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Abstract— This paper presents a data-driven fault detection
method combining structural analysis (SA) and machine learn-
ing data-driven algorithms. Given a graphic (or textual) system
description and the available inputs/outputs measurements, the
structure of analytical redundancy relations (ARRs) between
some inputs and outputs can be determined with the aid of the
SA of the system. Then, using a machine learning data-driven
approach applied to historical data, analytical relations between
inputs and outputs can be obtained. Thereby, instead of finding
ARRs from physical mathematical model, ARRs are obtained
combining SA and data-driven approaches. In this paper, the
adaptive network fuzzy inference system (ANFIS) data-driven
approach is used to implement the diagnosis system. Once the
ANFIS model has been identified, it is reformulated in linear
parameter varying (LPV) form. Then, a fault detection scheme
based on a LPV Kalman filter and pole placement method
is developed. A well-known case study based on a four-tanks
system is used for illustrative purposes.

I. INTRODUCTION

The diagnosis of complex industrial systems has always
been an important feature to consider in industrial technical
context. In any industrial system, the occurrence of faults
may cause unfavorable consequences of different degree,
from temporary interruption of the system to permanent
paralysis. Thereby, in-time correct detection of faults can
reduce significantly possible losses to these systems. Fault
diagnosis has been studied during long time by investigators
from different communities, mainly from automatic control
and artificial intelligence ones [1]. Both communities have
developed their own diagnosis approaches: the FDI (Fault
Detection and Isolation) approaches, based on engineering
disciplines, such as control theory and statistical decision
making and the DX (Diagnosis) approaches, based on the
fields of logic, combinatorial optimization, search and com-
plexity analysis. In the last years, some fault diagnosis
methodologies have been developed taking profit from both
FDI and DX approaches [2]. Both approaches require quan-
titative of qualitative models of the system to carry out
the fault diagnosis. The basic model-based fault diagnosis
approach consist in comparing the observed behaviour of
the system to its expected behaviour given by the model
prediction. This comparison can be carried out by means
the computation of a residual resulting from the difference
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of a process measured variable and its estimation provided
by a model. Ideally, residuals must be zero to guarantee
the correct functionality of the system but there are always
external disturbances and modelling inaccuracy that make
residuals deviate from zero even in a fault-free scenario. So,
model uncertainty has to be taken into account in the fault
detection stage for example by means of the computation of
a threshold that takes into account the maximum value of
model uncertainties. The determination of the threshold to
distinguish true faults from irrelevant signal fluctuating is a
key point in the performance of the fault detection. The elec-
tion of this threshold is a trade-off between the proportion of
times that the detection is activated in a fault free scenario or
false alarm rate (FAR) and the proportion of detected faults
or fault detection rate (FDR) [3]. So, it is crucial to obtain
a mathematical model as exact as possible to describe the
system to be monitored. But, the availability of an accurate
model is complicated in some complex industrial systems.
As mentioned in [4], to overcome the difficulty of obtaining
a mathematical model of a system which is required for the
majority of current diagnosis methods, instead of finding the
exact physical equations of the system, methods that only
require structural ARRs (Analytical Redundancy Relations)
of the system obtained by means of Structural Analysis (SA)
and data are reviewed in [5].

This paper presents a data-driven fault detection method
combining structural analysis (SA) and machine learning
data-driven algorithms. Given a graphic (or textual) system
description and the available inputs/outputs measurements,
the structure of analytical redundancy relations (ARRs) be-
tween some inputs and outputs can be determined with
the aid of system SA. Then, applying a machine learning
data-driven approach (for example, the so-called adaptive
network fuzzy inference system (ANFIS) [6]) to historical
data, analytical expressions between inputs and outputs can
be obtained. Thereby, instead of finding ARRs from physical
mathematical model, combining SA and ANFIS using histor-
ical data, a set of data-driven ARRs can be obtained and used
to implement a diagnosis system. Once the ANFIS model has
been identified, it is reformulated in linear parameter varying
(LPV) form. Then, a fault detection scheme based on a LPV
Kalman filter and pole placement method is developed. A
well-known case study based on a four-tank system is used
for illustrative purposes.

The paper has the following structure: Section II presents
the general problem statement, and it is followed by the
Section III where state estimation is developed. In Section IV,
a case study of four tanks is introduced to show the practical



Fig. 1. ANFIS training with inputs

application of the proposed method. Finally, Section V draws
the conclusions of the present paper.

II. PROBLEM STATEMENT

Given a system with measured inputs u ∈ ℜnu and outputs
y ∈ ℜny . Using structural analysis [7], an ARR structure can
be determined relating system inputs and outputs without
having the physical mathematical model:

ŷi(k) = fi(yi(k − 1), ..., yi(k − na), y¬i(k−1), ...

..., y¬i(k−na)
,ui(k − 1), , ..., ui(k − na))

i = 1, ..., ny (1)

where ŷi(k) ∈ ℜ represents the estimation of the i-th
component of y at instant k, fi() is an unknown complex
function of order na. Without any structural analysis

y¬i(k − j) = y(k − j)\yi(k − j) j = 1, ..., na (2)

ui(k − j) = u(k − j) j = 1, ..., na (3)

but if structural analysis is available, the number of compo-
nents of y¬i(k − j) and ui(k − j) could decrease. Defining

vi(k − j) = (y¬i(k − j) ui(k − j)) j = 1, ..., na

equation (1) can be rewritten as

ŷi(k) = fi(yi(k − 1), ..., yi(k − na), vi(k − 1), ...

..., vi(k − na))

i = 1, ..., ny

(4)

The consistency of model (4) and the actual behaviour of
the system can be assessed by means the difference (residual)
of the actual output yi(k) and its estimation

ri(k) = yi(k)− ŷi(k) i = 1, ..., ny (5)

In a fault-free scenario, residuals ri(k) are different from
zero because of modelling errors and noise. If enough fault-
free data is available a threshold σi can be computed as
the maximum observed error and used for fault detection
purposes as {

ri(k) ≤ σi ⇒ No Fault
ri(k) > σi ⇒ Fault

(6)

Model (4) can be fit considering non-faulty historical data
and assuming linearity or some kind of non-linearity in

function fi() using computational tools [8] or using other
parameter estimation techniques.

In artificial intelligence community, there are two main
parameter estimation techniques, which are fuzzy logic and
artificial neural network. Regarding to fuzzy logic, any
member is included in a cluster with different membership
degrees. An artificial neural network is a method of learning
with samples, it is formed by artificial neurons. Lately, the
adaptive network fuzzy inference system (ANFIS) hybrid
method was proposed which is a combination of the two
mentioned techniques above. In ANFIS, the advantages from
both techniques are combined: learning ability and relational
structure of the artificial neural networks and decision-
making mechanism of the fuzzy logic [9].

ANFIS training approaches contain two different parame-
ter groups: premise and consequence. The determination of
these parameters is carried out by some predefined optimiza-
tion algorithms, which will affect the approach performance,
so the selection of optimization algorithm is an important
feature to consider.

Using ANFIS and the structure of model (4), the model
can be formulated as the following LPV-IO form:

ŷi(k) = −
na∑
l=1

ai,l(pi(k))yi(k − l) +

na∑
l=1

bi,l(pi(k))vi(k − l)

+ ei(pi(k)) (7)

where

ai,l(pi(k)) =
Nv∑
j=1

µj
i (pi(k))a

j
i,l

bi,l(pi(k)) =
Nv∑
j=1

µj
i (pi(k))b

j
i,l

ei(pi(k)) =
Nv∑
j=1

µj
i (pi(k))e

j
i

pi(k) = (yi(k − 1), ..., yi(k − na), vi(k − 1), ..., vi(k − na))

with Nv equal to mf
nu where mf and nu represent the

number of branch in the fuzzification layer of ANFIS struc-
ture and input variables number, respectively.

Therefore, the system in LPV-IO form can be rewritten in
the following state-space (SS) representation:

x̂i(k + 1) = Ai(pi(k))x̂i(k) + Bi(pi(k))vi(k) (8)
ŷi(k) = Cix̂i(k) + ei(pi(k)) (9)

where

Ai(pi(k)) =


0 0 · · · 0 −ai,1(pi(k))
1 0 · · · · · · −ai,2(pi(k))

0
. . .

. . .
. . .

...
...

. . .
. . . 0 −ai,na−1(p(k))

0 · · · 0 1 −ai,na(pi(k))

 (10)

Bi(pi(k)) =


bi,1(pi(k))
bi,2(pi(k))

...
bi,na−1(pi(k))
bi,na(pi(k))

 (11)



Ci =
(
0 0 · · · 0 1

)
(12)

xi(k) =


yi(k)

yi(k − 1)
...

yi(k − na + 1)
yi(k − na)

 (13)

Matrices Ai and Bi of LPV model (8) can be expressed as
a polytopic interpolation of vertex Aj

i and Bj
i j = 1, ..., Nv

are that in the case of Aj
i the vertex are defined as

Aj
i =



0 0 · · · 0 −µj
i (pi(k))a

j
i,1

1 0 · · · · · · −µj
i (pi(k))a

j
i,2

0
. . . . . . . . .

...
...

. . . . . . 0 −µj
i (pi(k))a

j
i,na−1

0 · · · 0 1 −µj
i (pi(k))a

j
i,na


(14)

III. LPV STATE ESTIMATION

According to [10], an autoregressive-moving average
(ARMA) residual can be obtained applying the estimation
provided by (8) in (5). ARMA residuals present some
problems with error models, disturbances and error noises
and usually are formulated as Luenberger observers [11]
that add a proportional feedback of the error to the state
estimation. As in the case of (8) matrix Ai depends on pi(k),
proportional gain matrix Li will also depend on pi(k) and
the output estimation will be given by

x̂i(k + 1) = Ai(pi(k))x̂i(k) + Bi(pi(k))vi(k)
+ Li(pi(k))(yi(k)− ŷi(k))

(15)

ŷi(k) = Cix̂i(k) + ei(pi(k)) (16)

with Li(pi(k)) expressed in polytopic form as

Li(pi(k)) =
Nv∑
j=1

µj
i (pi(k))L

j
i (17)

where Lj
i j = 1, .., nv are the vertex of Li(pi(k)).

In present paper, two observer-design methods will be
used: Kalman filter and Pole placement methods.

A. Kalman filter

Kalman filter computes the optimal estimation when the
system is affected by state disturbance and process noise
denoted as w(k) and n(k) in the following equation

xi(k + 1) = Ai(pi(k))x̂i(k) + Bi(pi(k))vi(k) + w(k) (18)
yi(k) = Cix̂i(k) + ei(pi(k)) + n(k) (19)

The gain of Kalman filter is computed in the following
way:

Lj
i = Wj

iY j = 1, .., Nv (20)

with Wj and Y obtained by means the LMI:

(
γIna Ina

Ina
Y

)
> 0 (21)


−Y YAj

i

′
− Wj ′C′

i YH′ Wj ′

Aj
iY − CiWj −Y 0 0

HiY 0 −1 0
Wj 0 0 −R−1

i

 < 0

(22)
where Ina

is the identity matrix of na order, Ri and Hi take
into account the disturbance and process noise bounds.

B. Pole placement

Another observer-design method is the pole placement
approach that considers the poles of the system and with
the observer matrix gain place the poles to a given region
of the complex plane in order to accomplish some specific
performance in state estimation (15).

Lj
i = −WjP−1 j = 1, .., Nv (23)

with Wj and P computed as follows

P > 0 (24)

PAj
i − WjCi + (PAj

i − WjCi)
T + 2α1P < 0

PAj
i − WjCi + (PAj

i − WjCi)
T + 2α2P > 0

(25)

where α1 and α2 define the vertical band of LMI region.
Their values are determined considering poles of general
state estimation (15).

C. Fault detection strategy

Once both observers described above have been designed,
residuals ri1(k) and ri2(k) can be computed applying the
estimation provided by (15) in (5) considering Li(pi(k)) with
observer gains Lj

i j = 1, .., Nv in (17) computed following
the Kalman approach (ri1(k)) and pole placement approach
(ri2(k)). As in a fault free scenario in the presence only
of model error and sensor noises, the Kalman filter should
provide the optimal estimation, ri1(k) can be used as in
(6) considering a threshold σi1 computed as the maximum
observed error by the Kalman observer with fault free data.
Once that a fault has been detected, as not only model
errors and sensor noises are present in the system Kalman
observer loose the optimality. Then, ri2(k) can be used in
(6) considering a threshold σi2 computed as the maximum
observed error by the Pole placement observer.

IV. APPLICATION EXAMPLE: FOUR-TANKS SYSTEM

The four-tanks process proposed in [12] and that was
used in [13] for fault diagnosis purposes will illustrate the
effectiveness of the method proposed in this paper. The
inputs are u1 and u2 (input voltages to the two pumps) and



the outputs y1, y2, y3 and y4 (levels of the four tanks). Inputs
and outputs are related by physical equations

y1(k) = y1(k − 1)− a1

A1

√
2gy1(k − 1)+

a3

A1

√
2gy3(k − 1) + γ1k1

A1
u1(k − 1)

y2(k) = y2(k − 1)− a2

A2

√
2gy2(k − 1)+

a4

A2

√
2gy4(k − 1) + γ2k2

A2
u2(k − 1)

y3(k) = y3(k − 1)− a3

A3

√
2gy3(k − 1)+

(1−γ2)k2

A4
u2(k − 1)

y4(k) = y4(k − 1)− a4

A4

√
2gy4(k − 1)+

(1−γ1)k1

A4
u1(k − 1)

(26)

Considering only input/output information of the four-tank
system and assuming first order function fi, the four outputs
and two inputs can be used in a model (4) that for the
particular case will be

ŷi(k) = fi(yi(k − 1), vi(k − 1)) i = 1, ..., 4 (27)

where

vi(k−1) = (y¬i(k − 1) u1(k − 1) u2(k − 1)) i = 1, ..., 4
(28)

However, by means structural analysis of the system and
in particular using Minimal Structurally Over-determined
(MSO) set approach (see [7] for more details), the following
set of ARRs are obtained:

ŷ1(k) = f1(y1(k − 1), y3(k − 1), u1(k − 1))

ŷ2(k) = f2(y2(k − 1), y4(k − 1), u1(k − 1))

ŷ3(k) = f3(y3(k − 1), u2(k − 1))

ŷ4(k) = f4(y4(k − 1), u1(k − 1))

(29)

The number of parameters in these last equations is
significantly less than in (27). For example, if we focus on
ŷ3(k) computed in (27) with v3(k − 1) defined in (28) with
five components: y1(k−1), y2(k−1), y4(k−1), u1(k−1) and
u2(k − 1). With the structural analysis, ŷ3(k) is computed
in (29) with v3(k − 1) = u2(k − 1), i.e, with only one
component.

Then, by means of ANFIS method using available fault
free historical data, considering minimal branches in fuzzifi-
cation layer (mf = 2) and input variable number (nu = 2),
the following LPV-IO model is obtained:

ŷ3(k) = −

 4∑
j=1

(µj
3(p3(k))a

j
3

 y3(k − 1)+

 4∑
j=1

(µj
3(p3(k))b

j
3)

u2(k − 1) +

 4∑
j=1

(µj
3(p3(k))e

j
3


(30)

where
p3(k) = (y3(k − 1) u2(k − 1)). (31)

Thereby, the LPV-IO form shown before can be rewritten as
SS form as follows:

x̂3(k + 1) = A3(p3(k))x̂3(k) + B3(p3(k))v3(k) (32)
ŷ3(k) = C3x̂3(k) + e3(p3(k)) (33)

where
A3(p3(k)) = −a3,1(p3(k)) (34)

B3(p3(k)) = b3,1(p3(k)) (35)

C3 = 1 (36)

x3(k) = y3(k) (37)

In the same way, the LPV-IO state space model of ŷ1(k)
can be obtained:

ŷ1(k) = −

 8∑
j=1

(µj
1(p1(k))a

j
1

 y1(k − 1)+

 8∑
j=1

(µj
3(p1(k))b

j
1)

(
y4(k − 1)
u2(k − 1)

)

+

 8∑
j=1

(µj
1(p1(k))e

j
1


(38)

x̂1(k + 1) = A1(p1(k))x̂1(k) + B1(p1(k))v1(k) (39)
ŷ1(k) = C1x̂1(k) + e1(p1(k)) (40)

where
A1(p1(k)) = −a1,1(p1(k)) (41)

B1(p1(k)) = b1,1(p1(k)) (42)

C1 = 1 (43)

x1(k) = y1(k) (44)

Finally, the other two LPV-IO state space models (ŷ2(k)
and ŷ4(k)) can be acquired analogously.

Once the system is represented in SS form, the diagnosis
of itself can be developed. In particular, the Kalman filter and
Pole placement observers are designed for the four outputs
and thresholds σi1 and σi2 are computed as the maximum
errors provided by the observers using fault free data. Then,
fault detection can be applied as described in Section III.
Some results are shown in the following.

As it is shown in Figures 2 and 3, in a fault-free scenario,
the real level evolution of system (black color curve) is well-
fitted with the estimation of Kalman filter observer (green
color curve) which can prove the excellent performance of
the Kalman filter observer in the case without presence of
any fault. Then the corresponding residual evolution is also
presented in both figures. Figures 4 and 5 and the upper
part of Figures 6 and 7 show the same variables (tank
levels, Kalman estimations and residuals considering Kalman
approximation) when a sensor output fault of 4cm magnitude
appears at t = 200s. As it can be observed in upper part of
Figures 6 and 7, after the fault is detected using (6) appears
what is known as ”fault following effect” [11] and the fault
is only detected for a short period of time. This problem is
solved by means the strategy of the commutation of the use
of the Kalman residual to the Pole placement residual when
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Fig. 2. Up: Tank 2 level (y2(k))in a fault-free scenario with Kalman
estimation in green and real output in black. Down: Residual r22(k) and
bounds defined by threshold σ22
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Fig. 3. Up: Tank 4 level (y4(k)) in a fault-free scenario with Kalman
estimation in green and real output in black. Down: Residual r42(k) and
bounds defined by threshold σ42
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Fig. 4. Up: Tank 2 level (y2(k)) in a sensor fault scenario at t = 200s
Kalman estimation of green and real output in black. Down: Detail around
fault time
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Fig. 5. Up: Tank 4 level (y4(k)) in a sensor fault scenario at t = 200s
Kalman estimation of green and real output in black. Down: Detail around
fault time
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Fig. 6. Up: Tank 2 level residual (r2(k)) in sensor fault scenario using
Kalman estimation. Down: r2(k) in the same scenario but using Kalman
estimation until fault detection time and Pole placement observer afterwards
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Fig. 7. Up: Tank 4 level residual (r4(k)) in sensor fault scenario using
Kalman estimation. Down: r4(k) in the same scenario but using Kalman
estimation until fault detection time and Pole placement observer afterwards

a fault is detected as it is shown in the lower part of Figures
6 and 7. In this case, the fault alarm remains the excellent
fitting with real output before fault occurs and once inside
fault scenario, the fault alarm remains activated over time.

V. CONCLUSION

The present paper proposes an approach which combines
SA and ANFIS to develop the fault diagnosis of complex

systems. As result, the exact model of system is no longer
indispensable, instead the structural information is needed
which can be extracted from the given system description
in order to acquire the corresponding structural ARRs. Af-
terwards, these ARRs can be transformed into analytical
ARRs with aid of ANFIS using available historical data. As
mentioned in Section III.C, this approach combines Kalman
filter and Pole placement method to develop the estimation
of model in the scenario with presence of fault. A four-
tanks example has been used to show the performance of
the proposed approach. The fault-following effect can be
observed using only Kalman filter and the incorporation of
Pole placement method has improved the performance of
fault detection. The considered faults correspond to sensor
faults of the 4 obtained ARRs which are the most critical
faults in this context.
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