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Abstract— Visual navigation has become a standard in
robotic applications with the emergence of robust and versatile
algorithms. In particular, Visual Odometry (VO) has proven to
be the most reliable navigation solution for space missions to
estimate an unmanned vehicle’s motion and state. Lava Tubes
exploration is one of the recent challenges in this field of applied
robotics. VO in this scenario requires more robustness to poor
lighting conditions while keeping a low computational cost.
We propose investigating an indirect bi-monocular VO based
on sliding-window optimization in such a context. It focuses
on maintaining the sparsity of the problem while keeping
the information of the marginalized frames to reduce the
computational burden. Different sparse graph topologies are
studied to encode information from the past and are evaluated
on accuracy and computation load. The best method retained
is then compared to state-of-the-art systems on real data under
extreme illumination conditions and reaches similar accuracy
results at a lower computational cost.

I. INTRODUCTION

Navigation in an unstructured environment is one of the
main challenges for robotics applied to space exploration.
Indeed, neither global positioning nor online human super-
vision is available on extraterrestrial surfaces to ensure safe
navigation. A robot must only rely on robust navigation so-
lutions based on embedded sensors. Mars Exploration Rover
(MER) was the first mission that involved a Visual Odometry
(VO) system for navigation using a stereo rig called NavCam
[1]. This method was the most reliable solution onboard to
estimate the robot displacement, as slippage often corrupted
odometers. Nowadays, vision navigation systems are stan-
dard for spatial missions, as demonstrated recently with the
Lander Vision System (LVS), which successfully provided
the position of Mars 2020 during the Entry, Descent and
Landing phase [2]. However, new challenges are at stake with
the recent discovery of lava tubes on Mars and the Moon.
These areas, shielded from spatial radiation and impacts,
might host potential extraterrestrial human bases. Robotic
exploration of these caves is thus necessary for a preliminary
investigation and requires advanced navigation techniques.

Simultaneous Localization and Mapping (SLAM) in cave
environments has been widely studied on Earth, mostly
using high power consuming Light Detection and Ranging
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Fig. 1: Our VO produced sparse maps and robot trajectories on
real images from the OIVIO dataset (a) and on simulated planetary
surfaces with fisheye by Gazebo (b).

(LiDAR) devices and/or with offline solutions. To solve this
problem in a spatial context, we must address the power
limitation using passive sensors such as cameras. Therefore,
we propose to discuss visual navigation in an underground
context while minimizing the computational load, critical for
spatial applications, as much as possible.

VO systems have reached a high level of maturity with
versatile and robust algorithms like ORB-SLAM3 [3]. How-
ever, there is a need to reach similar performances with
limited computational resources. In [4], we introduced a
low computational cost front-end design. In the present
paper, we investigate how to limit computations on the back
end of our bi-monocular VO by maintaining the size of
the problem bounded while ensuring its sparsity, retaining
most of the information of older measurements. To do so,
when the boundary of our sliding window is reached, we
proceed in two steps: we marginalize the variables that
are no longer optimized, and we approximate the resulting
prior into a set of sparse factors. This method, as detailed
in [5], allows us to reduce the computational load of the
sliding window optimization while keeping a fair amount
of information from the past. We also propose to study the
different factor graph topologies that can be implemented in
the sparsification step. The contributions of this paper are as
follows:

o A light VO system (Fig. 1) that minimizes the informa-

tion loss.

e A detailed guideline about marginalization and spar-
sification for VO. Many implementation details of
marginalization are often omitted in SLAM papers.

o A proposal and an experimental study of new factor
graph topologies applied to a landmark-based SLAM
with simulated image sequences for fair analysis.

o Our system is compared with state-of-the-art algorithms
on real data recorded in challenging illumination condi-
tions and reaches comparable accuracy results at a lower



computational cost.

II. RELATED WORK
A. Cave Exploration

SLAM in underground conditions has been widely studied.
For instance, Zlot et al. [6] proposed a large-scale SLAM
for mapping a 17 km long underground mine with a 2D
LiDAR and an industrial Inertial Measurement Unit (IMU)
. Recently, the DARPA Subterranean challenge enabled a
major demonstration of state-of-the-art multi-robot SLAM
for underground exploration. However, all the proposed
solutions were LiDAR-centric, implementing complex sensor
fusion schemes and using powerful embedded computers.
The conclusive survey [7] highlighted the need for research
in low-cost navigation solutions with vision-based SLAM.

B. Visual SLAM

Visual SLAM or odometry (i.e., without loop closure) has
been widely studied in the past decade. Among state-of-
the-art, two types of methods have emerged. On the one
hand, feature-based (or indirect) methods rely on partial
information about an image, like salient points or edges and
estimate motion by minimizing geometric errors. Feature-
based SLAM has been tackled with both filtering-based [8],
and optimization-based methods [9]. But filtering methods
have limitations in accuracy and robustness [10] while full
batch optimization methods quickly become computationally
intractable. The current state-of-the-art systems have been
inspired by Structure From Motion algorithms and take ad-
vantage of both filtering and smoothing methods. This is the
case of ORB-SLAM3 [3] that performs Bundle-Adjustement
(BA) on a sliding window with a fixed number of frames.
The system described in this paper is inspired by such
methods, with contributions in information sparsification and
computational cost.

On the other hand, direct methods perform tracking of
pixels and pose estimation on the whole image by minimiz-
ing photometric errors. This is the case of LSD-SLAM [11],
which produces semi-dense maps, and DSO [12], a similar
algorithm using a sparse set of keypoints. Hybrid methods
exist, like SVO [13] which initializes a direct estimator
using a coarse feature-based pose estimation. This algorithm
show impressive results for cameras with tedious photometric
calibration on challenging scenarios for both modalities.

C. Marginalization and Sparsification in SLAM

We propose in this paper a complete guideline for
marginalization and sparsification in a VO. Marginalization
was first introduced for a spatial application in [14] to
limit the information loss of a sliding window filter and
maintain constant computational complexity. It is applied
in the Visual Inertial Odometry (VIO) framework VINS-
MONO [15] based on the tight fusion of pre-integrated IMU
deltas and visual features. But marginalization impacts the
sparse structure of the problem by introducing correlations
between variables i.e., adding “fill-in” in the information
matrix of the SLAM. The sparsity of the SLAM problem

is an important feature that allows the use of sparse linear
algebra for efficient solving as in CERES [16], g2o0 [17], or
ISAM2 [18].

Approximating a dense distribution with sparse factors
has been studied first in the pose-SLAM community. For
example, Generic Linear Constraint (GLC) [19] is a method
that translates the marginalization into a set of linearized
factors. Mazuran et al. [5] then proposed Non-Linear Factor
Recovery (NFR) to approximate the dense distribution with
custom non-linear factors that minimize the Kullback-Leibler
divergence (KLD) w.r.t. the dense prior. It has been used for
global mapping in [20] to transfer information from local
VIO to global map optimization. NFR is also applied to a
VIO in [21] to turn the dense prior into absolute factors for
the robot and IMU states and pose to landmark factors for
visual features. The proposed sparse topology was arbitrarily
chosen because of its similarity in terms of information
matrix entries with the dense prior. To our knowledge, this
paper is the first to present a similar work on a VO with
information analysis on the sparse topology design.

III. NOTATION

In this paper, the pose of a camera in the world frame is
referred to as ¥ T, € SE(3). We parameterize landmark j with
its 3D position in the world frame 1} € R3. We can compute
the coordinates of the j-th landmark in the i-th camera frame
with l;" = WTgl_ll;Y =¢i Twl;.”'. We note the projection function
of a camera 7 : R? — R? that maps a 3D point in the camera
frame in the 2D image p; ; = 7(17). We note abusively 7~ :
R? — R3 the function that computes the bearing vector of a
given pixel p; j as 7! (p; ;). We work with a set of keyframes
in a sliding window W and each keyframe K; has a set of
map points L; that can be seen from a set C; of cameras.
The extrinsic transformations between the set of cameras are
assumed to be known. We concatenate all landmarks and
keyframe poses in a state vector x. Matrices are denoted
with capital letters or greek capital letters when they have
a probabilistic interpretation (e.g. A and € are information
matrices and X is a covariance). Block of a matrix on a given
subset of variables is noted with a subscript in parenthesis.

IV. VISUAL ODOMETRY

This section describes the two main components of our
bi-monocular VO algorithm. Indeed, two cameras are used
here without any stereo rectification. The front-end deals with
feature extraction, association and filtering, and the back-end
controls the sliding window optimization.

A. Front-End

For each frame, we recover 2D point features by using
a pyramidal Kanade Lucas Tracker (KLT). To improve
the convergence of the KLT tracker, it is initialized with
predicted pixel values for each 3D point from a constant
velocity model. We provide for each frame an estimate of the
pose using P3P [22] in a RANSAC fashion as a first outlier
filtering. Then, a second filtering of the tracked features is
done through an epipolar plane check that is independent of



Fig. 2: Illustration of the visual residual.

the camera model. The pose is finally refined with a single-
frame BA.

Keyframes are voted if the average parallax of the current
set of features goes over a threshold to avoid redundant
information. In this case, the tracked 2D points are asso-
ciated on the second camera with a KLT and landmarks
are triangulated. A BA is performed on current landmarks
only, with a robust Huber norm to detect and eliminate
spurious variables. This three-step outlier filtering ensures
we only have inliers for smoothing. Finally, the keyframe is
re-populated using the FAST keypoint detector coupled with
a bucketing strategy. For further details, we refer the reader
to [4].

B. Back-End

The back-end consists of a fixed lag smoothing optimizer.
For a general formulation of our problem, a factor graph
paradigm is used to define the optimization problem. ¥
denotes the factor graph of our sliding window problem and
is represented in figure 3. It contains the visual factors of
every landmark I} that is observed from every keyframe K; in
the window W through the set of cameras C;. It also contains
the prior factor on the subset of variables xp. The sliding
window optimization consists in finding the optimal state x*
that minimizes the summation of the norm of the residuals,
that are the errors of all factors weighted by their noises X

x* = argmin <Z ||ek(x)|§k> . (1)

X ke’

We use the CERES library to solve this non-linear op-
timization problem, and the Jacobians were analytically
derived according to [23]. In the following, visual and dense
prior factors are introduced.

1) Visual Factor: The visual factor formulation is inspired
by [15]. It is based on landmark projection on the unit
sphere and doesn’t require any camera model inversion, as
represented in figure 2. The error of a visual observation of
the landmark l;!’ from the i-th camera is

w w T l;l -1
ey ("Te;,17) = [by by - T (pij) | ; (2)
j

with b, and b, arbitrary tangent vectors to the unit sphere
around the projection point. The covariance of a visual

observation is necessary to compute the associated residual;
we set it to Xy = I,.

2) Marginalization Factor: This VO adopts a marginal-
ization scheme that generates a prior on the landmarks
previously linked to the marginalized poses. This prior is
dense in this section but will be made sparse in the next
one. When the sliding window reaches its bound, the last
frame and all the lonely landmarks (i.e. that are not linked
to other frames) are marginalized. A dense prior is computed
on all the landmarks that are linked to the last frame and not
lonely.

To compute this prior, one needs to focus on the Markov
Blanket (MB) of the last frame, that is, all the variables
that are linked to the last frame via a factor (Fig. 3). The
information matrix and the gradient of the problem on this
MB are then computed

A=Y JQu, 3)
keMB

g= ) Jiue, “)
keMB

with e, the error of the k-th factor, Jj its Jacobian w.r.t. the
MB part of the state and Q; = Zk’l the information matrix
of the noise. In this operation, we consider all the factors
in the MB, which are here: dense prior and visual factors.
We note m, the subset of variables that will be marginalized
and u, the variables of the MB that are not marginalized. We
then use the Schur Complement to compute the information
matrix and the gradient of the reduced problem, such as

1 AT

AP = A(u,u) - A(u,m)A(m,m)A(u’m)a (5)
-1

2P = 8(u) — Atum)N () 8(om) (6)

To translate this into a prior factor, we must compute
the associated Jacobian Jp, the error ep and the covariance
Yp. However, we need to invert Ap to compute the prior
but it can be rank deficient. To circumvent this, we use
the rank revealing eigen decomposition to work on the
subspace of variables where Ap can be inverted. We note
U the eigenvectors that correspond to non zero eigenvalues
and D the corresponding diagonal matrix of strictly positive
eigenvalues. We can then compute

Jp=U", (7)
ép=D""'UTgp, (8)
Yp=D7L. 9)

The prior will then have a lower or equal dimension than the
number of parameters kept in the marginalization process.
After removing the marginalized variables and the factors
involving them, relinearization is not possible anymore.
Instead, the remaining prior factor is linear, with its Jaco-
bian evaluated at the state where the marginalization was
performed. During optimization, the error is then updated
using a first-order approximation. If we note Xp the values
of the states involved in the prior at marginalization time it
gives
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Fig. 3: (a) represents the full-size sliding window, the variables that
need to be marginalized (dotted red) and the current prior (red). The
states in the MB of this marginalization clique are represented in
blue. (b) represents the effect of marginalization on the factor graph:
the dense prior factor is updated.

V. SPARSIFICATION OF THE DENSE PRIOR

The system described in the previous section is using a
dense prior factor that affects the sparsity of the SLAM
problem. To circumvent that, as proposed by [5] and [19],
we approximate this dense prior factor as sparse factors.

A. Factor Recovery

We assume that we have defined a graph topology .7 that
is a set of factors. We want to recover them i.e., finding their
error functions e; and their information matrix ;. We also
define

: . 0
Js= |Ji| Q5= Q; ,

0

where Jg is the stacked Jacobian of all the new factors and
Qg all the information matrices of the new factors stored
in a diagonal matrix. The sparse distribution is then defined
by Ag = JST QgJs. These values have to be computed so that
the new distribution g(P) ~ A (is,Zs = Ag') is the most
similar to the dense one p(P) ~ A (Wp,Zp = Ap'). The
Kullback-Leibler Divergence (KLD) is usually computed to
determine how much a distribution diverges from another

Die(plla) = 5 (tr(AsZr) ~In|AEp| + 125 pl3, —d)

1D
where d is the dimension of the problem. The KLD between
p and g has to be minimized for an optimal approximation.
First, to set the mahalanobis term to zero, one need Wp = lUg
that is true when for each factor e;(itp) = 0. Then, according
to Mazuran et al., finding all the Q; that minimizes (11) is a
convex problem whose global optimum can be computed.
In the general case, a closed-form solution doesn’t exist.
Iterative methods like Interior Point or Factor Descent [24]
can be used to reach the optimum numerically. However,
such algorithms require too much computational load for our
application.

For specific topologies, a closed-form solution can be
computed. This is the case when the stacked Jacobian Jg
is invertible. Such topologies are limited in terms of corre-
lations and information encoding but they can be computed

fast. Following [5], the solution can be obtained by

Q; = (JZps] ) Vi (12)

This paper details the implementation of two topologies
whose solution to the KLD minimization can be reached with
(12). These topologies on a toy example are represented in
figure 4.

B. Absolute Landmark topology

The Absolute Landmark topology is only made of unary
factors that observe the position of the landmarks of the MB
in the world frame. This topology discards any correlation
between landmarks, but it encodes absolute information.

The error and the Jacobian for the i-th factor are straight-
forward in this case

eU(llW) = l? —ilw, JU = 13,

with i}V the landmark position at marginalization time. The
stacked Jacobian is then the identity matrix of the dimension
of our prior, (12) can be applied to recover ;.

C. Landmark Tree topology

This topology contains a unary factor, that is necessary to
ensure that the stacked Jacobian Js is invertible by observing
the absolute position of a landmark. The rest is made of
relative translation factors between landmarks. The error and
Jacobian of such a factor involving landmarks i and j are
given by

er(f.17) = (' =1) = (i ~1), Jr = [ —1].

The landmark that has a unary factor is the one in P with
the lowest entropy

H(IY) = log((27e) ? |Zp(i ), (13)

with n the dimension of the state.

1) Mutual Information Landmark Tree: To choose the
correct landmark tree, we can apply the Chow-Liu tree (CLT)
algorithm. It computes the Mutual Information (MI) between
all pairs of landmarks

IZpiny [ |Zp(jj)
Xpiiy  Zp(ij)
Zpgiiy  Zp(jj)

102,17 = log

) (14)

and returns the spanning tree of the most correlated land-
marks. This procedure ensures that we have the most infor-
mative topology possible. However, this decomposition strat-
egy is computationally expensive: each mutual information
derivation requires computing determinants.

2) Off Landmark Tree: Off-diagonal entries of the dense
information matrix can only be explained by a factor between
the variables involved. In [24], the determinant of the off-
diagonal blocks of Ap is used instead of the MI in CLT
algorithm to build a topology. We explored which is the best
metric for evaluating the importance of the off diagonal block
including determinant, maximum absolute value, summation
of absolute values and trace of absolute values. The trace
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Fig. 4: This 2D toy problem illustrates the structure of our problem through the marginalization and sparsification steps with factor graphs
and information matrices. The matrices’ cells are displayed with a color map that represents O in marine blue. The state x; € SE(2), the
landmarks have 2D world coordinates and the observation model is simply the 2D relative position of the landmark in the robot frame.
This is equivalent in 3D to stereo observations. (a) represents the MB of x; and its factors before marginalization. (b) shows the dense
distribution after the marginalization of xj. (c) illustrates the absolute topology with only unary factors on landmarks, and so does (d)
with the landmark tree topology. In both cases, the structure of the problem has changed, but it maintains a certain sparsity.

resulted to be the most efficient and provided the most
informative topology

Loe(IF,17) = abs(tr(Ap(ij ))-

The CLT algorithm was adapted using this metric instead
of the MI to return a landmark tree. A comparison between
these two methods is provided in the next section.

15)

D. Invertibility of Ap

To ensure that our problem is invertible, we set a confident
absolute pose prior in the beginning of the experiment and
we only include observable landmarks (i.e. with more than
one factor) in our marginalization scheme. However, even
if it never occurred during the presented experiments, Ap
may not invertible. In this case, we apply the rank revealing
decomposition as in [5] and project the Jacobians of our
sparse factors. In this case, (12) is not the closed-form
solution of the KLD minimization anymore. We use this
result as an approximation of the KLD minimization as
iterative methods would be computationally prohibitive.

E. Reuse of dense prior

The marginalization (3) involves all factors in the MB.
When sparsification is performed, the recovered factors will
be eventually marginalized as well but the information that
could not be encoded in the sparse set of recovered factors
will be lost. To limit information loss, we propose to keep
the dense prior factor obtained after the marginalization
step in memory. Later when marginalizing again, this stored
dense prior can be used instead of the sparse set of factors
to compute (3). Doing this, the information loss due to
sparsification is not propagated through time. Experimental
validation of this choice is provided in the next section.

VI. EXPERIMENTS

We first compare the different sparse topologies on sim-
ulated video sequences from Gazebo to limit the influence
of noisy data in our results. Then, to validate the accuracy
of our system on real trajectories under poor illumination
conditions, we produced results on the OIVIO dataset [25].
The software has been developed in C++, and all experiments
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Fig. 5: Plot of the average KLD for each keyframe on (a) the
turn-back trajectory and (b) the straight line trajectory for all the
topologies studied.

have been performed on a desktop station equipped with an
Intel Core 17, 3.2 GHz clock rate.

A. Topology study on a simulated dataset

We implemented four sparse topologies in our VO frame-
work, and we studied them experimentally on a simulated
dataset. The dataset is recorded with a pair of fisheye
cameras on a planetary surface on the simulator Gazebo. Two
scenarios were tested: a roundabout trajectory with many
changes in the scene and many landmarks to marginalize,
and a straight-line trajectory with fewer changes in the
local map. After each marginalization step, the prior is
sparsified with four different topologies and their KLD w.r.t.
the dense distribution is calculated. This metric was chosen
to determine which topology is the closest to the original
prior, this is a more direct indicator than accuracy metrics.



Turn Back Straight Line
Topology Dense  Absolute  Random tree  MI tree  Off tree | Dense  Absolute  Random tree  MI tree  Off tree
KLD optim (ms) 0 0.54 0.51 1.63 1.00 0 0.28 0.28 1.11 0.56
BA optim (ms) 6.50 4.88 4.92 5.30 4.98 6.02 4.5 4.75 4.80 4.96

TABLE I: Run time analysis on the simulated dataset for all the topologies

Ours, Off tree (Bi-mono) DSO (Mono) VINS-Fusion (Bi-mono) ORBSLAM3 (Bi-mono)
Scenario ATE(m) RTE(m) dt(ms) | ATE(m) RTE(m) dt(ms) | ATE(m) RTE(m) dt(ms) | ATE(m) RTE(m) dt(ms)

MN 015 GV1 0.08 0.03 9.9 0.36 0.08 44 0.16 0.04 22 0.11 0.04 25
MN 050 GV1 0.13 0.05 9.9 0.75 0.07 52 0.25 0.04 21 0.12 0.04 26
MN 100 GV1 0.14 0.04 9.4 1.18 0.07 57 0.16 0.05 21 0.14 0.05 25
MN 015 GV2 0.10 0.03 9.5 0.38 0.05 46 0.18 0.03 24 0.11 0.03 25
MN 050 GV2 0.10 0.03 9.7 0.58 0.05 56 0.12 0.03 23 0.10 0.03 25
MN 100 GV2 0.09 0.04 9.4 0.4 0.05 62 0.09 0.03 24 0.10 0.03 25
TN 015 GV1 0.17 0.07 11 0.46 0.09 43 0.21 0.06 21 0.12 0.04 24
TN 050 GV1 0.18 0.05 10 1. 16 0.07 51 0.28 0.05 21 0.15 0.05 25
TN 100 GV1 0.15 0.08 9.8 0.53 0.07 53 0.19 0.05 21 0.10 0.05 24

TABLE II: Performances on OIVIO Dataset: the best results for each metric are displayed in bold.

By default, the dense factor is used in the sliding window
optimization. The absolute topology is computed, as well as
three different landmark trees. The random tree is the naive
landmark tree with arbitrary links, the MI tree is built with
a CLT, and the Off tree is using the trace of off-diagonal
blocks in Ap.

The comparison of the average KLD of each topology
w.r.t. the dense distribution on the two simulated trajectories
is available in figure 5. The absolute topology seems to
better represent the dense distribution at the beginning of
the course, while the most informative landmark trees work
better in the long run. We offer an interpretation of this
phenomenon. In the beginning, the initial pose prior is
responsible for most of the information in the dense prior,
and such information is more accurately encoded in absolute
factors. As the experiment goes by, the relative position of
the landmarks is better encoded in the problem with visual
factors. Such information is more completely represented by
landmark-to-landmark factors. Then, the absolute topology
is less and less accurate as more relative information is
propagated in the prior. We also observe that the random tree
is logically markedly less representative than the two other
similar topologies as it randomly links landmarks that can
be poorly correlated. It seems that the off-diagonal topology
is not notably less informative than the MI one while it
diminishes the computational load, as shown in table I.

The run time analysis was performed by running the VO
with each factor topology on the two trajectories. We evalu-
ated the average sparsification time (including the topology
building and the factor recovery) and run time of the sliding
window optimization on the whole trajectory. The sparse
topologies reduce greatly the optimization time compared to
the dense one. The absolute topology and the random tree are
computed the fastest since they do not calculate information
metrics, only factor recovery. The MI tree is more costly than
the off-diagonal topology by a non-negligible factor: it is two
times slower on the straight-line trajectory. In conclusion, the
off-landmark tree topology offers a good trade-off between
computational load and similarity to the dense distribution.
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Fig. 6: Comparison between the reuse of the dense prior and the
use of sparse factors to compute A on the straight line trajectory.

B. Reuse of previous dense prior factor

We experimentally demonstrate the choice of reusing the
prior using the dense factor instead of the set of approximated
sparse factors as described in V-E. The two marginaliza-
tion and sparsification methods were run in parallel on
the straight-line trajectory with the off diagonal topology.
The KLD w.r.t. the original dense distribution (i.e., the one
obtained with dense prior propagation) is computed in both
cases in figure 6. The benefits of reusing the previous dense
factor instead of the sparse set of factors while marginalizing
again is significant from the second keyframe. This happens
because even though the sparsification could not encode
all the information of the marginalized observations, this
information can be recovered when marginalizing. If the
dense prior is not reused, the information not encoded during
sparsification is lost and discarded forever.

C. Validation on the OIVIO dataset

This dataset was recorded on a rover, in dark environments
like mines or tunnels, with onboard illumination. The ground
truth comes from a laser tracker, and three illumination
levels were tested (1500, 5000 and 10000 Iumens). Our
system is compared to three state-of-the-art Visual SLAM
algorithms: DSO [12], VINS-Fusion [15] and ORB-SLAM3
[3]. DSO is one of the references in direct VO which is
based on photometric error minimization. It reaches real-time
operation by sampling pixels with high-intensity gradients
instead of using the whole image for motion estimation.
Its precise photometric model takes into account vignetting
and inverse response functions of the pixels whose data are



provided in the OIVIO dataset. Note that the comparison is
not really fair as DSO is a monocular algorithm where the
scale is unknown. VINS-Fusion is an extension of VINS-
Mono for a wider range of sensor setups: the bi-mono
configuration is tested here. The comparison is interesting
as it uses a front-end based on feature tracking and it
performs the naive marginalization approach in its optimizer.
ORB-SLAM3 is considered the state-of-the-art Visual SLAM
system, its indirect approach is based on descriptor matching
with ORB features and it provides long-term data association
with loop closure and relocalization. Our solution is using
sparsification of the dense prior with the dense factor reusing
strategy and the Off tree topology.

We computed the Absolute Trajectory Error (ATE) in
meters, the Relative Translation Error (RTE) in meters and
the average run time per frame (dt) in milliseconds as metrics
in table II. DSO is less accurate than indirect methods on
this benchmark. Direct methods may suffer from extreme
lighting conditions due to onboard illumination. Our method
performs slightly better than VINS-Fusion and similarly to
ORB-SLAM3 on this dataset. Our solution runs at 100Hz
on average on our setup, being the lightest solution here.
The two main differences between our algorithm and VINS-
Fusion are the careful design of our front-end [4] that may
explain the higher accuracy and the sparsification of the
prior that leads to a faster run-time. ORB-SLAM3 seems
to perform better on the tunnel scenarios. The latter shows
the strongest illumination changes, which may impact more
a solution based on tracking than ORB-SLAMS3 which is
based on descriptor matching.

VII. CONCLUSION

This paper describes a VO algorithm that offers a com-
promise between accuracy and computational complexity via
information sparsification. In our sliding window approach,
we approximate the dense prior into a set of sparse factors
for optimization but keep it in memory for information
propagation. The topology of the sparse prior was selected
following a careful experimental study on simulated data.
Our method achieves state-of-the-art accuracy at a lower run
time on a public dataset that exhibits extreme illumination
conditions that may be found in Lava Tubes. Our future work
will focus on acquiring our own dataset with fisheye cameras
and generating traversability information with a 3D mesh of
our sparse map.
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