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Abstract: Water networks are crucial infrastructures for the sustainability of modern cities, and
hence their proper operation is of great importance. This includes the fast detection, localization
and repair of leaks, which may produce major water losses. This paper presents a comparison
between two leak localization methods, which belong to opposite categories: model-based and
data-driven. To this end, their main characteristics are reviewed, highlighting their differences
and advantages/drawbacks, to finally display several results whose discussion allows to draw
important conclusions for the future of the research field.
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1. INTRODUCTION

The effective management of leakage in water distribution
systems (WDS) is of upmost importance for water utilities.
Liemberger and Wyatt (2019) estimated water losses of
126 billion cubic meters of water per year worldwide. This
illustrates the high costs of water leaks, justifying the in-
terest in leak detection and/or localization methodologies.

This research field has been widely studied during the
years, starting from hardware-based methods that use
devices to solve the task, yielding accurate results although
their usage is limited to small areas. Later, software-based
approaches appeared, using data from sensors, models and
algorithms to detect/locate leaks. This group is normally
divided into two categories: model-based and data-driven.

Model-based methods require a hydraulic model of the
WDS, calibrated in terms of both physical properties and
demands, to perform simulations and compare the com-
puted data with actual measurements. An early attempt
of this kind was proposed in Pudar and Liggett (1992),
which studies the effect of each possible leak on every
node of the network. A well-known localization method-
ology was proposed in Perez et al. (2014), using a fault
signature matrix to discern the most probable location of
the leak represented by the measured pressures. Recently,
Steffelbauer et al. (2022) proposed a complete calibration,
detection and localization methodology, with the latter
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based on a residual projection strategy with model update,
in order to operate over simultaneous leaks.

Recently, data-driven methods appeared to overcome the
drawbacks of model-based approaches (calibration, WDS
complexity, modelling errors). They analyse information
gathered from installed sensors to detect and locate leaks.
In Romano et al. (2013), multivariate Gaussian mixtures-
based graphical models are used for detection; and four
different geostatistical techniques are employed to perform
localization, by interpolating the probability values of a
burst event at every node of the network. Years later,
Soldevila et al. (2020) proposed a localization method
based on the Kriging interpolation technique to estimate
the pressure map, and the study of the pressure residuals.

This article reviews two methods proposed in Romero-Ben
et al. (2022) to complementarily solve the BattLeDIM2020
challenge (Vrachimis et al., 2022), achieving the third
place in the competition. Their performance is compared
to discuss the differences between these two families of
methods, review their advantages and drawbacks, and
draw conclusions about their suitability and future.

2. METHODOLOGY

The leak localization solution presented to the Bat-
tLeDIM2020 competition in Romero-Ben et al. (2022) is
composed of two different methods, whose requirements
differ due to the philosophy behind their design:

• A data-driven method that requires the structure of
the WDS and measurements from pressure sensors.



• A model-based strategy using a calibrated model of
the network, and pressure and demand information.

2.1 Data-driven methodology

The data-driven approach is based on two phases (its
scheme is represented at Fig. 1):

(1) An estimation of the complete state of the network is
computed, selecting the hydraulic head associated to
each junction as a representative of the node state.

(2) Then, the leak and leak-free states are compared to
obtain a set of possible leak candidates.

Fig. 1. Data-driven leak localization scheme.

Graph-based state interpolation For the first stage, let us
consider the WDS structure to be modeled by the topology
of its underlying graph G = (V,E), which is simple and
directed. The node set V stands for the junctions of the
network, so that the i−th node is denoted as vi. The edge
set E represents the set of pipes, with edge eij = (vi, vj)
linking node vi with node vj . Each edge is considered to
be characterized by its weight (indicating the importance
of the connection between nodes) and its direction (eij
denotes that the edge is traversed from vi to vj).

The key idea is to simplify the actual relation between the
hydraulic heads of connected nodes in a WDS, which is
non-linear (e.g., Hazen-Williams equation), approximating
it by an equation that imposes a linear relation, namely:

ĥi =
1

di
wiĥ (1)

where ĥi denotes the state of vi, i.e., the estimation of hi;
wi ∈ R1×|V| stores the weights of the links between vi and
all the nodes of the graph, derived as the inverse of the

pipe length (if eij /∈ E, wij = 0), and di =
∑|V|

j=1 wij .

Considering Equation (1), the optimal state could be com-
puted through the minimization of following expression:

n∑
i=1

[
ĥi −

1

di
wiĥ

]2
= ĥ

T
LD−2Lĥ (2)

where L = LT = D − W is the unnormalized Laplacian
matrix of G, W ∈ R|V|×|V| is the weighted adjacency
matrix (composed by the row vectors wi), and D ∈
R|V|×|V| is the degree matrix, which is diagonal with the
i − th diagonal value being di. In this way, the graph
Laplacian and the rest of matrices encode the structural
information of the graph during the state estimation.

In order to provide the sensor data, an equality constraint
is added to the minimization. If S ⊆ V is a set of nodes with
a pressure sensor, then M ĥ = hS, where M ∈ R|S|×|V| is a
matrix whose entry mij = 1 if the i− th sensor is located

in the j− th node (and mij = 0 otherwise), and hS ∈ R|S|

is composed by the hydraulic head values at the sensors.

Finally, the directionality of the edges is imposed through

an inequality constraint, i.e., Bĥ ≤ γ, where B ∈ R|E|×|V|

is the incidence matrix, that assigns bkj = 1 if ek = eij ∈ E,

bkj = −1 if eji ∈ E, and bkj = 0 otherwise; and γ ∈ R|E| is
a vector with a value of γ at all its entries, which behaves as
a slack in the accomplishment of the direction constraint.
The incidence matrix can be approximated by the network
structure, by considering the most probable path from the
water inlets (sources) and the network inner nodes (sinks).

In conclusion, the optimization problem is formulated as:

min
ĥ

1

2
[ĥ

T
LD−2Lĥ+ βγ2]

s.t. Bĥ ≤ γ

γ > 0

M ĥ = hS

(3)

where γ is considered in the objective function to pursue its
minimization, with β controlling its relative importance.
Note that this value is a design criteria, although the con-
fidence in the estimation of B must always be considered.

Leak candidate selection method This second stage is
based on the comparison between leak and leak-free sce-
narios to select a set of node candidates, which should
be the most probable locations of the actual leak. The
interpolation stage must be applied over both scenarios,

obtaining the complete leak state vector ĥ
leak

∈ R|V| and

the complete leak-free/nominal state vector ĥ
nom

∈ R|V|.

The candidate-selection method can be summarised as:

(1) Both ĥ
nom

and ĥ
leak

are used to generate a cloud
of 2-D points, representing the x and y-coordinates
respectively.

(2) The best-fitting line to the cloud of points is com-
puted. Most of the nodes would remain almost un-
affected by the leak, so this line can be used as
a prediction of the expected pressure relation when
comparing two healthy scenarios.

(3) Thus, the most affected nodes can be retrieved from
the most distant points of the cloud to this line. To
obtain them, the distance ri from the point repre-
senting node vi to the line is computed. Note that
this distance may be positive or negative, because the
point can be above or below the line. Only positive
distances are considered, so that the pressure is lower
in the leak scenario.

(4) The final set of candidates is selected through a dy-
namic threshold, represented by the standard devia-
tion of the complete distance vector r ∈ R|V|. The
candidates set can be ordered from most to least
probable through the information in r, giving the
highest probability to the furthest node to the line.



2.2 Model-based methodology

The model-based approach uses a hydraulic model of the
WDS that requires a demand estimation module. This
module provides the water demands at every node vi
i = 1, ..., |V| from the total inlet flow measurements and
data from automated metered reading devices (AMRs)
that can be installed in some nodes of the network. The
scheme of this approach is represented in Fig. 2.

The hydraulic simulator computes head estimations at

sensor nodes for all the possible leak scenarios, i.e., ĥ
i

S

with i = 1, ..., |V|. The comparison between the measured

heads, hS, with the computed leaky heads, ĥ
i

S, in a time
window NW after the leak has been detected, is used to
obtain the most probable leak location at instant k as:

ĵ(k) = argi min

NW−1∑
j=0

||hS(k − j)− ĥ
i

S(k − j)||2

i = 1, ..., |V|

(4)

The computation of ĥ
i

S requires an estimation of the leak

magnitude f̂(k), that can be computed through the total
WDS demand in the time window NW (Alves et al., 2022).

This method can tackle the problem of multi-leak scenarios
if leaks appear at sequential time instants k1 < k2 <
.. < kNf

. In this case, the hydraulic simulator should be
updated at every leak localization time ki with the leak

estimation magnitude f̂(ki) as an extra demand in the

node ĵ(ki) obtained in (4).

The performance of this method depends on the hydraulic
model accuracy, sensor noise and availability of reliable
demand information (Blesa and Pérez, 2018). This third
factor is potentially the most critical one because it is not
easy to estimate user demands with high accuracy if there
are no AMRs installed in some network nodes.

Fig. 2. Model-based leak localization scheme.

3. CASE STUDY AND DISCUSSION

As previously mentioned, the presented methodologies
were used to tackle the leak localization task in Bat-
tLeDIM2020 competition, based on the L-TOWN bench-
mark (Vrachimis et al., 2022).

Fig. 3. Structure of the L-TOWN network.

The WDS associated to this benchmark is displayed in
Fig. 3. It is divided into three areas:

• Area A: it is the largest area, composed of 659
junctions. This zone is connected to both of the
network’s inlets, so that it feeds the remaining areas.
There are 29 pressure sensors installed throughout
this area.

• Area B: it is the smallest zone (31 junctions), con-
nected to Area A through a pressure reduction valve
(PRV). There is only 1 pressure meter.

• Area C: this small area (92 junctions) is connected
to Area A through a tank. There are only 3 pressure
sensors, although there exist 82 AMRs.

In the BattLeDIM2020 competition (Romero-Ben et al.,
2022), the data-driven approach (henceforth referred as
DD) was applied in Area A, whereas the model-based
method (henceforth denoted as MB) was applied to Area
B and Area C. Several considerations were taken into
account for this choice:

(1) DD requires sufficient pressure data, which is its only
source of hydraulic information.

(2) MB’s performance is boosted by accurate demand
information, whereas lacking this data may hinder the
method operation.

(3) Both methods can handle simultaneous leaks.

Then, DD was selected for Area A due to the sufficient
pressure sensor density and the lack of demand measure-
ments; whereas MB was applied in Area C due to the
limited pressure sensors and high AMRs density; and in
Area B due to the lack of pressure sensors.

Thus, this section aims to review the different hypothesis
presented above, by applying each one of the methods
to the areas where it was not previously considered. To
this end, various leaks from the 2018 dataset of Bat-
tLeDIM2020 are considered (their locations can be found
in Fig. 3).

3.1 Pressure sensor distribution

The existence of sufficient pressure sensors is vital for
localization tasks. To highlight the differences between MB
and DD, two opposite scenarios are considered:



Fig. 4. Localization result for leak 673: (a) Model-based;
(b) Data-driven (candidate selection); (c) Data-driven
(node-level)

Low sensorization The best zone of the network to study
this scenario is Area B, due to the existence of a single
pressure meter. A leak event occurred on 2018-03-05 at
pipe 673, during until 2018-03-23. The leak localization
results yielded by the application of both methods is
illustrated in Fig. 4. On the one hand, subfigure 4a shows
the result of the application of MB by means of a colour
map over the network area: the red colour indicates a high
probability of the corresponding nodes to be connected
to the leaky pipe, while the green colour represents the
opposite. On the other hand, subfigures 4b and 4c compose
the result provided by DD: the first image highlights
the set of candidates over the network (cyan nodes),
whereas the second plot shows a colour map of the leak
probabilities. For both methods, a red line over an edge
indicates the location of the leak.

The results show how MB outperforms DD, as the former
is capable of pinpointing the leak with a negligible error
(one node), whereas the latter selects the area near the
sensor location, posing as the best candidates (red stars)
a set of nodes whose distance to this sensor is similar.

This shows the capability of model-based methods to
compensate the side effects of lacking pressure sensors
through the knowledge about the network dynamics that
the model offers, which is the piece of information that
is not accessible to the data-driven approaches. In this
extreme case, the existence of a single pressure sensor
does not allow sensor redundancy to obtain information
of the leak location, hence yielding a solution based on
the pressure drop magnitude, resulting in a degraded
performance.

Sufficient sensorization This type of scenario is repre-
sented by a leak located in Area A, as it is the most
sensorized area of the WDS. Specifically, it occurred at

Fig. 5. Localization result for leak 461: (a) Model-based;
(b) Data-driven (candidate selection); (c) Data-driven
(node-level)

pipe 461 on 2018-01-23, and lasted until 2018-04-02 (this
was an incipient leak). The localization results are shown
in Fig. 5.

In this case, both MB and DD are able to greatly reduce
the leak location area. Unlike the previous scenario, the
existence of sensor redundancy makes it possible to bound
this area, providing a very accurate result, considering the
difference of only a few pipes between the best candidates
and the actual leak. Note that a blue cross is added in
subfigure (c) to indicate the location of the real leak. This
operation is performed in subsequent cases, only when the
actual leak is among the highlighted candidates by DD in
subfigure (b).

Additionally, it is interesting to highlight how graph-based
data-driven methods provide ”smooth” solutions consid-
ering the transition between high and low probability
candidates (see Fig. 5c). This may not occur with model-
based methods if they are based on the pressure sensitivi-
ties, because they are not explicitly considering structural
information (see Fig. 5b, where the best candidates are
not connected).

3.2 Demand measurements availability

The implementation of AMRs for demand metering is in-
creasing, although currently water utilities do not typically
have access to measured demand information. However,
the use of this kind of measurements during localization
can be explored. The leak events occurred in Area C are
studied to this end, because around a 88% of its nodes
are equipped with AMRs. The first leak occurred at pipe
273 on 2018-01-08, and it was not repaired (the results are
displayed in Fig. 6). The second leak appeared at pipe 31



Fig. 6. Localization result for leak 257: (a) Model-based;
(b) Data-driven (candidate selection); (c) Data-driven
(node-level)

Fig. 7. Localization result for leak 31: (a) Model-based;
(b) Data-driven (candidate selection); (c) Data-driven
(node-level)

on 2018-06-28, and was repaired on 2018-08-12 (the results
are shown in Fig. 7).

On the one hand, the first leak was correctly located by
both MB and DD. The former proceeded with a higher
degree of accuracy, considering that the leaky pipe is the
only one whose nodes are highlighted in red. In the case of
DD, the real leak location is among the best candidates,

although there are other possible solutions considering the
colour map.

On the other hand, the second leak is only correctly lo-
cated by MB: again, the degree of accuracy is outstanding,
considering that the only candidates are the nodes compos-
ing the leaky pipe. This also confirms the goodness of MB
as a method that solves multi-leak problems, considering
that the leak at pipe 257 was not repaired. However, DD
fails during the localization operation, not including the
leak among the candidates.

These behaviours demonstrate the excellent performance
of model-based approaches when precise demand informa-
tion is available, as well as the problems of data-driven
schemes when the amount of pressure sensors is reduced,
despite the availability of demand meters.

3.3 Multi-leak solution

The occurrence of simultaneous leaks in a WDS has
not been widely considered throughout the literature of
leak localization methods. However, this problem is of
high interest for water utilities, considering that new
leaks may appear while others are already occurring. The
performance of MB and DD is compared in this kind of
situation.

In the two-leak situation described in the previous section,
the existence of precise demand information leaded to
MB performing greatly, and the lack of pressure sensors
caused DD to perform in a degraded way. Now, the
opposite situation is explored, considering leaks occurring
in Area A, where there are no AMRs, so that the demand
information is much less accurate than in Area C; and
there is a higher pressure sensorization density. The next
scenario is studied: a leak occurred in pipe 628 on 2018-05-
02, and it was not fixed until 2018-05-29. Additionally, a
leak appeared at pipe 538 on 2018-05-18. The localization
results for these scenarios are displayed in Fig. 8 and Fig. 9.

It may be observed that MB yields the same solution when
both leaks are occurring and when only 538 remains active,
whereas DD is able to include both leaks in the candidates
set, and then marks leak 538 once the previous one is fixed.

This results help us conclude that model-based approaches
can struggle to handle multi-leak scenarios if one leak is
not correctly localized (considering the necessary model
update), while data-driven approaches can yield correct
localization results in such situations, because they do not
base their operation on the study of previous leaks.

4. CONCLUSIONS

This article presents a comparative analysis of model-
based and data-driven leak localization methodologies.
The goal of the work is to derive criteria and guidance
for the selection of leak localization methods, considering
the specific requirements and goals of the problem at hand.

Indeed, utilities may be concerned with different leak
size, network size, intervention-crew organization and in-
vestment budget for sensor placement, data management
and/or model design and calibration. Then, different spe-
cific water networks pose different leak localization prob-



Fig. 8. Localization result for simultaneous leaks 628
and 538: (a) Model-based; (b) Data-driven (candidate
selection); (c) Data-driven (node-level)

Fig. 9. Localization result for leak 538: (a) Model-based;
(b) Data-driven (candidate selection); (c) Data-driven
(node-level)

lems, depending on the existence (or not) of a well-
calibrated hydraulic model with accurate demand estima-
tion and the availability of sensor data. These are key
factors to consider when choosing a valid localization ap-
proach. Similarly, model-based and data-driven methods
differ in how they cope with multiple-leak or changes in

the WDS. All of these aspects are analysed using the
benchmark areas of the BattLeDIM2020 challenge.

These results illustrate how model-based approaches are
robust even if the number of sensors is reduced, although
their performance is conditioned by model calibration and
demand data availability. With an appropriate amount
and distribution of sensor data and a basic knowledge
about network connectivity, data-driven methods can pro-
vide valid search areas for leak localization, even if no reli-
able demand data are available. The comparative analysis
provided in this work may prove useful for water network
utilities to decide on investments for water loss reduction.
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