= ( , , , , , )k 1 2 3 1 2 3≜ parameterizes

the tangent space of the SE(3) group and ηExp( ) and Ad ηExp( ) are,

respectively, the exponential map and the adjoint matrix of the group

defined as

















η
θ J θ ρ

θ J θ ρ θ

θ

Exp( ) =
Exp( ) ( )

0 1
,

Ad =
Exp( ) [ ( ) ] Exp( )

0 Exp( )
,

T

η

T

r

Exp( )
r ×

(7)

where θExp( ) and J θ( )r are, respectively, the exponential map and the

right Jacobian of the SO(3) group defined in Equation (2). J η( )r is the

right Jacobian of the SE(3) group defined in Appendix D of Solà et al.

(2020). As it is seen, the complete SE(3) group is considered.

However, as pose increments uk are small, the approximation

“rotation then translation” of the group could be considered to save

computational resources.

The implementation of this dead reckoning system is done in an

ROS node. To evaluate the exponential maps, logarithm maps, adjoint

matrices, and Jacobians of each group we use Manif library

available in Deray and Solà (n.d.).

3.2 | Sonar scan building system

The AUV is equipped with a Super SeaKing Profiler (see “Tritech

International Ltd., Super SeaKing Profiler”, n.d.)—a mechanical

profiling sonar fromTritech, Westhill, Scotland—to perform the robot

surroundings perception task. It is assembled on the AUV with its

Field of View (FoV) parallel to the robot plane of motion and pointing

in the longitudinal direction. A profiler sonar is formed by a single

beam with a narrow vertical aperture angle (around 1°), which

contrasts with the bigger vertical aperture of the Forward‐Looking

Sonar. The beam is mechanically actuated and rotates on a plane. It is

composed of an array of bins that encode the distance from the

transceiver and the received sound intensity. Taking the bin with the

higher intensity per beam in a complete turn, an acoustic point cloud

can be built.

As mechanical waves are taken as the working principle of

sonar sensors, they are very slow to take a complete scan in

comparison to LIDAR sensors. Sound speed in the water is

around 1.52 × 103 m/s, compared with the 2.25 × 108 m/s of light.

This implies that the Profiling Sonar takes some seconds to get a

complete scan. As the AUV is in continuous motion, the AUV

navigation data obtained from the dead reckoning system must

be fused with each sonar beam to prevent the scan from warping.

However, a dead reckoning system always drifts over time and

sonar perception is proposed to mitigate it. To avoid this

contradiction the following hypothesis is taken: the AUV drift is

imperceptible in the scan scale, however, drift appears in the

robot trajectory scale. Moreover, acoustic devices, by nature, are

more noisy compared with the electromagnetic ones. This implies

that sonar sensors return a larger quantity of noise and outlier

detections that must be properly treated.
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To fuse sonar detections with robot motion, the robot pose Tk
W

given by the dead reckoning system is stored for each beam. When

the scan is finished, all points are projected to the robot pose Tk
W

ref

where the last beam is received applying












p T T T

d α

d α
=

cos

sin
,i

k
k

W
k

W
S

R i
S S

i

i
S S

i

−1ref
ref

(8)

where ( )d α,i
S

i
S is a polar detection measured in the sonar frame, pi

kref

is the Cartesian position of the detection in the built scan and TS
R is

the pose of the Profiling Sonar frame in the robot frame. Following

this formulation, every scan is identified at the robot pose where it

ends Tk
W

ref
.

3.3 | Scan matching system

Once scans are formed by the scan building system, the next step is

to register overlapping scans—not necessarily consecutive—to get

pose constraints through the robot trajectory. In this section, we

present a new fields‐based technique that takes as reference NDT

methods but goes deep into the language of GMMs. Using a field

representation of the scan, it is possible to model the sensor noise

and reject outlier detections making the registration algorithm robust.

This is very important in the underwater domain, as acoustic data are

sparse and very noisy. Moreover, a method to evaluate the

registration uncertainty is given, which is not common in most scan

matching techniques.

In the following subsections the proposed scan matching

algorithm is described. For the purpose of clarity, it is split into

components detailed in the following subsections.

3.3.1 | Gaussian mixtures Front‐End

The objective of the Gaussian mixtures Front‐End is to fit a GMM to

a given point cloud, converting discrete observations into a

continuous representation. A Gaussian mixture distribution can be

written as a linear superposition of Gaussians in the form

 ∑ ∑p x π x μ π( Φ) = ( , Σ ) with = 1,
K

k k k

K

k
(9)

where the model parameters π μΦ = ( , , Σ )k k k are, respectively, the

weight of each component and the mean and covariance of each

Gaussian distribution. To fit a GMM into a data set x x{ , …, }n1 of N

observations, we need to define a latent variable zi for each

observation xi which assigns each observation xi to a cluster k .

Thus, zi is a K‐dimensional binary random variable having a

1‐of‐K representation where z z{0, 1}, ∑ = 1i k
K

i k, ,∈ and its density is

given by

 ∏p z π( Φ) = .
K

k
zk (10)

This theoretical framework can be represented by the graphical

model of Figure 3a. Following this model, the joint distribution of x

and z is given by

   


∏ ∏

∏∏

p x z p x z p z x μ π

π x μ

( , Φ) = ( ,Φ) ( Φ) = ( , Σ )

= ( , Σ )

K

k k
z

K

k
z

N K

k
z

k k
z

k k

nk nk

(11)

and the marginal distribution over the observed data set is obtained

by summing the joint distribution over all possible states of z, which

gives the distribution defined in Equation (9).

As it was discussed in Section 2.1, NDT methods from Biber and

Strasser (2003) and Stoyanov et al. (2012) fit a GMM into a point

cloud using a Cartesian grid. For each cell with a minimum number of

points assigned, a GMM component is fit using the ML estimator for

the Gaussian. This is a simple method to determine the latent

variables of the model because the shape of each cluster is defined a

priori by the mesh and points are only assigned to the cell where they

fall. Therefore, this method does not take into account the implicit

structure in the scan coming from the morphology of the scanned

surfaces when fitting the model. This is exemplified in Figure 4 left,

(a) (b)

F IGURE 3 Graphical models. (a) GMM for a set of N data points xn with corresponding latent variables zn. (b) Bayesian‐GMM that sets prior
distributions to each model parameter Φ. GMM, Gaussian mixtures model. [Color figure can be viewed at wileyonlinelibrary.com]
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where two GMMs are fitted by applying the NDT Front‐End on two

synthetic scans from a corner and a corridor. As it can be seen, where

the mesh does not agree with the walls direction, the GMM does not

model well the scan. These phenomena could be amplified in natural

environments where rocks form irregular surfaces.

More advanced methods make use of the K‐means algorithm

(Jiang et al., 2019) or the EM algorithm for Gaussian mixtures (Tabib

et al., 2018) to fit a GMM to a given scan taking into account its

intrinsic structure. K‐means algorithm, presented in Lloyd (1982), is

a heuristic solution to the ML estimator for the probabilistic model

shown in Figure 3 left; whereas the EM algorithm for a GMM,

presented in Dempster et al. (1977), is its optimal solution. However,

no analytical solution for this estimator is available due to the

summation over the latent variables




















∏ ∏ ∑

∑ ∑

p x p x z

π x μ

Φ* = argmin ln ( Φ) = argmin ln ( , Φ)

= argmin ln ( , Σ )

N N Z

N K

k k k

Φ Φ

Φ

(12)

and an EM procedure is needed. Conceptually, these algorithms differ in

the assignations done by the latent variables. While K‐means algorithm

makes hard assignations of each observation to a single cluster, EM

algorithm sets a posterior distribution to each latent variable once the

observation is done, called responsibility, which allows one to do soft

assignations of each observation to all clusters. Nevertheless, both

algorithms share that the number of clusters K is a predefined parameter

that is not learned during the fitting process. Moreover, both algorithms

try to fill all components with data, which can drive the estimation

process to a singularity when a component has only one assignation,

normally an outlier. In Figure 4 it is shown that using the EM algorithm,

GMM components explain better the walls than applying the NDT Front‐

End. However, using this algorithm models of constant size are fitted,

opposed to the NDT Front‐End where a fixed cell size is set and the

model size depends on the number of filled cells.

To heuristically learn the K parameter to avoid unnecessary

components that could drive to a singularity, in Eckart et al. (2016)

a hierarchical EM method is proposed to soft partition the initial clusters

K0 until no improvement in the model likelihood is reached. However, the

Bayesian‐GMM, proposed by Attias (2000), is the optimal solution to this

problem and it is proposed as the Gaussian mixtures Front‐End in this

paper. As appointed before, the EM algorithm for a GMM is based on an

ML estimator. In contrast, a Bayesian‐GMM sets prior distributions to the

GMM parameters Φ according to the graphical model in Figure 3b and,

therefore, the fitting process is based on a MAP estimator. To favor

analytical treatment of the joint distribution, conjugate priors are taken.

As weights πk are priors for a multinomial distribution, a Dirichlet

distribution is taken. As means μk and covariances Σk are priors for a

normal distribution, a Gaussian–Whishart distribution is set. Taking into

account this, the joint distribution for the Bayesian‐GMM is

 p x z π μ p x z μ p z π p π p μ( , , , , Λ) = ( , , Λ ) ( ) ( ) ( , Λ),−1 (13)

where Λ = Σk k
−1 is called the information matrix, p x z μ( , , Λ )−1 and

p z π( ) are given in Equation (11) and


 ( )

p π ir π α

p μ μ m β W ν

( ) ~ ( ),

( , Λ ) ~ , ( Λ ) (Λ , ).

k k

k k k k k

0

0 0
−1

0 0

k

k k k k

As it can be seen the parameters for the new probabilistic model

are α m β W νΦ = ( , , , , )0 0 0 0 0k k k k k .

As in the previous model, the marginal distribution over the

observations is not analytically treatable due to the summation over

F IGURE 4 Comparison of the three Gaussian mixtures Front‐Ends applied on two synthetic scans (up, corner; down, corridor). (Left) NDT
using square cells of 4m and a minimum of four points to set a component. (Center) EM algorithm used to learn a GMM of K components. (Right)
Bayesian‐GMM learned using K components. EM, Expectation Maximization; GMM, Gaussian mixtures model; NDT, Normal Distributions
Transform. [Color figure can be viewed at wileyonlinelibrary.com]
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the latent variables. Thus, the MAP estimator must be solved

iteratively applying the EM algorithm. However, the joint distribution

p x z( , Φ) is also not analytically treatable and the following factoriza-

tion must be imposed:

q z π μ q z q π μ( , , , Λ) = ( ) ( , , Λ) (14)

to solve the problem by means of Variational Inference. Following

the algorithm proposed in Attias (2000), the model parametersΦ can

be found iteratively; first, evaluating the responsibility of each

data point into each model component and, then, solving the

MAP estimator p xΦ* = argmin ln∏ ( Φ)
N

Φ

imposing the factorization

from Equation (14).

Thanks to modeling the component weights πk with a Dirichlet

distribution, the components that provide an insufficient contribution to

explaining the data set have their weights driven to zero without

generating any singularity to the optimization process. The algorithm

starts setting the mean of allK0 components to the point cloud mean and

the weights at
K

1

0
. Then, the algorithm starts the clustering process by

moving the means away from the point cloud mean and discards useless

components by setting its weight to a small number close to zero.

Therefore, this approach allows one to infer the optimal number of

components K to model the data set, given an upper bound K0 for this

parameter. These properties are shown in Figure 4 right where two

Bayesian‐GMMs of two components are learned, reflecting the

morphology of a corner and a corridor in the simplest way. Both models

have been initialized with eight components and six of them have been

removed by the fitting process, contrasting to the EM algorithm (Figure 4

center) that fills all components. Using the EM algorithm, although the

scan structure is captured, redundant components are set splitting the

walls in an excessive number of components and returning a model with

unnecessary complexity. To initialize the Bayesian‐GMM algorithm, we

propose to first run K‐means algorithm with the upper bound K0 and a

random initialization. Then, the result is used to run the Variational

Inference algorithm for Gaussian mixtures to refine the parametersΦ and

get the optimal K .

The use of a Bayesian‐GMM Front‐End supposes to increase the

computational complexity of the fitting process. However, the NDT

and EM Front‐Ends have been conceived for applications with LIDAR

sensors or depth cameras, which produce denser point clouds at a

faster rate than acoustic sensors. Taking advantage of the sparsity of

an acoustic point cloud and the slower velocity of mechanical waves,

experiments show that Bayesian‐GMMs can be learned in real time.

Also, the advanced theoretical complexity of this approach helps

better model the morphology of the robot surroundings using noisier

data with less information content.

3.3.2 | Registration policies for the Gaussian
mixtures formulation

The registration problem solves the robot displacement between two

overlapping scans taken by a range sensor mounted on a robot. The

oldest scan, called the fixed scan , is taken as the reference and the

current scan, called the moving scan , is moved to solve the

registration by optimizing some policy. Thanks to the field represen-

tation of the scan, the registration problem can be formulated as an

optimization problem and solved by applying gradient‐based meth-

ods. The optimization variableΩ is the pose increment between both

viewpoints defined by a rotation matrix R and a translation vector t.

The problem restrictions are those related to pose given by the Lie

Theory (see Solà et al., 2020). In this section, two cost functions

applied to NDT techniques are reviewed for a purely Gaussian

mixtures formulation.

Given a fixed scan represented by a GMM p x( Φ ) and a

moving scan given in point cloud form q q= { , …, }n1 whose

relative displacement is defined by a pose constraint t RΩ = ( , ); the

P2D method presented by Biber and Strasser (2003) finds the ML

solution of transformed by Ω into p x( Φ ):

 


∏

∏∑

p p x Rq t

π x Rq t μ

( Φ , Ω) = ( = + Φ )

= ( = + , Σ ).

d

K

k d k k

(15)

To solve the ML problem applying gradient‐based methods, the

log‐likelihood is minimized and, as it was proposed in Magnusson

(2009), to favor the analytic treatment of derivatives, the logarithm of

the Gaussian mixtures is approximated by another GMM

 



∑

∑∑

p p x Rq t

π x Rq t μ

Ω* = argmin ln ( Φ , Ω) = argmin ln ( = + Φ )

~ argmin − ( = + , Σ ).

d

K

k d k k

Ω Ω

Ω

(16)

Using the NDT technique, where p x( Φ ) is fitted using a

Cartesian grid, the weights πk are modeled as a multinomial

distribution where π = 1kd only for the component k of the cell of

where the point qd of falls. This is proposed to save

computational resources for dense scans. However, when using

acoustic sensors, it is possible to evaluate the whole model, reaching

a continuous objective function which makes easier the convergence

of the optimization problem. In Appendix A the analytical form of the

objective function and its derivatives can be found.

Given two GMMs, one modeling a fixed scan p x( Φ ) and the

other modeling a moving scan  p x p x π Rμ t R R( Φ , Ω) = ( , + , Σ )T

whose relative displacement is defined by a pose constraint

t RΩ = ( , ); the 2 distance between both distributions is defined as

  
  

∫ ∫

∫ ∫

p x p x dx p x dx

p x dx p x p x dx

= ( ( Φ ) − ( Φ , Ω)) = ( Φ )

+ ( Φ , Ω) − 2 ( Φ ) ( Φ , Ω) .

2 2 2

2
(17)

Thus, the D2D method proposed by Stoyanov et al. (2012) finds

the displacement that maximizes the 2 distance between both

distributions. As it was noted by Jiang and Vemuri (2011), as the first

two terms from Equation (17) remain constant during the optimiza-

tion and the integral of the third term has a closed form for the

Gaussian distribution, the cost function has the following analytical

form:

10 | VIAL ET AL.
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

∑ ∑ π π

μ Rμ t R R

Ω* = argmax (Ω) = argmax

(0 − − , Σ + Σ ).

i

n

j

n

i j

i i i i
T

Ω

2

Ω =1 =1 (18)

Contrary to the P2D method, now, the normalization factor for

the Gaussian distribution depends on the optimization variablesΩ, as

the determinant of the covariance matrix is affected by the rotation

matrix. As shown in Tabib et al. (2018), maintaining this dependency

increases hugely the analytical complexity of the derivatives when

solving the optimization by applying gradient descent methods. To

avoid this dependency, our results show that the approximation of

the normalization factor by a constant d1—as proposed in Stoyanov

et al. (2012)—is enough to get good matching results when using

acoustic data.

Using the NDT technique, one‐to‐one correspondences are

established between scan components, what implies a nearest

neighbor search in for each component in . However, in Tabib

et al. (2018) it is suggested that, as the GMM representation is a way

of compressing the point cloud data, it is possible to evaluate the

whole correspondences making the optimization problem continu-

ous. In Appendix B the analytical form of the objective function and

its derivatives can be found.

3.3.3 | Scan matching Back‐End

The purpose of the scan matching Back‐End is to solve the

formulated optimization problems. As both optimization policies are

continuous and analytic derivatives can be computed, the problem is

solved applying descent methods based on the following iterative

procedure to the objective variables

where αk ∈  and dk
n∈  are, respectively, called steep size and

direction. We propose to use the Newton Method as it is the optimal

descent method. This method sets the direction as d H J= −k k k
−1 , where

Jk and Hk are, respectively, the Jacobian vector and the Hessian

matrix of the cost function evaluated in the current solution Ωk .

Moreover, to deal with the nonlinearities of the problem, a line search

algorithm based on the Wolfe conditions—Algorithm 11.5 from

Bierlaire (2015)—is added to set a step size that favors minimization

for each optimization iteration. Also, to ensure a minimization

direction, the Gill, Murray and Wright modified Cholesky factoriza-

tion algorithm—Algorithm MC form (Gill et al., 1981)—is used to

invert the Hessian matrix Hk , perturb it to get a definite positive

matrix if it is an indefinite matrix and ensure that the resulting matrix

is reasonably well conditioned. Using these tools the convergence of

the algorithm is achieved in most practical scenarios.

To deal with the Lie group that defines pose, it is parameterized

using the composite manifold < , SO(n)>n formed by the concatena-

tion of an n‐dimensional space representing position and the Special

Orthogonal SO(n) group representing orientation. Using a composite

manifold, instead of working at the SE(n) group, derivatives can be

computed by blocks, separating rotation from translation (see Solà

et al., 2020). For example, the derivative of the group action function

f q SO n Rq t(Ω, ) : < , ( )>, → = +n n n   , which is applied in both

optimization policies, can be computed as

















Df q

Dη
q

(Ω, )
= = ,

Df R t

Dp

Df R t

Dθ

Dt

Dp

DR

Dθ

( , ) ( , )
(20)

where η p θ= ( , ) defines a perturbation in a tangent space of the

composite manifold. This block structure of the derivatives favors

the analytic simplicity of the first and second derivatives of the

optimization policies.

To perform the optimization updates, the pose manifold must be

considered and the plus operator for the n, SO( )n must be

defined. As using this parameterization rotation is independent of

translation, the addition of a perturbation η p θ= ( , ) to a pose

t RΩ = ( , ) can be computed by applying

One of the benefits of applying a second‐order solver is that

there are available evaluations of the Hessian matrix of the

problem. Bengtsson and Baerveldt (2003) suggested that the

Hessian matrix gives information about the shape of the cost

function at the point where it is evaluated. This means that

computing the Hessian matrix at the optimum, it is a measure of

the uncertainty of the registration result. Censi (2007) suggested

that the uncertainty of a match is also related to the noise of the

sensor used to build the scan. Nevertheless, Stoyanov et al. (2012)

empirically proved that both approaches for the D2D method give

the same uncertainty shape, only with different sizes. Therefore,

we conclude that the covariance matrix of a registration is

proportional to the Hessian matrix computed at the optimum.

This constitutes an automatic method to recover a particular

uncertainty for each match according to the optimization process.

This result is not common in many scan matching techniques, as

solvers are only based on first derivatives and Hessian evaluations

are not available. Moreover, this is very interesting in SLAM

problems because it constitutes an automatic tool to separate

good matches from those that are not so good and, also, detect for

each particular match in which direction the result is better in

comparison to the others.

As cost function derivatives are defined in the composite

manifold, the covariance matrix related to each match is also defined

in the n< , SO( )>n . However, the majority of the SLAM frameworks—

such as the GTSAM library available in Dellaert (n.d.)—are defined in

the SE(n) group. Thus, a map between both parameterizations is

needed. Moreover, its Jacobian matrix lets relate their uncertainties

applying

VIAL ET AL. | 11
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J JΣ = (Ω)Σ (Ω) ,n n
T

SE( ) < ,SO( )>n (22)

where Σ n< ,SO( )>n is a covariance matrix defined in the composite

manifold, Σ nSE( ) is a covariance matrix defined in the SE(n) group

and J (Ω) is the Jacobian matrix given by Proposition 1. As it is

seen, we suggest to solve the registration problem in the

composite manifold to simplify the analytic computation of

derivatives. However, an extra steep is needed to map the

registration covariances from the composite manifold to the SE

(n) group.

Proposition 1. Given a pose nΩ < , SO( )>n∈  and a map

function h n n(Ω) : < , SO( )>→SE( )n , its Jacobian matrix is











J
h R O

O I
(Ω) =

∂ (Ω)

∂Ω
=

−
.

T
n n

n n n n

×

× ×

The proof of this derivative is given in Appendix C.

Finally, the defined optimization problems are convex but

suffer from local minima because the Newton Method does not

guarantee global minima. Thus, good seeds for the optimization

problem are needed to not fall in local optimums. To do so,

information from other components of the proposed system is

used. To register successive scans, seeds from the dead reckoning

system are taken. When attempting loop closure, information

comes from the Pose Graph.

3.3.4 | Scan matching algorithm

In this paper a scan registration formed by a double match is

proposed combining the strengths of P2D and D2D policies. As

stated before, the D2D method minimizes the divergence

between two distributions, whereas the P2D method measures

the likelihood of a point cloud to a model. This means that D2D

has more attraction force when two scans are very misaligned. In

contrast to D2D policy, the P2D likelihood function tends to zero

very fast when some point gets far from a component and its

derivatives, which are the engine to the solver, become negligible.

Moreover, the P2D method uses the full data set for the moving

scan and a more accurate match can be reached when the seed is

near to the optimum, as only the reference scan is compressed by

a GMM. However, the price to pay is the computational cost of

evaluating derivatives for the whole point cloud. Nevertheless,

when using acoustic data, the aim of the GMM representation is

not data compression but modeling perception noise. So it is

possible to spend computational resources solving a P2D method,

since point clouds are sparser. Therefore, following Algorithm 1,

first, a D2D match with an external seed is attempted, to bring

closer the scans solving huge misalignment. Second, a P2D match

with the D2D result as seed is performed to get a more accurate

result.

Algorithm 1. Scan matching algorithm

Require: reference_scan, current_scan, pose_seed, pose_seed_cov

reference_gmm = BayesianGmmFrontEnd(reference_scan)

current_gmm = BayesianGmmFrontEnd(current_scan)

p2d_method = PointsToDistribution(reference_gmm, current_scan)

d2d_method =DistributionToDistribution(reference_gmm,
current_gmm)

d2d_solver = CholeskyLineSearchNewtonMethod(d2d_method)

p2d_solver = CholeskyLineSearchNewtonMethod(p2d_method)

d2d_solver.compute_optimum(pose_seed)

if d2d_solver.has_converged() then

p2d_solver.compute_optimum(d2d_solver.get_optimal())

if p2d_solver.has_converged() then

return p2d_solver.get_optimal(), p2d_solver.get_optima_cov()

else

return d2d_solver.get_optimal(), d2d_solver.get_optima_cov()

end if

else

p2d_solver.compute_optimum(pose_seed)

if p2d_solver.has_converged() then

return p2d_solver.get_optimal(), p2d_solver.get_optima_cov()

else

return pose_seed, pose_seed_cov

end if

end if

The implementation of the GMM Front‐End, registration policies,

and scan matching Back‐End are taken from the open‐source library

GMM Registration available in Vial (n.d.). This library was

presented by the same authors in the conference paper (Vial

et al., 2023), where the speed and convergence of the scan matching

algorithm are characterized in comparison to other state‐of‐the‐art

registration techniques.

4 | UNDERWATER POSE SLAM SYSTEM

Combining the described dead reckoning, scan building, and scan

matching systems a Pose SLAM problem is formulated. This information

is used to build a factor graph, constituting the SLAM Front‐End. Using

the iSAM2 solver—presented in Kaess et al. (2012) and provided by the

GTSAM library available in Dellaert (n.d.)—the Pose SLAM problem is

solved incrementally while the Front‐End builds the graph, reaching an

online estimator for the robotic application.

As a mechanical profiling sonar provides 2D information in the form

of plain scans, only layer maps can be built corresponding to horizontal

sections of a 3D space. Therefore, the AUV equipped with this sensor has

to follow a plain motion with minimal changes in depth. Thus, a Pose

SLAM problem, formulated in the SE(2) group, is proposed to estimate the

whole robot trajectory. Each pose is defined as x x y φ
→

= ( , , )T being x and

y the position of the robot center of gravity in the world frame and φ the

z‐axis orientation of the robot in the world frame. The other degrees of

freedom of the robot are considered constant as a plain motion to the

AUV is imposed. The Pose SLAM problem is modeled by a factor graph,

12 | VIAL ET AL.
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where nodes represent the robot poses where each sonar scan is

referenced. The factors linking these nodes and the methodology to add

them to the factor graph are detailed below.

4.1 | Pose SLAM Front‐End

First, if the dead reckoning system is reset every time a new scan starts, it

provides an SE(3) constraint between two successive scans composed of

an expectation vector and a covariance matrix. However, to set an inertial

factor in the pose graph, the SE(3) constraint must be projected into the

SE(2) group as the Pose SLAM problem is formulated in this last group.

The projection can be done by marginalizing the x and y components of

the translation and taking the yaw rotation of the ZYX Euler angles

parameterization, as in this Euler angles combination the z rotation is

performed first in the fixed frame. To project the rotation, the SO(3)

group is mapped into quaternions and then into ZYX Euler angles

following Blanco (2010). Keeping only the z rotation, the projected

expectation is






























( )

x
y
φ

t

t

a

=

tan 2
θ θ θ θ θ θ

θ θ θ θ

1

2

sin + (1 − cos )

+ cos +

3 1 2

1
2

2
2

3
2

∥ ∥ ∥ ∥ ∥ ∥

∥ ∥

(23)

where θi are the Rodrigues parameters for the 3D rotation, ti

are the 3D translation components and pitch π π≠{ , − } is supposed

as it is an impossible configuration for the Sparus II AUV.

Assuming the plain motion imposed to the AUV—which means

that roll, pitch, and depth variations are negligible—the projected

rotation can be approximated as φ θ~ 3. Assuming this approxi-

mation, the SE(3) covariance PSE(3) can be projected into the SE(2)

group applying












P J P J J~ , where =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

,T
SE(2) proj SE(3) proj proj (24)

and its demonstration is given in Appendix D.

Second, the scan matching system provides an SE(2) constraint

between two nodes for which the registration problem has been solved

successfully. This constraint consists of an expectation vector and a

matrix proportional to its uncertainty. Using this information a scan

matching factor between registered nodes can be set in the factor graph,

given a proportional constant r for the uncertainty. This factor is used to

register successive scans, with rsm as the uncertainty constant. It is also

used for loop closure, applying rlc.

Finally, absolute rotation measures obtained from the IMU

magnetometer—compensated from soft and hard iron by the COLA2

architecture—are also added to the factor graph as a Special

Orthogonal SO(2) before each node. As an orientation expectation

is just a sensor reading, its uncertainty Rmag is constant for all nodes.

4.2 | SLAM methodology

Given the described factors, a factor graph is built using the GTSAM

library. Every time a new sonar scan is available, the factor graph is

extended and solved. Algorithm 2 describes the proposed incremen-

tal methodology, suitable for a real time application, and Figure 5

shows the structure of the resulting Pose Graph.

Algorithm 2. Pose SLAM algorithm

odometry = ProbabilisticDeadReckoning()

scanner = ScanBuilder()

match =GMMScanMatching()

yaw =Magnetometer()

graph = NonlinearFactorGraph()

graph.set_node(1)

graph.set_prior(1, x→0)

graph.set_seed(1, seed)

loop = LoopClosureManager()

i = 0

while true do

if scanner.scan_available() then

scan.append(scanner.build_scan())

dead_reckoning = odometry.get_pose()

odometry.reset()

graph.set_node(i)

graph.set_dead_reckoning_factor(i‐1, i, dead_reckoning)

graph.set_prior(i, yaw)

match.solve_register(scan(i‐1), scan(i), dead_reckoning)

if match.converged() then

graph.set_scan_matching_factor(i‐1, i, match.get_result())

end if

graph.set_seed(i, seed)

graph.solve_graph()

if loop.loop_found() then

k = loop.get_candidate_node()

match.solve_register(scan(k), scan(i), graph.get_delta_pose(k, i))

if match.converged() then

graph.set_scan_matching_factor(k, i, match.get_result())

end if

end if

i++

end if

end while

When a new sonar scan is built, a new node in the factor

graph is created. Then, the dead reckoning system is used to set a

navigation factor between this node and the previous one and,

immediately, it is reset to start building the next sonar scan. Also,

an SO(2) before the new node is set using magnetometer

measures. Moreover, a registration problem is attempted

between the current scan and the previous one, with which

VIAL ET AL. | 13
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overlapping is theoretically guaranteed. The scan matching solver

is initialized taking the dead reckoning measure as seed, to

prevent local minima. If the problem converges, a scan matching

factor is set on the factor graph between the registered nodes.

Finally, and before updating the solution of the factor graph, a

seed to the new node is given to the Back‐End. The seed is found

combining the available solution for the previous node and the

dead reckoning measure perturbed with some random noise. As it

can be seen in Figure 5, the majority of nodes in the factor graph

are chained by two SE(2) factors, one coming from inertial

navigation and the other coming from acoustic perception.

However, as uncertainty is estimated for both systems, the two

constrains are balanced at each particular link in the chain.

Once the graph is solved and a solution for all nodes is available,

loop closure is attempted using the positional information of the

graph. When the robot revisits some explored region, the old view

and the new view can be registered and a scan matching factor can

be set closing a loop into the factor graph. However, as scans provide

very local information of the surroundings of the robot, we propose

to group scans into hyperscans to have wider views with more

features to avoid false positives registrations of scans that in reality

do not overlap. Using the SLAM solution, hyperscans of constant

length referenced to its central node are built and only loops between

hyperscans are searched.

Whenever a new hyperscan is available, loop closure candidates

are searched. To do it, no cross covariance between nodes is

considered. As suggested by Ila et al. (2007), the search is based on

the Bhattacharyya distance. First, the first term of the Bhattacharyya

distance for the Gaussian—which corresponds to the Mahalanobis

distance—is used to find close candidates. Given the current

hyperscan origin i, the square Mahalanobis distance is calculated

for all hyperscans k



 


d μ μ μ μ= ( − )

Σ + Σ

2
( − ),i k

T k i
i kM

2
−1

(25)

where μj and Σj are, respectively, the mean and the covariance matrix

of hyperscan j origin provided by the Back‐End. Second, for all

hyperscans whose Mahalanobis distance is below a threshold dMlim
2 ,

the second term of the Bhattacharyya distance for the Gaussian is

calculated

  d =
1

2
ln

Σ Σ
.

k i
B

Σ + Σ

2
k i

(26)

This term gives the nodes separability due to covariance (see

Fukunaga, 2006), which means that it distinguishes uncertain nodes

from the more certain ones. Assuming that the current hyperscan is

one of the most uncertain due to drift accumulation, maximizing dB

for the selected hyperscans means finding the most certain one.

Typically, this hyperscan will be far from the current node and it will

set a strength constraint to the problem in terms of information.

Therefore, dM
2 filters nearby nodes in terms of pose and dB selects the

most certain one which normally means the farthest one in terms of

time, all based on uncertainty criteria. If this search returns a

candidate, then, a registration between the candidate hyperscan k

and the current hyperscan i is attempted. To prevent the scan

matching problem from local minima, a seed is found using the Pose

SLAM solution to evaluate the pose increment between those nodes

F IGURE 5 Factor graph structure for the defined Pose SLAM problem. SE(2) nodes x
→

describing robot trajectory are estimated. A
prior pose x

→
0 is set for the first node and an SO(2) prior from magnetometer measures φ is defined for each node. All nodes are chained

by two factors, one coming from dead reckoning and the other from scan matching. Finally, scan matching loops are closed for revisited
places. LC, loop closure; SE, Special Euclidean; SLAM, simultaneous localization and mapping; SM, scan matching; SO, Special
Orthogonal. DR, dead reckoning; SM, scan matching.
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h x x x x T T(
→

,
→
) =

→ →
,k i i k k i

−1⊖ ≜ (27)

where Tk and Ti are, respectively, the homogeneous transformation

matrices related to nodes x
→
k and x

→
i . Finally, if the registration

problem converges, an SE(2) factor between both nodes can be set

into the factor graph. However, the graph is not optimized until a new

scan is received as loop closure is implemented in an asynchronous

CPU thread to the main loop.

5 | EXPERIMENTAL DATA

The proposed Pose SLAM framework was tested on several

underwater data sets, for which a set of experiments was carried

on January 2022 by the technical staff of VICOROB laboratory

using Universitat de Girona boat, Sextant. Two different experi-

mental areas were considered. On the one hand, a couple of data

sets were gathered on a harbor where straight vertical walls were

scanned, referred as structured data sets. On the other hand,

another data set was gathered in a natural environment where

irregular rocks were perceived, referred to as an unstructured

data set. All data sets were obtained by the Sparus II AUV

(Carreras et al., 2018), presented in Section 3. The robot was

teleoperated through a surface buoy and equipped with a Super

SeaKing Profiler from Tritech International Ltd. (Tritech Interna-

tional Ltd., Super SeaKing Profiler, n.d.) for range measurements,

shown in Figure 6a. This sensor was mounted at the payload

space of the AUV and provided range measures in the front of the

vehicle at 1.8° angular increments. Each sonar beam provided

ranges from 0 to 15 m at 0.037 m resolution with their

corresponding intensity values. This information is represented

in Figure 6b, where beams are lines rotating around the robot in

motion. Red intensities represent no detection and green to blue

intensities show a harbor corridor. The Sparus II AUV also

provided depth information from a pressure sensor; angular

velocities, linear accelerations, and yaw rotation from an IMU;

and linear velocities and altitude from a DVL. No GPS or USBL

was available to measure robot absolute position.

The structured data sets were gathered at a man‐made break-

water structure outside of the Sant Feliu de Guixols harbor. The

breakwater is formed by a line of 20 squared reinforced concrete

blocks of 14m side with a spacing of 5m between blocks. See

Figure 7 for major clarity. The verticality of the walls allows one to

consider the 3D component negligible in this environment. The

profiling sonar was tuned with an FoV of 270° pointing to the front of

the vehicle as the AUV could perceive walls from both sides. As it is

shown in Figure 8 top, in this kind of environment the sonar scans are

formed by parallel or perpendicular straight lines. Due to the steel of

the blocks structure, the magnetometer measurements are cor-

rupted, especially when the AUV passes through a corridor between

two blocks. In these data sets the AUV followed different loop

trajectories between the blocks favouring different loop closure

events for the Pose SLAM problem. These data sets are formed by

63, 93, and 137 scans over 10.9, 16.5, and 23.9 min missions at 2.5 m

constant depth.

The unstructured data set was gathered making a turn and a

half around a natural rock called La Galera located at Cap de

Creus Natural Park (El Port de la Selva). La Galera is approxi-

mately a 120‐m length and 50‐m width rock with mostly vertical

walls, as shown in Figure 9. As it is shown in Figure 8 down, the

rock morphology causes irregular scans with more features than

in the structured data set, improving the registration if the vehicle

motion is stable and the same layer is scanned. In this data set the

AUV did a turn and a half around the rock in the counterclockwise

direction. During the last half turn, loops in the Pose SLAM

problem can be closed with the first half turn. Following this

trajectory, the AUV could only perceive the rock on its left side.

For this reason, a nonsymmetric FoV for the profiling sonar was

F IGURE 6 (a) Sparus II AUV equipped with a Super SeaKing Profiler fromTritech International Ltd. (b) Raw data from an acoustic scan while
pointing at a harbor corridor. Red intensities mean no detection, while green to blue intensities show the perceived corridor. [Color figure can be
viewed at wileyonlinelibrary.com]
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set to favor the information content of the scans. Therefore, an

FoV from 135° to −20° with respect to the forward direction of

the AUV was set, reaching an FoV of 155°. The data set is formed

by 260 scans over 23.1 min mission at 2.5 m constant depth.

An important requirement for all these experimental zones was

to ensure that only vertical straight walls were scanned. The depth of

the Sparus II AUV is easily controlled using the pressure sensor in

combination with the vertical thruster. However, perturbations on

roll and pitch motions are not controllable for the Sparus II AUV,

which means that there is not any possibility for the vehicle to

minimize these motions in an active way. Although the depth is

maintained constant, these uncontrolled rotations change the

orientation of the scanning plane of the profiling sonar projecting

to different level curves on the walls are scanned. Nevertheless, as

the dead reckoning system is built in the SE(3) group, we are able to

measure these perturbations although we cannot control them.

Moreover, the scan builder uses the 3D estimation from the dead

reckoning navigation to build the scan. It is not until the scan is

completely built that it is projected into 2D dimensions. Therefore, if

scanned walls are completely vertical, these uncontrolled perturba-

tions have no effect on the scans, as walls appear in the same

expected position even if the AUV is pitching or rolling. For this

reason we decided to work at the harbor blocks, as walls can be

considered perfectly vertical. Furthermore, La Galera rock was

carefully selected to guarantee as much as possible the vertically of

the walls, taking into account the real possibilities in a natural

environment. The protected side of the rock from the open sea is

mostly vertical. However, on the other side of the rock, verticality is

less guaranteed.

6 | RESULTS AND DISCUSSION

In this section tests on the proposed Pose SLAM framework using the

aforementioned data sets are presented. The whole SLAM pipeline is

executed in real time in all data sets and applies similar parameters to

ease the comparison of the results. Gyroscopes run at 20Hz, DVL

runs at 6. 7Hz and the SLAM system sets a key frame every time a

F IGURE 7 Experimental area for the structured data sets. (Left) Satellite view of the experimental location with the working area marked
with a red rectangle (source: Google Maps). (Right) Isometric view of a block. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Sonar scans. (a–d) Scans from the structured data sets. (e–h) Scans from the unstructured data set. Black line is a 2‐m scale for all
scans. [Color figure can be viewed at wileyonlinelibrary.com]
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sonar scan is received. For the structured data sets configuration, a

scan is built every 10.40 s and for the unstructured data set, as the

FoV is reduced, every 6.10 s.

The parametrization used by the dead reckoning and SLAM

system is shown in Table 1. Gyroscopes, DVL, and magnetometer

variance values are taken from the sensors data sheet. However, the

variance value of the DVL is not directly used by our dead reckoning

system as a filter from COLA2 is in between. Moreover, for the

structured data set we had to increment the magnetometer

uncertainty due to the perturbations caused by the steel inside the

reinforced concrete of the harbor blocks. Otherwise, corrupted yaw

measurements generated huge inconsistencies on the optimized

factor graph. Covariance proportionality constants for scan matching,

hyperscans length, and dmmax
2 were learned through experimentation.

In the unstructured data sets, as loops are favored, dmmax
2 was more

restrictive to avoid confusing loops.

Table 2 shows the parametrization used by the scan matching

system. Beam intensities and solver algorithms parameters were

tuned through experimentation. Maximum Bayesian GMM compo-

nents were fixed to a value never exceeded by the Front‐End in this

experimentation.

6.1 | Structured data set

In the structured data sets the AUV was teleoperated making loops

around the harbor blocks, retracing many sections of the previous

trajectory. Therefore, these data sets are used to show the loop

closure capabilities of the Pose SLAM system. Moreover, as it is

shown in Figure 8 top, the scans in these data sets are formed by

parallel or perpendicular straight lines. Therefore, scanning noise is

easy to identify and scan matching is not ambiguous.

6.1.1 | Scan matching system

Figure 10 shows the performance of the scan matching system in two

particular examples. However, it has to be noted that all registrations

apply a sequential match of a D2D method followed by a P2D

method. In the left column of the figure the match of two overlapping

scans is provided. Figure 10a shows the scan association given by the

dead reckoning system, where the fixed scan is plotted in blue and

the moving scan in red. As it is seen, this association drifts and does

F IGURE 9 Experimental area for the unstructured data set. (Left) Satellite view of the location with the working area marked with a red
rectangle (source: Google Maps). (Right) Isometric view of La Galera rock. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Pose SLAM system parameters.

Structured Unstructured

Angular velocity variance Pimu(rad/s) 0.0001 0.0001

Linear velocity variance Pdvl (m/s) 0.008 0.008

Magnetometer variance Rmag(rad) 0.5 0.01

Scan matching covariance
proportionality constant rsm

100.0 10.0

Loop closure covariance
proportionality constant rlc

10.0 10.0

Hyperscans length 6 5

Squared Mahalanobis distance
threshold dmmax

2

150.0 400.0

Abbreviations: IMU, Inertial Measurement Unit; LC, loop closure; SLAM,
simultaneous localization and mapping; SM, scan matching.

TABLE 2 Scan matching system parameters.

Distribution to
Distribution

Point to
Distribution

Minimum bin intensity 60.0 60.0

Maximum scan Bayesian GMM
components K

10 10

Maximum hyperscan Bayesian GMM
components K

30 30

Newton method maximum iterations 20 15

First Wolfe condition β1 1e−4 1e−4

Second Wolfe condition β2 0.8 0.9

Line Search maximum iterations 20 25

Gill, Murray, and Wright ρ 1e−6 1e−6

Abbreviation: GMM, Gaussian mixtures model.
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not match. However, as it is close to the solution, it is used as a seed

for the scan matching system. In this case, a D2D match is solved.

Therefore, both scans have to be modeled by a GMM. As it can be

seen in the figure, the Bayesian‐GMM Front‐End needs six compo-

nents out of 10 to model both scans. Moreover, it is shown how the

Bayesian‐GMM uses three components to distinguish far detections,

setting a component to model a single data observation. These

components have an insignificant weight and, consequently, are

ignored by the scan matching optimization. In Figure 10c the scan

matching solution is given. Apart from showing that the two scans

match, the green ellipsoid represents the shape of the positional

uncertainty of the match. As both scans perceive a block corner that

provides information in the two directions of the plain, the scan

matching process is able to return information in both directions and,

consequently, the uncertainty has a round shape.

Furthermore, the right column of Figure 10 shows the match of

two hyperscans—formed by six scans—used for the SLAM system to

close a loop in the Pose Graph. First of all, it can be seen how

hyperscans provide a farther view of the environment with more

structural features than in a single scan. In this case, three blocks and

two corridors can be identified. Figure 10b shows the Pose SLAM

solution before closing a loop. This scan association is drifted

generating inconsistencies in the global map. However, it is used as

the seed for the scan matching process. In this case, a P2D match is

solved, so the fixed scan must be modeled by a GMM. As it is seen,

the Bayesian‐GMM needs only 9 components out of 30 to model the

hyperscan, where two components in the left part of the hyperscan

are used to isolate noisy points. Figure 10d shows the scan matching

solution and its uncertainty. Now, as the hyperscan has more

information in the horizontal direction than in the vertical direction,

the positional uncertainty plotted as a green ellipsoid is degenerated.

As it is expected, the narrow direction of the green ellipsoid, which

corresponds to the most certain direction of the registration, matches

with the most informative direction of the hyperscan.

F IGURE 10 Scan matching results from the structured data set. (Blue) reference scan, (red) matching scan, and (green ellipsoid) positional
uncertainty of the match. (a, c) D2D match on overlapping scans and (b, d) P2D match on hyperscans used to close loops in the Pose
Graph. D2D, Distribution to Distribution; P2D, Point to Distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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6.1.2 | Pose SLAM system

Figure 11 shows the Pose SLAM results for different experiments. In

the first experiment (first row of Figure 11) the AUV followed an

eight‐shape loop trajectory between the blocks. Through this

trajectory, 3 loop closure events were created: one in the central

corridor and two in the left side of the scanned blocks. As it is shown

in Figure 11a the drift of the dead reckoning system is not huge and

the structure of the scanned area is maintained. However, inconsis-

tencies appear in the parallelism of the central corridor and between

the two passes through the left side of the blocks. Figure 11b shows

that thanks to the SLAM system, the trajectory is well reconstructed.

Matching successive scans, a thin and coherent profile of the blocks

is reached; while matching hyperscans, loops in the Pose Graph are

closed removing the inconsistencies of the dead reckoning solution.

Finally, any error with the estimated trajectory can be computed to

quantitatively validate the estimation, as no ground truth is available

in our experiments. In sea tests, in comparison to a laboratory water

tank, it is very difficult to generate a structure to acquire AUV ground

truth. Taking into account our experimental resources, mounting a set

of optical cameras or artificial markers to constantly track robot

position, was an impossible task regarding the size of the

experimental area. Moreover, range measurements from acoustic

modems are not accurate enough underwater. Therefore, the only

way left to evaluate the performance of the proposed SLAM system

is qualitatively, checking if the reconstructed map fits satellite views.

Figure 11c shows the superposition of the SLAM solution with a

satellite view of the area, showing that the SLAM solution shape and

scale match reality.

Figure 12 shows the evolution of the AUV position uncertainty

during the estimation of the same experiment. In these plots we show the

uncertainty of each key frame the first time that it is solved, which means

just after setting it. We do not plot the uncertainty of each key frame

obtained from the last solver call. This way it can be seen how the SLAM

system bounds uncertainty growth, in comparison to the dead reckoning

system where no updates to a filter are performed. Figure 12c,d shows

the uncertainty evolution during estimation, where loop closure events

are marked by green dots. As it can be seen, the most important

uncertainty reductions happen when a loop is closed, especially if the

time elapsed with the last loop closure event is big. Small uncertainty

reductions out of loop closure events are caused by successive scan

registrations and orientation priors set using the magnetometer, showing

how these systems also help bounding uncertainty grow. Finally,

Figure 12a,b allows us to analyze the shape of the uncertainty matrix.

During the first vertical transect of the AUV, the uncertainty ellipsoid is

degenerated through the vertical direction, which is consistent as the

AUV moves forward. This deformation in the forward direction is

maintained when the AUV starts to rotate around the blocks. However,

when the AUV completes a full turn around itself (this is when the AUV

goes out of the top corridor and starts descending) the uncertainty shape

becomes circular. This means that the robot has accumulated error in all

possible directions. This behavior is maintained during the turn around the

bottom block. Finally, during the last vertical transect, the uncertainty is

again deformed in the forward direction as turning directions become

decompensated. The same behavior is shared with the scan matching

system, as registrations can only provide information on the normal

direction to the walls, which agrees with being uncertain in the forward

direction of the AUV in this particular trajectory.

In the second experiment (central row of Figure 11) the AUV

followed a longer path. The robot, first, navigated by the side of three

blocks. Then, it crossed to the other side of the blocks by a corridor

between the blocks and it navigated by the other side of the last two

blocks. After, it navigated through a corridor and it closed a loop

navigating by the side of the first block. Then, it crossed again to the

other side closing another loop. Finally, it navigated through a

corridor to close the last loop. As it is shown in Figure 11d, in this

experiment the drift is important and lots of inconsistencies appear in

the dead reckoning solution. Figure 11e shows how the scan

matching system allows one to close loops in the Pose Graph and

correct all inconsistencies. Only an imprecision is maintained in the

bottom corridor. However, it is insignificant compared with what

happens at the same point in the dead reckoning solution. Finally,

Figure 11f shows how the SLAM system maintains the shape and the

scale, matching the SLAM solution with reality.

In the third experiment (last row of Figure 11) the AUV followed an

even longer path. Through this trajectory two types of loops were

established. In the beginning, the AUV navigated up and down by the side

of 4 blocks. Then, it crossed to the other side of the blocks through a

corridor and again it navigated up and down by the side of the same

blocks. Therefore, loops can be closed between the up and down passes,

but both sides could not still be related. After, when the robot returned to

the starting point and started a zig‐zag trajectory crossing corridors from

one side to the other, both sides could be related. As it is shown in

Figure 11g, again the drift of the dead reckoning system is considerable

forming a very inconsistent map. However, Figure 11h shows how the

SLAM system can build a more coherent map. As it can be seen in the

figure, the side loops are easy to close, however, the loops in the corridors

that relate both sides are more difficult to close and some inconsistencies

appear at the end of the AUV trajectory. Finally, Figure 11i shows how

the SLAM map is close to the reality in the bottom part. However, as

loops between both sides did not succeed at all, some inconsistencies

appear at the upper part.

To sum up, these experiments show how equipping an AUV with

a range sensor and matching the resulting scans allows one to build a

navigation system that maintains the structure of the environment.

When the AUV trajectory is not so long, the dead reckoning system is

able to maintain the consistency of the map. However, as the AUV

trajectory gets longer, more and more inconsistencies appear in dead

reckoning maps evidencing the need of the SLAM system. The most

essential capability of this system is the ability of closing loops in the

Pose Graph, which removes the major inconsistencies of the dead

reckoning solution. Furthermore, matching overlapping scans allows

one to maintain a thin profile of the scanned surfaces and IMU's

magnetometer priors help maintain robot orientation, even the

distortion provided by the reinforced concrete of the surroundings.

Moreover, the automatic method to recover uncertainty from the
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F IGURE 11 Structured data sets experimentation. (a, d, g) dead reckoning trajectory where the AUV starting position is marked by a star.
(b, e, h) SLAM trajectory where closed loops are represented by green lines. (c, f, i) Superposition of the SLAM blocks profile at 2.5 m depth to
the satellite view (source: Google Maps). AUV, Autonomous Underwater Vehicle; SLAM, simultaneous localization and mapping. [Color figure can
be viewed at wileyonlinelibrary.com]
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scan matching problem provides a very promising performance. As

scans are composed of straight lines, in many cases only information

in one direction can be extracted from the scan matching process.

The scan matching uncertainty transmits this feature to the SLAM

Back‐End and, as it can be seen in the results, allows the algorithm to

find good solutions.

6.2 | Unstructured data set

The unstructured data set is used to test the proposed Pose SLAM

system in a real case application where loops are present but not

favored. In a natural environment, there are no perturbations in the

magnetometer measurements caused by reinforced concrete. There-

fore, a less noisy problem is solved. However, as it is shown in

Figure 8 down, scans have irregular shapes not obvious to register,

shadows, and lots of imprecision.

In Figure 13 the experimental results are provided.

Figure 13a shows the dead reckoning trajectory, whereas in

Figure 13b the Pose SLAM trajectory is given. As it can be seen,

the dead reckoning system drifts over time and the half

overlapping turn does not match the first turn. Moreover,

inconsistencies at the tip of the rock appear in both turns,

detailed in Figure 14a. In this location the rock has a very steep

wall entering to the sea. When the robot passed over it, the DVL

sensor loosed the seafloor reference and its linear velocity

F IGURE 12 Estimated uncertainty on Experiment 1 from the structured data sets. (a, b) AUV position uncertainty at the current key frame
during optimization. The uncertainty is scaled at each plot for visualization reasons. (c, d) AUV pose uncertainty determinant evolution of the
current key frame during optimization. Green dots indicate loop closure events. AUV, Autonomous Underwater Vehicle. [Color figure can be
viewed at wileyonlinelibrary.com]
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measurements relative to the bottom were corrupted. As the

dead reckoning system is based on these measurements, the large

quantity of outliers generates a navigation drift and, conse-

quently, a map inconsistency at this location. In addition to this

and considering the rock location at the map shown in Figure 9

left, the AUV started its trajectory at a location protected from

water currents by the rock. When the AUV reached the tip of the

rock, it went out to the open sea and it received the sea current

acting on it for the first time. In a normal situation, perturbations

on the AUV motion caused by sea currents are measured by the

inertial sensors of the vehicle, being observable perturbations.

However, in the peculiar situation of the experiment, linear

velocity measurements were corrupted at this particular location.

Thus, the perturbation caused by the sea current could not be

perceived and the dead reckoning suddenly jumped, mapping the

rock wall in a place previously mapped as free space.

F IGURE 13 Unstructured data set experimentation. (a) Dead reckoning trajectory where the AUV starting position is marked by a star.
(b) SLAM trajectory where closed loops between the first and second turns are represented by green lines. An animation on these results can be
found at https://www.youtube.com/watch?v=4nYtELVcGMA. AUV, Autonomous Underwater Vehicle; SLAM, simultaneous localization and
mapping. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 (a) Detail of the dead reckoning map at the tip of the rock where lots of inconsistencies appear. (b) Superposition of the SLAM rock
profile at 2.5m depth to the satellite view (source: Google Maps). SLAM, simultaneous localization and mapping. [Color figure can be viewed at
wileyonlinelibrary.com]
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Figure 13b shows how all this casuistry can be corrected by the

proposed Pose SLAM system and a coherent map of the rock is

reached. As shown in green, thanks to the scan matching system,

many loops in the Pose Graph are closed between the first and the

second turn, removing inconsistencies from the dead reckoning map.

Moreover, the scan matching system fused with magnetometer

measurements can fix all the reported problems that appear when

the AUV surrounds the tip of the rock. Nevertheless, as shown in the

figure, the obtained map has a thick countour as the SLAM system is

not able to remove the scan noise. Although the scan matching

algorithm characterizes the noise and manages it, the algorithm is

unable to remove it from the point cloud. Thus, as the SLAM system

only concatenates raw scans to build the map, this wide dispersion

appears in the contour. This scan noise is mainly caused by the

uncontroled disturbances on the roll and pitch orientations of the

Sparus II AUV that point the profiling sonar to different rock heights.

In comparison to the structured data sets, as the robot is scanning an

irregular surface, the amount of noise is higher and the contour is

wider.

Figure 14b shows that the map obtained by the SLAM system

matches the satellite view of the rock. This view qualitatively proves

the capabilities of the proposed SLAM system as the shape and the

scale of the rock are correctly mapped. Looking in detail at the

superposition, the obtained map is slightly bigger than the contour at

the surface as the robot is scanning a layer of the rock at 2.5 m depth.

To somehow quantify the quality of the obtained map, we analyze

the two overlapping trajectories when scanning the lower part of the

rock. Figure 15a shows the map obtained by the SLAM system,

where the first turn is plotted in orange and the second in green. To

quantify the alignment we took the map of each turn as a single scan

and we registered them using a P2D policy applying the Bayesian‐

GMM Front‐End. Given an upper bound of K = 200 components, the

Front‐End fitted a GMM of eight components and, given a zero

transform as seed, the scan matching algorithm returned a translation

of (0.196, 0.278) meters and a yaw rotation of −0.060°. The

registered views are shown in Figure 15b. Taking into account the

dimensions of the scanned area, the misalignment provided by the

scan matching algorithm is insignificant, as shown in the figure,

proving the capabilities of the SLAM system in closing loops and

reconstructing coherent views.

7 | CONCLUSIONS AND FUTURE WORK

In this paper we present a novel underwater Pose SLAM framework

based on inertial sensors and acoustic point cloud registration solved

by applying smoothing techniques. Special attention is put on

modeling factor uncertainties when building the factor graph. First

of all, thanks to the computation of second derivatives on the policy

of the scan matching technique, we are able to recover the

uncertainty of the scan matching result based on the spatial

information implicit in the matched scans. Moreover, a result is

provided in Proposition 1 to map uncertainties from the composite

manifold where the scan matching solver works to the SE(n) group

where the SLAM Back‐End works. By this way, the uncertainty

pipeline is fully coherent. Second, a dead reckoning system

specialized for the underwater domain, based on gyroscopes and

DVL, was designed following Lie Theory. Using this system the dead

reckoning uncertainty can also be tracked in the SE(3) group. As it can

be seen, attention is focused on the mathematical tidiness and on the

particular characteristics of the underwater domain.

In addition to the SLAM system, a rigid scan matching technique

is also specially designed for the underwater domain. This technique

is based on GMMs to model sparse and noisy scans, the key

F IGURE 15 Map of the overlapping AUV paths for the unstructured data set. The first turn is plotted in orange and the second turn in green.
(a) SLAM solution and (b) SLAM solution registered using the Bayesian‐GMM+ P2D algorithm. AUV, Autonomous Underwater Vehicle; GMM,
Gaussian mixtures model; P2D, Point to Distribution; SLAM, simultaneous localization and mapping. [Color figure can be viewed at
wileyonlinelibrary.com]
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characteristics of sonar scans. Fit a GMM to an acoustic scan lets

automatically model sensor noise in the covariance matrices of the

model. Moreover, the introduction of the Bayesian‐GMM algorithm

to fit a GMM lets set unweighted components to single outlier

detections without generating convergence problems to the fitting

algorithm, contrary to the performance of the K‐means algorithm or

the EM algorithm for GMM which suffers convergence problems

when only one point is assigned to a component. This way, outliers

are automatically removed from the scan and do not participate in

the scan matching process. Finally, the application of the Bayesian‐

GMM algorithm also allows one to learn the optimal number of

components needed to model a scan, reaching a flexible tool that

automatically adapts to different environments with different

structures.

Real experiments were carried out to test our SLAM system on real

data. Two different environments have been considered. Experiments in

harbor blocks allowed us to test the capabilities of our system in detecting

loop closure events and closing loops in the pose graph, whereas

experiments in a natural environment let us test our system in a more real

situation closer to the application. These experiments show that our Pose

SLAM system allows one to simultaneously recover the AUV trajectory

and build a coherent layer map at constant depth in a 3D environment;

performing both tasks online with the robotic application. Real time is a

very interesting feature if this robotic application is extended with path

planning capabilities to reach an Active SLAM system. The consistency of

the proposed SLAM system has been proved, reaching coherent maps as

presented.

Future work should be extending the current Pose SLAM problem to

the 3D case, to build 3Dmaps without imposing movement constraints to

the AUV. To do it, the dead reckoning system is already valid as it is

integrating robot pose in the SE(3) group. However, the mechanical

profiling sonar must be replaced by aMultibeam Sonar mounted on a Pan

& Tilt platform to build 3D point clouds. Registering these point clouds

following the proposed approach, factors in the SE(3) group can be set

and 3D maps can be obtained.

Finally, nonrigid scan matching techniques can be explored to

remove the distortion added to the scan by the dead reckoning

system while building it. However, to perform this evolution the

GMM essence of the technique should be maintained to be able to

model scan noise and discard outliers. Using the P2D method this is

possible as only the undistorted scan, or reference scan, is modeled

by a GMM; whereas, in the P2D paradigm more effort is needed as

both scans are embedded in a GMM. Nevertheless, nonrigid

techniques are much more computing demanding than rigid

techniques, as a coordinate frame must be learned for each data

point. Therefore, reaching sufficient computing performance for an

online application is difficult, even with the slow nature of sonar

scanners.
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APPENDIX A: POINT TO DISTRIBUTION

Given a GMM p x π μ( , , Σ) modeling a 2D point cloud and an

overlapping 2D point cloud q q= { , …, }n1 , the P2D problem is



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∑∑

p π μ

p x Rq t π μ

π x Rq t μ
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where the optimization variable is the relative pose between both point

clouds defined by t t θΩ = ( , , )x y . Therefore, the problem cost function is
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define, respectively, a translation vector and a rotation matrix.

Taking the derivatives of the cost function in the composite

manifold < , SO(2)>2 the Jacobian vector is
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APPENDIX B: DISTRIBUTION TO DISTRIBUTION

Given two GMM p x π μ( , , Σ) and p x τ ν( , , Γ) modeling two over-

lapping 2D point clouds, the D2D problem is


∑ ∑ π τ
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(0 − − , Σ + Γ , Ω),

i

K

k

K

i k

i k i k
T

Ω

2

Ω =1 =1

where the optimization variable is the relative pose between both point

clouds defined by t t θΩ = ( , , )x y . Therefore, the problem cost function is
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define, respectively, a translation vector and a rotation matrix.

Taking the derivatives of the cost function in the composite

manifold < , SO(2)>2 the Jacobian vector is
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APPENDIX C: POSE MAP

Given a pose


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



R t
Ω =

0 1
, we want to get the first derivative of the

function h n(Ω) : < , SO(n)>→SE( )n . To get this Jacobian, we start

applying the definition of the derivative

where the perturbation η p θ= ( , ) is defined in the tangent space of

the composite manifold < , SO(n)>n . Due to function h (Ω), the

perturbation is added at the composite manifold using its sum

operator and the subtraction is done in the SE(n) group applying⊖.

The mathematical development of these operators is

where θExp( ) is the SO(n) exponential map and
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−
0 1

T T
−1 .

Substituting Equations (29) into Equation (28) and applying the SE(n)

logarithm map we get
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which corresponds to the Euclidean definition of derivative.

Therefore, taking the partial derivatives of the numerator through

the perturbation η and applying the limit
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if a b, 3∈  .

APPENDIX D: POSE PROJECTION

Given an SE(3) pose
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R t
Ω =

0 1
, we want to get the first derivative of

the function g (Ω) : SE(3) → SE(2). Assuming the plain motion

imposed to the AUV—which means that the roll, pitch and depth

variation is negligible—this function can be approximated by
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where ti are the components of t and θi are the exponential

coordinates of R. To get the Jacobian of g (Ω), we start applying the

definition of the derivative

J
g g τ g

τ
=
∂ (Ω)

∂Ω
= lim

(Ω ) (Ω)
,

τ→0

⊕ ⊖
(D1)

where the perturbation τ τ τ= ( , )ρ θ is defined in the tangent

space of SE(3). Due to the function g (Ω), the perturbation is added at

the SE(3) and the subtraction is done in the SE(2) group by applying its

respective plus and minus operators. Assuming the plain motion, the

projection of the sum can be approximated by

g τ g τ g g τ(Ω ) = (ΩExp ( )) ~ (Ω) (Exp ( )),SE(3) SE(3)⊕

where τExp ( )SE(3) is the SE(3) exponential map. Therefore, subtraction

is approximated as

g τ g g g g τ

g τ
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= Log { (Exp ( ))},
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where χLog ( )SE(2) is the SE(2) logarithm map. Defining A = [0 0 1]

and
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, the above expressions are developed as
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where V ()2 and V ()3 are functions that, respectively, form part of the

SE(2) and the SE(3) logarithm map. Substituting Equations (D3) and

(D2) into the derivative definition of Equation (D1) we get
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which corresponds to the Euclidean definition of derivative.

Therefore, taking the partial derivatives of the numerator through

the perturbation τ
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