
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 1

Model Predictive Control for Dynamic Cloth Manipulation:
Parameter Learning and Experimental Validation

Adrià Luque, David Parent, Adrià Colomé, Member, IEEE,
Carlos Ocampo-Martinez, Senior Member, IEEE, and Carme Torras, Fellow, IEEE

Abstract—Robotic cloth manipulation is a challenging problem
for robotic systems. Textile items can adopt multiple configura-
tions and shapes during their manipulation. Hence, robots should
not only understand the current configuration of the item but
also be able to predict its future possible behaviours and perform
real-time control during manipulation. This paper addresses the
problem of indirectly controlling the configuration of certain
points of a textile object, by applying actions on other parts of it
through the use of a Model Predictive Control (MPC) strategy.
MPC allows to foresee the behavior of indirectly controlled points,
while satisfying physical/operational constraints. This is done by
first identifying the optimal control signals that may constitute the
desired future cloth configuration. After that, a dynamic model
of the item will be used and sensor data will allow to update
the belief on the object’s state and close the loop. This paper
investigates how grasping the upper corners of a square piece
of cloth can allow to track a reference trajectory of the pieces’
lower corners. To do so, we propose and validate a linear cloth
model that allows solving the MPC optimization problem in real
time. Reinforcement Learning (RL) techniques are used to learn
the parameters of the proposed cloth model and to tune the
resulting MPC. The full control scheme was implemented and
executed in a real robot, obtaining accurate tracking results in
adverse conditions.

Index Terms—cloth manipulation, model predictive control,
reinforcement learning, robot perception

I. INTRODUCTION

ROBOTS have become a key component for increasing
the productivity in industry since the 20th century. Fur-

thermore, nowadays robots are starting to be part of domestic
environments. In both situations, we can find deformable
objects like textiles. Until now, most robotics research has
focused on rigid object manipulation. However, the textile
industry today encounteres major technological difficulties in
automating parts of their production processes. A simple task
such as taking a cloth garment from a rack and putting it
in a box for shipping is still an unsolved problem which the
industry is trying to find a solution for. Highly deformable
objects represent a major challenge due to their physical

This work was developed in the context of the project CLOTHILDE
(”CLOTH manIpulation Learning from DEmonstrations”), which has received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programmee (Advanced Grant
agreement No 741930). The work is also supported by Project PID2020-
118649RB-I00 funded by MCIN/ AEI /10.13039/501100011033.

All authors are with the Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Barcelona, Spain. {aluque, dparent, acolome,
cocampo, torras}@iri.upc.edu. C. Ocampo-Martinez is also
with the Automatic Control Department, Universitat Politècnica de Catalunya
- BarcelonaTECH, Barcelona, Spain. carlos.ocampo@upc.edu.

Implementations available at https://github.com/Alados5/
{mpc_node/mpc_vision/tfm_matlab}

Fig. 1: Picture of the setup used in the real-world experiments

properties: their shape and appearance can continuously vary
during manipulation. Therefore, the robot needs to understand
the cloth current configuration and also predict how its action
will change the cloth state.

In a previous work [1], Dimensionality Reduction (DR)
techniques applied to motion characterization together with
Reinforcement Learning (RL) were successful at learning to
fold a polo shirt. However, the authors realized how sensitive
the output of the action was to any perturbation on the
initial conditions, resulting in large noise when mapping a
robot motion parametrization to the reward function to be
optimized in the training phase. Feed-forward models have
also been used in robotic cloth manipulation [2]. The control
action results from the sum of the outcome of the Inverse
Dynamical Model (IDM) of the robot: the torque necessary to
maintain a tuple of position, velocity and acceleration, and a
PID compensating term that accounts for the model deviation
from ground truth and external disturbances, such as cloth
dynamics. While feed-forward controllers allow for smaller
gains and thus more compliance, they loose precision with
larger unmodelled external disturbances. Ideally, one would
include the IDM of the manipulated object so as to compensate
for its dynamics. While in [3], an IDM model for a rope is
learned through CNNs after 60k training interactions, learning
such models for a cloth garment would be more sample-
expensive and, therefore, it is probably not the best option for
cloth manipulation. Nevertheless, dynamic knowledge of the
manipulated object needs to be included in the control loop.
Otherwise, the behavior of the cloth may drift away from the
desired one, with the controller being unable to compensate
such error, as a model-free, reactive controller can struggle

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 2

to infer the necessary change in commands to correct the
cloth’s behaviour. This fact hinted at the need to include some
kind of predictive behavior and prior knowledge in learning
cloth manipulation. The natural next step is to use a control
technique that makes the robot proactively modify its motion
according to the predictions made based on a cloth model.

A suitable technique along this line is Model Predictive
Control (MPC) [4]. The idea of MPC is to use a mathematical
model of the plant to be controlled together with an opti-
mization algorithm. This algorithm looks for the best possible
control inputs according to a previously defined cost function
in a finite time horizon [5]. The model is used to predict the
future states along that time horizon. In addition, constraints
in the related optimization problem can be specified in a quite
straightforward way. Bhardwaj et al. [6] recently used MPC
to control a robot under certain restrictions (e.g.: joint limits,
collision avoidance, etc.) given its dynamic model. In our case,
the plant to be modelled and controlled is a cloth garment.
Cloth models are represented as high dimensional systems
[7]. These dimensions are required for properly describing
cloth behavior, but they make the control problem harder.
In literature, different cloth models that simulate the internal
dynamics of clothes are available [8]. The models consist
in solving large systems of equations. However, the high
cost of solving these systems limits their utility for real-time
applications [9]. Modeling the dynamics of woven fabrics is a
complex problem widely studied in computer graphics. Most
models available in the literature need to be highly nonlinear
to properly describe a realistic behavior [10]. These non-
linearities will affect the solving speed of an optimization
problem. In other works like [11], the cloth model is included
in the MPC design but the solution takes hours of computation.

Cloth manipulation has been a research challenge with
successful cases such as the PR2 robot folding towels [12],
where a vision-based grasping point detection algorithm is
presented. The robot begins by picking up a dropped towel
on a table, goes through a sequence of vision-based re-grasps
and manipulations and finally stacks the folded towel in a
target location. Despite the impressive results, it takes the
robot almost 25 minutes to recognize the different states
and complete the task. More recently, Yan et al. [13] used
latent representations to learn the dynamic models of non-
rigid objects and used them for planning sequences of actions
in order to obtain a desired state of the manipulated object.
The manipulation is, however, not real-time in the sense that
the models learned are used for predicting the outcomes of
the actions, rather than real-time control. In [11], the authors
presented a technique to synthesize dexterous manipulation of
cloth for physics-based computer animation. An optimization
problem is formulated to find the commanding forces of the
hand so that the cloth follows the reference motion. However,
the computational cost is prohibitive for any real-world sce-
nario. Moreover, in 2018 Erickson et al. [14] presented an
MPC approach that allows a robot to reduce the force exerted
during assisted dressing. Nonetheless, the cloth mathematical
model was not included in their approach to the problem. In
the present work, we are interested in incorporating the cloth
model in the controller so that the robot always considers the

motion of the cloth caused by the movement of its end-effector.
Recent fast folding literature [15] focuses on the perception
and action planning speed, rather than online correction of the
actions. Applications such as folding cloth [16], the authors
used their knowledge about the physics of a folding cloth task
[17]. They pre-trained a neural network in simulation using
domain randomization for robustness and detected a particular
corner of the cloth being folded to correct the robot’s motion
accordingly. However, the method requires extensive training
(in simulation) for each task to be learned. In our case, the
reference motion of the cloth will be represented by the desired
motion of certain interest points. To the knowledge, MPC of
cloth manipulation or a task-independent framework for real-
time robotic control as addressed in this article is not found
in the literature. Several intrinsic features of such a control
strategy are quite convenient when performing automatic cloth
manipulation, e.g., the natural handling of uncertainty given
by the benefits of the online optimization (fact that makes
the control law time-varying) and the explicit consideration
of physical/operational constraints. It is well known that MPC
could suffer from the potentially high computational burden.
However, this paper proposes a predictive control strategy able
to run in real time and with the suitable stability/feasibility
conditions no matter the considered complex setup.

The use-case of this paper is the design, simulation and
final implementation on a real setup of a closed-loop control
strategy aimed to improve robotic cloth manipulation, by using
an MPC that includes a dynamic cloth model which satisfies
both physical and operational constraints. This controller finds
the optimal control inputs (motions of the grasped points)
that yield minimum tracking error, predicting the behavior
of the interest points using a cloth Control-Oriented Model
(COM). This model, built and validated with captured evolved
trajectories of a real cloth piece, focuses on describing the
motion of the aforementioned interest points accurately when
given the control signals (motions of the grasped points), in
contrast with other cloth dynamic models that try to describe
the behavior of the entire piece accurately. RL techniques are
used in order to validate the model and find the optimal tuning
to reduce tracking error. These contributions are validated in
experiments executed in a real robot in real time.

This paper is structured as follows: Section II presents the
cloth manipulation problem. Then, Section III explains our
proposed solution: the linear cloth model and the design of
the MPC controller. Section IV reports on the case study,
specifying differences between simulations and real setup.
Section V present the results, including model validation,
controller tuning, simulations and trajectory tracking in a real
setup. Finally, Section VI draws conclusions of the achieved
results and considers future work directions.

II. PROBLEM STATEMENT

The main application of this paper is to control the move-
ment of a piece of cloth so that certain parts of such cloth, the
interest points, track a reference trajectory, by controlling other
grasped points. The proposed framework serves as a proof
of concept showing the potential of applying MPC to cloth

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 3

u?

rl
𝑦𝑙

rr
𝑦𝑟

u?

Fig. 2: Representation of the trajectory tracking problem

manipulation. We do not include collision scenarios, leaving
this aspect as further work. We assume the robot is holding the
piece of cloth in the air with two pinch grasps. The MPC will
generate changes in the position (x, y, z coordinates) of the
two upper corners, which are our grasped points u ∈ U ⊂ R6

(see Fig. 2), where U = {u ∈ R6 : u ≤ u ≤ u}, with
u and u being the minimum and maximum control signals,
respectively. This situation can also be adapted to a single
robot arm with a rigid link between the grasped points.

In most manipulation applications, the positions of all the
points of the piece of cloth are not relevant for its control,
and the efforts can focus in tracking interest points, which
have a known relationship with the grasped ones, for example
a dynamical model. In our case, defining the trajectory of both
lower corners y = {yr,yl}T ∈ Y ⊂ R6 is enough to generate
a reference trajectory to track, namely r = {rr, rl}T ∈ Y ⊂
R6 (see Fig. 2), where Y = {y ∈ R6 : y ≤ y ≤ y}, with
y and y being the minimum and maximum position values
for each lower corner, respectively. Controlling the position
of the lower corners by only moving the upper corners (the
grasped ones) is not a simple task, specially when they are far
from each other. Dynamic relationships among all the points
of the piece of cloth are mostly nonlinear and depend on
both the position and velocity of the other points of the cloth.
Therefore, we chose to use MPC to foresee the effects of the
robot actions on the cloth.

MPC uses a dynamics model to predict the future behavior
of the system states (and then outputs) along a time-ahead hori-
zon, while physical and operational constraints are satisfied.
In the context of this paper, the predictive control strategy re-
quires a mathematical model to predict the cloth behavior. This
model must resemble the real cloth statically and dynamically.
Multiple theoretical cloth models can be found in the literature,
but most of them are highly nonlinear and not appropriate for
real-time control - considering that the MPC must integrate a
segment of the trajectory at every timestep using such model-
but suitable for simulation. Therefore, we propose to obtain a
linear cloth model, faster but accurate enough, such that the
designed MPC strategy can be used in real time, assuming a
possible loss of realistic system evolving dynamics in extreme
circumstances (e.g., fast dynamics). This reduced model is
described in detail Section III. Thus, as previously explained,
our idea is to use a realistic Simulation-Oriented Model (SOM)
to represent the real cloth in simulation, while the simpler but
accurate enough Control-Oriented Model (COM) is to be used
for control purposes.

Although the control strategy has a certain degree of
inherent robustness, and the controller outputs an optimal
solution to its optimization problem, its formulation includes
several parameters, weights and alternatives that might help
reaching minimum tracking errors. We propose the usage of
RL techniques to learn the best controller structure and its
optimal tuning.

To sum up, the problem consists in finding the optimal
sequence of control inputs (u) via MPC to manipulate a cloth,
making the interest points (y) track a desired reference (r)
while satisfying the physical and operational constraints. To
this end, we will find a fast COM for real-time implementation,
able to reproduce the system dynamics to be controlled, then
use RL to learn its parameters and validate the model against
the behavior of real cloth pieces. The optimal tuning of the
controller together with RL will be found to minimize tracking
error in closed-loop.

III. PROPOSED SOLUTION

The three subsections that follow define the cloth COM to
use in our predictive controller (Section III-A), the control
optimization problem (Section III-B), and specific real-time
requirements (Section III-C).

A. Control-Oriented Model Definition

We propose to use the simplest –and cheapest to evaluate–
cloth model: a mass-spring-damper system [18]. This model
should be able to reproduce the system dynamics to be con-
trolled afterwards, while maintaining a high degree of accuracy
wrt. the real cloth. While there are many ways of building
dynamics models, the one presented here is a computationally
efficient modification of the typical spring-damper system,
that allows the MPC controller to find the proper sequence
of future actions to perform. We use the L1 norm for the
inter-vertex distance, which makes the dynamics of the cloth
a linear system, and define the initial elongation of the cloth
so as to consider the cloth’s own weight. As the camera will
provide feedback on the cloth dynamic evolution, a simple
model is enough for predicting the cloth’s immediate future
behaviour. The resultant COM has been validated against a
complex nonlinear model reported in [19], reaching suitable
performance with bounded errors less than 10%.

Here, the cloth is treated as a system of particles (nodes) in-
terconnected with spring-dampers. Usually, mass-spring mod-
els use three types of connections between nodes to give them
more realism [18]: structural springs, shear springs and flexion
springs. Our goal is not the most realistic model but a fast one
that describes the lower-corners behavior along a prediction
horizon Hp. Note that, whilst we want such a model to fit the
behavior of the lower corners as realistically as possible, the
behavior of rest of the mesh is only enforced indirectly. Hence,
we are only going to use structural springs as shown in Figure
3 with a mesh of N nodes. In a general case, N = nr × nc,
with nr and nc being the number of nodes per row and column,
respectively, but in a square mesh, we have N = n2.

The system in Figure 3 can be represented as a graph of N
nodes belonging to a set I = {1, 2, ..., N} and a set of edges E

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 4

Fig. 3: Mass-spring-damper system with structural springs (N = n2 = 16)

that represent the springs connecting those nodes. Moreover, a
set of neighbouring nodes related to the i-th node is defined as
Ni = {j : (i, j) ∈ E}, where its cardinality is |Ni| = ρ. In our
case, we only use structural springs –which yield a sufficiently
proper results and save computational costs–, therefore, ρ = 4
for the interior points of the mesh. For each particle i ∈ I,
we can compute the resulting force of the springs Si

k in time
step k ∈ Z≥0 as

Si
k =

∑
Ni

−K
∥dj

k∥ − lj0

∥dj
k∥

dj
k,

where K is the spring stiffness, dj
k ∈ R3 is the vector pointing

from the neighbor j ∈ Ni to the particle i ∈ I and lj0 ∈ R>0

is the initial length of the spring connecting that j neighbor
with the i-th particle. The resulting force of the dampers Di

k

is calculated as Di
k =

∑
Ni
−b(vi

k − vj
k), where b is the

damping constant and vk ∈ R3 is the linear velocity of a
particle. Moreover, i ∈ I and j ∈ Ni.

In addition, each particle is affected by the force of gravity
Gi

k = −mig, where mi is the mass of the particle i ∈ I
and g is the gravity constant. By adding these three terms,
we compute the total force F i

k applied to the particle as
F i
k = Si

k+Di
k+Gi

k. Once we have computed all the forces,
we can use Newton’s Second Law to compute the acceleration
as ai

k = F i
k/m

i.
Having the accelerations of the nodes, we can integrate them

over time to obtain the positions and velocities. We describe
this process in the next subsections.

1) Integration of the model: To integrate the acceleration
and obtain the position and velocity of the nodes, we can use
either implicit or explicit integration methods. The former are
stable but require solving large systems of equations [9]. The
high cost of solving these systems limits their utility for real-
time applications. Instead, explicit integration methods are fast
but could have stability problems. To avoid such issues, we
can put enough damping Di

k in the system so that the energy
decreases in a single time step [20]. We propose to use explicit
Euler’s integration method with a given time step ∆t to update
positions and velocities similarly as in [9], with:

pi
k+1 = pi

k +∆tvi
k

vi
k+1 =

dt

m
vi
k +∆taik.

2) Linearizing the spring force dynamics: Even if we have
proposed a fast spring-damper model, the spring force vector
Si
k is nonlinear since it depends on a quadratic norm of state

variables multiplied by other state variables. This norm com-
putes the spring length in three dimensions along k ∈ Z≥0 as

∥dj
k∥ =

√
(pix,k − pjx,k)

2 + (piy,k − pjy,k)
2 + (piz,k − pjz,k)

2.
Instead of computing the L2-norm, we propose to calculate
it as an L1-norm to linearize it by creating three linear
springs, one for each direction of the space. Using this norm,
we propose to associate different stiffness constants for each
direction kx, ky, kz so as to preserve the different behavior in
each direction, i.e.,

Si
k ≈

∑
Ni

−kx(pix,k − pjx,k − lj0x)

−ky(piy,k − pjy,k − lj0y)

−kz(piz,k − pjz,k − lj0z)

 .

With this transformation, we have a whole linear COM that
can be expressed through a state-space realization as

xk+1 = Axk +Buk + fct,

yk = Cxk,
(1)

where x ∈ X ⊂ R6N is the vector of the cloth states (position
p and velocity v in x, y, z of nodes i ∈ I), u ∈ U ⊂ R6 is
the control input vector, y ∈ Y ⊂ R6 is the output vector
(positions of the lower corners) and fct ∈ F ⊂ R6N is
the vector of constant forces applied to each node: gravity
and natural spring length force. Moreover, A ∈ R6N×6N ,
B ∈ R6N×6, C ∈ R6×6N are the system state-space matrices
and X = {x ∈ R6N : p

x
≤ px ≤ px, p

y
≤ py ≤ py, p

z
≤

pz ≤ pz, vx ≤ vx ≤ vx, vy ≤ vy ≤ vy, vz ≤ vz ≤ vz},
where p

i
and pi represent the minimum and maximum position

values for each direction, respectively, whereas vi and vi are
the corresponding minimum and maximum velocities. Note
that the resultant COM in (1) is, in fact, not a linearization
of the dynamics equations, but it is obtained by substituting
the terms that correspond to nonlinear dynamics: the spring
elongation forces.

We previously discussed that the addition of the damping
term guarantees the stability of the system: If we have different
spring constants for each direction, we also need different
damping constants to reduce the energy in each direction.
Similarly as before, we compute Di

k as

Di
k ≈

∑
Ni

bx(vix,k − vjx,k)

by(v
i
y,k − vjy,k)

bz(v
i
z,k − vjz,k)

 .

3) The super-elastic problem: Elasticity is the major draw-
back of the mass-spring cloth model, as it might stretch under
its own weight [18]. Two solutions are found in the literature:
making the springs stiffer or applying a maximum deformation
rate. The former has its limits, as it can unstabilize the model.
With the latter, the elongation of the springs is corrected if it is
over a 10% of the initial length, making the model nonlinear,
and thus the computations slower.

To solve the super-elastic problem, we propose to shorten
the initial length of the linear springs in the vertical direction
in simulation by ∆l0z . This results in an equilibrium in the
vertical direction when gravity is applied, avoiding the mesh
stretching under its own weight (see Fig. 4).

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 5

Fig. 4: Mesh positions showing the super-elastic problem (left) and the result
of applying ∆l0z , correcting it (right)

B. Control Strategy

The main objective of a tracking MPC strategy is to mini-
mize the tracking error while satisfying the system constraints.
Closed-loop stability can be guaranteed if the initial state is
inside the feasibility region x0 ∈ X and the evolution of
the state trajectories remain inside the polytope defined by
the system/operational constraints. The controller has been
obtained considering the following elements:

1) Cost function: The goal is to find a sequence of control
inputs, i.e., the positions of the controlled cloth points, namely

us
k ≜ {u0, . . . ,uHp−1}, (2)

along a prediction horizon Hp such that the lower right and
left nodes y ∈ Y follow the desired trajectories r ∈ Y
as accurately as possible. Moreover, we also want to obtain
smooth trajectories, reducing noise and sudden changes in
acceleration. To this end, reducing the changes in consecutive
control signals or slew rates (i.e., ∆ui = ui−ui−1) instead
of the control inputs has been proven to yield better results
(Section V). The final multi-objective cost function at used at
each time step k ∈ Z≥0 is

Jk =

Hp−1∑
i=0

∥yk+i+1|k − rk+i+1∥2Q + ∥∆uk+i|k∥2R, (3)

where the notation (k + i|k) refers to the prediction at time
step (k + i) based on measurements made at time step k and
integrating the dynamics with the control commands given
by the MPC controller for the next i steps. For i = 0,
∆uk|k = uk|k − uk−1|k. This uk−1|k = uk−1 is the control
input applied in the previous step, and must be given as an
initial condition. Equation (3) will be optimized to find ∆uk|k,
and uk|k = ∆uk|k − uk−1|k Note that (Q,R) ∈ R6×6 are
the weighting matrices of suitable dimensions that prioritize
each term of the multi-objective cost function. Note that, since
the proposed control approach is implemented at a supervisory
level, the displacements generated by the predictive controller
(control signals) are the setpoints to be sent to a regulatory
level (lowest control layer). There, PID controllers (default
robot controllers) are used to convert these displacements of
the grasping points to robot torques. Therefore, robot torques
lie out of the scope of this paper.

2) System constraints: The robot arms that manipulate the
cloth have restrictions of velocity vmax and workspace U,
providing bounds for the search of the optimal computed
control input.

3) Optimization problem formulation: Based on the reced-
ing horizon strategy [5] and considering a fixed prediction
horizon Hp, the goal is to obtain the input sequences that
minimize the tracking errors of the two lower corners while
satisfying all constraints. The controller is based on the
solution of the following discrete-time open-loop optimization
problem (OOP):

min
us

k

Jk, (4a)

subject to

xk+i+1|k = Axk+i|k +Buk+i|k + fct (4b)
yk+i|k = Cxk+i|k (4c)
xk|k = xk (4d)

uk−1|k = uk−1 (4e)
xk+i+1|k ∈ X ⊆ Rn (4f)
uk+i|k ∈ U ⊆ Rm, (4g)

∀i ∈ [0, Hp − 1], where us
k is the sequence of control

signals in (2). Besides, X represents the subspace of the
physical/environmental constraints that can potentially affect
the cloth state, and U is a ball centered around uk with radius
Hp · 1cm, meaning a maximum change of 1 cm per timestep
in the robot’s end effector position.

Assuming the OOP (4) is feasible, there exists an optimal
sequence solution us,∗

k ≜ {u∗
k|k,u

∗
k+1|k, ...,u

∗
k+Hp−1|k}.

The applied control is uMPC
k ≜ u∗

k|k, (i = 0), ignoring the
rest of the sequence. The entire process is repeated at the next
time instant k.

4) Weighting matrix tuning: The Q matrix in (3) is the re-
sponsible of penalizing the tracking errors for each coordinate
of the lower corners, while R penalizes sudden changes and
quick fluctuations in the control signals.

An adaptive tuning of the Q matrix is proposed. In each
time step, we compute the distance vector between the current
position and that of the reference at the end of the prediction
horizon, finding the main direction β in which the lower
corners move along Hp. By normalizing this vector, the final
adaptive weighting matrix Qa is computed as

βk =
|rk+Hp

− yk|k|
∥rk+Hp

− yk|k∥+ ϵ
, Qa,k = diag

[
βk

]
, (5)

where an ϵ term has been included to avoid numerical prob-
lems when the corner is exactly at the reference. We must note
that this adaptive term changes in each time step, as is made
explicit by the k subscript.

This adaptive computation has been studied as a way to
compute the optimal tuning along with different constant
matrix structures. The results of are shown in Section V.

C. Real-Time Control

To work in real time, the controller needs to have a constant
output rate with an updated control signal on every time step
(sampling time Ts). It was observed that sometimes, depending
on initial conditions, optimizations could take longer than the
maximum allowed time (one step), thus slowing down the

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 6

executions. To avoid this, the solver was changed to run in
parallel, and return not only u∗

k|k but the entire sequence us,∗
k

of Hp control signals. This way, the solver can be called with
new initial conditions on every time step, but if an optimization
takes longer than Ts to finish, the controller can output a
sub-optimal solution coming from the most recently obtained
control sequence. This can be done for a maximum of Hp

steps, the length of each sequence, thus a hard time limit was
added to cancel optimizations running for too long. In the end,
a maximum time of TsHp/4 was set empirically, ensuring
there are always at least four optimizations with different
initial conditions in one prediction horizon.

D. Stability analysis

As previously mentioned, the closed-loop stability can be
ensured when the system states remain inside the polytope
described by the system constraints (starting from a feasible
region, x0 ∈ X). However, in a real scenario the reference may
change without a predefined deterministic law and therefore
stability and feasibility are not guaranteed. To deal with this
problem, [21] proposes an MPC formulation for tracking
which ensures recursive feasibility and asymptotic stability
when the reference value changes. This solution is based on
using a reference governor and a predictive controller. The
main idea of the reference governor is to introduce an artificial
reference ra computed to guarantee that the current state is
inside the domain of attraction while tending to the reference
r. To achieve that ra tends to r, a term that penalizes the
deviation l(ra, r) = ∥ra − r∥2T is added in the cost function,
where T is a weighting matrix. The reference r is generated
with an exogenous model

χr,k+1 = fr (χr,k,ur,k) ,

yr,k = hr (χr,k) ,

where χr ∈ X ⊂ R6N is its vector of cloth states, ur ∈ U ⊂
R6 is its control input vector and yr ∈ Y ⊂ R6 is its output
vector. Moreover, fr : Xr × Ur → Xr and hr : Xr → Yr are
nonlinear functions describing the cloth dynamics. This model
is used in open-loop with given inputs ur to obtain a reference
r = yr ∈ Y. Notice that, at this point, the cost function in (3)
becomes

Jk =

Hp−1∑
i=0

∥yk+i|k−rak+i∥2Q+∥∆uk+i|k∥2R+∥rak+i−rk+i∥2T ,

(6)
in order to include the objective of reference tracking
to ensure recursive feasibility of the closed-loop scheme.
Before formulating the optimization problem, we define
the following sequences along a prediction horizon Hp:
χs = {χ1,χ2, ...,χHp

}, us = {u1,u2, ...,uHp−1}, ra,s =
{ra1 , ra2 , ..., raHp−1} and ys = {y1,y2, ...,yHp−1}. Then, the
controller is based on the solution of the following discrete-

time open-loop optimization problem (OOP):

min
us,ra,s

Jk, (7a)

subject to
χk+1+j = Aχk+j +Buk+j + fct ∀j ∈ [0, Hp − 1], (7b)

(χk+1+j ,uk+j) ∈ XHp × UHp ∀j ∈ [0, Hp − 1], (7c)

rak+j ∈ RHp ∀j ∈ [0, Hp − 1], (7d)

(χHp
, raHp

) ∈ Γ = X×R, (7e)

where

R = {r : (xr,ur) ∈ Xr × Ur, fr(xr,ur) = xr,yr = r}

and Γ is a terminal constraint set.
Assuming that the OOP (7) is feasible for χ ∈ X,

i.e., UHp ̸= ∅, there exists an optimal sequence solution
us,∗
k ≜ {u∗

0|k, u
∗
1|k, ..., u

∗
Hp−1|k} ∈ UHp , and then the reced-

ing horizon philosophy [5] sets the MPC law uMPC,k ≜ u∗
0|k

and ignores the computed control inputs from k = 1 to
k = Hp − 1, repeating the whole process at the next time
instant k.

To guarantee the stability of the presented MPC strategy,
the following assumptions are considered.

Assumption 1: The pair (A,B) from (1) is stabilizable.
Assumption 2: The weighting matrices Q,R,T are positive

definite.
Assumption 3: Γ is an invariant set for tracking system (1).

As shown in [22], a possible choice of the terminal constraint
is Γ = {(y, ra) : y = ra}.

Then, the following result can be stated.
Theorem 1: (Limon et al. [21]) Consider that Assumptions

1, 2 and 3 hold. Consider that the target steady state r is
admissible. Then, for any feasible initial state χ0 ∈ X, the
proposed MPC controller asymptotically steers the system to
r in an admissible way.

Proof: The formal proof follows the one presented in
[21] taking into account the use of the terminal constraint set
Γ from Assumption 3.

Remark 1: The target steady state r is admissible because
it is obtained in simulation from the SOM.

Remark 2: Using the pair (A,B), we ensure closed-loop
stability with the linear system (COM). Since we use the
COM in a bounded prediction horizon and since the COM
is validated with the nonlinear model (SOM), closed-loop
stability with the SOM is also guaranteed.

Thus, stability of the closed-loop system can be guaranteed
by using the artificial target ra, which differs from the
reference r in order to guarantee recursive feasibility and
finally converges to r to enforce asymptotic stability.

IV. CASE STUDY DESCRIPTION

This section starts with the specific changes that had to be
incorporated to the previously defined solution for the used
setup with only one robotic arm, described in Section IV-A.
Then we divide the study in two, with simulations in Sec-
tion IV-B and the real setup in Section IV-C.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 7

A. Application to Single-Arm Manipulation

The presented formulation in (7) assumes the evolving of the
two controlled corners are independent, as they are when using
two different robot arms to pick them. In the considered case
study, only one robot is used, and thus the upper corners are
linked together with a rigid piece. This fact means they always
keep a constant distance, adding a new quadratic constraint to
the problem in (7). This new considered constraint changes
such a problem from a linear programming to a Quadratically
Constrained Quadratic Programming (QCQP) problem, but
even if it is more complex, convexity is kept [23], and
computations can be fast. Therefore, the new formulation of
(7) is written as follows:

min
us,ra,s

Jk, (8a)

subject to

χk+1+j = Aχk+j +Buk+j + fct, (8b)

(χk+1+j ,uk+j) ∈ XHp × UHp , (8c)

rak+j ∈ RHp , (8d)

(χHp
, raHp

) ∈ Γ = X×R, (8e)∥∥∥duck+i+1|k

∥∥∥2 = L2, (8f)

for all j ∈ [0, Hp−1], where duc is the distance vector between
the upper corners.

The control signals obtained with the described MPC con-
troller are the displacements of the upper corners of the cloth
in one time step. However, to move one robot, we need a pose
of its Tool Center Point (TCP), which must be computed with
the available data. The position of the TCP can be obtained by
taking the absolute positions of the upper corners of the cloth,
uabs, computing the midpoint and adding a constant offset
(∆h) introduced by the rigid piece that links both corners
together. This offset is always in the ZL axis of the local
cloth base, so it must be transformed to global coordinates
before being added as follows:

∆pL =

 0
0
∆h

→ ∆p = RW
L ·∆pL,

pTCP =
1

2

uabs
1 + uabs

2

uabs
3 + uabs

4

uabs
5 + uabs

6

+∆p.

(9)

The orientation of the TCP is obtained with the same local
reference frame, but inverting the ZL axis to point away from
the robot and into the cloth, as it is a convention in robotics.
The other two axes are swapped for practical convenience,
resulting in RW

TCP = [YL XL -ZL].

B. Simulation

The proposed control scheme is shown in Figure 5. In
simulation, instead of using only two models, one inside
the controller (the COM) and one to simulate the real cloth
(the SOM), we add a third model as an intermediate step,
namely “Backup” Simulation-Oriented Model (B-SOM). This
is motivated by the real setup, where the feedback signal from

the real cloth is the output of a computer vision algorithm,
which is the slowest part of the scheme. Therefore, it takes
multiple time steps to send an updated signal. This issue raises
the necessity of having such a B-SOM model that can i)
provide feedback to the control system if there is none at a
certain step, and ii) can compensate, in the robotic application,
for the time delay in processing the camera data.

Both linear models (COM and B-SOM) follow the equations
presented in Section III, but they can have different sizes. The
nonlinear model SOM substitutes the real cloth in simulation
and is the one presented in [19], where a dynamics validation
between their model and real cloth is performed (errors lower
than 6%). Computationally speaking, this model employs finite
elements to discretize the Lagrangian of the mechanical system
(kinetic energy minus potential energy) but not the equations
of motion. This way, Euler-Lagrange equations are obtained
as a system of ordinary differential equations (ODE) instead
of a partial differential equations (PDE), making integrations
faster. Even then, computations are slower than required for a
real-time application, and this nonlinear model cannot be used
as COM, and is used only in simulation.

The nonlinear model can be discretized with a mesh of
10×10 nodes to achieve realistic behavior [19]. For the linear
models, it was found that a mesh of 4× 4 was enough for the
considered trajectory tracking problem, as shown in Section V.
The proposed solution to be able to use different mesh sizes
together is to make the smaller ones be sub-meshes of the
larger ones. This can be done in square meshes when the side
sizes n follow (nL − 1) = p(nS − 1) for some proportion
p ∈ Z+. Knowing larger mesh sizes increase computational
time, simulations were executed with sizes n = 10 and 13 for
the nonlinear model, and n = 4 and 7 for the linear ones,
testing cases where COM and B-SOM had different sizes or
the same one. It can be checked how a mesh of n = 4 can be
extracted from one of n = 7 and, in turn, this can be extracted
from a larger mesh of n = 13.

To evaluate the trajectory tracking performance, we define
two Key Performance Indicators (KPIs). The first one is related
to the tracking error, and can be obtained first computing the
Root Mean Squared Error (RMSE) of the obtained output over
time, which results in a 6-dimensional vector e. Then this
vector is split into the two corners, to compute the norm of
each error and the final average, i.e.,

e = RMSE(y − r), (10a)

KPI1 =
1

2

(
∥er∥+ ∥el∥

)
, (10b)

KPI2 = τ̄. (10c)
The second KPI is the average computational time per step

τ , without counting the time needed to simulate the nonlinear
model. This is used to check if optimizations are completed
within a time step.

These two KPIs were evaluated executing the same 3D
trajectory with a range of different prediction horizon Hp

values to find a value that yielded low errors with times
under Ts. The results for the case Ts = 0.01 s and n = 4
for both linear models are shown in Figure 6. The vertical
blue line represents the threshold where errors are 10% larger

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 8

Fig. 5: Closed-loop control scheme. The nonlinear SOM substitutes the real cloth in simulation, and the linear B-SOM acts as a fast backup while the real
feedback is processed, which in the real setup can take several time steps

Fig. 6: KPIs depending on Hp, for Ts = 10 ms and n = 4

than the minimum value found at Hp = 50 steps. The red
vertical line corresponds to the moment where times go over
Ts. The window between these lines, Hp ∈ [11, 16] represents
the range of possible values with optimal results. In the end,
Hp = 15 was chosen for experiments in these conditions, as
it presented a smaller error within a tractable computational
cost.

It is worth noting Ts = 0.01s is the most restrictive value
among the tested ones. Larger time steps allow for larger
prediction horizons. On the other hand, larger mesh sizes
(n = 7) are slower, meaning this analysis had to be done
for each specific case, leading to similar results.

C. Experimental Setup
The final closed-loop control scheme was implemented

using ROS Kinetic [24]. Figure 7 shows the full diagram
indicating the different nodes involved. The messages that are
published at a fixed rate (one per time step) are marked with
a solid line, and with dashed lines all which are not. The
separation between dashes is proportional to how slow these
messages are published, with the optimizer being the fastest
among them (it can finish within one time step or take longer,
depending on initial conditions). The Vision Node used needs
around 100ms to process data and publish the mesh positions,
thus its output and the output of the processing node are the
slowest ones. The contents of each message are also specified,
with pC

V being the positions of all nodes expressed relative to
the reference frame of the camera, xW

V being the state vector
obtained with Vision data in world base, and PW

TCP is the pose
of the TCP (position and quaternion) in global coordinates.

The RT Node processes the feedback data and updates the
B-SOM state, the additional backup model needed to have
updated data between real feedback samples, as discussed
before. Every time step, the variable of initial parameters,
P0, is updated and published to the Optimizer Node. The
theoretical rate of the Opti Node is also set to 1/Ts, but
optimizations can take longer than that to complete. Once
done, the full sequence of control inputs, UHp = us,∗, is
published and saved on the RT Node.

The Cartesian Controller Node is used to transform from
a pose in Cartesian space to torques in joint space is the one
developed in [25], wrapped as a ROS node. The hardware
includes a 7-DoF Barrett WAM robot, used in all experiments
with a custom gripper to hold the cloth by its upper corners
(see Figure 8), and a Kinect camera to obtain RGB-D images
as real feedback data.

These images were processed with the Vision Node [26],
obtaining all node positions for a mesh of any given size. As
mentioned, this process is the slowest step in the scheme, at
rates around 0.1s, creating the need of the B-SOM included
in the RT Node.

The Processing Node transforms the vector of positions
before closing the feedback loop. First, positions are expressed
relative to the camera, so a change of base was performed.
The camera reference frame can be obtained with available
data, as we can obtain the pose of the end-effector from both
references: using Forward Kinematics (FK) from the robot,
and adding the known constant offset from the upper central
point of the cloth that the camera is seeing. This can be written
as

TW
C = TW

E · TE
C = TW

E ·
(
TC
E

)−1
, (11)

where W indicates the world/robot reference frame, C the
camera and E the end-effector one. Transform TC

E is computed
in a calibration process as an average inside a time window
(set experimentally to 20 s), as the camera has a noisy output,
with mesh positions varying slightly from frame to frame even
with the cloth being completely still. After calibrating, TW

C is
saved for the experiments.

Besides this change of reference, feedback data also had to
be filtered. With the Vision Node being the slowest part of

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 9

Fig. 7: ROS Diagram of the implemented control scheme, with nodes and connections between them

the system, waiting for the next sample to filter the current
one would add a delay between four and ten steps, which was
deemed too much and thus discarded. From the existing online
filtering options using only current and past data points, the
most commonly used ones are Moving Average (MA) filters
[27], with several variants depending on the weights of the
points considered. The disadvantage of using these filters is
that their output corresponds to an average of the last several
points, which in an actual movement means the filtered output
lags behind the real position of the mesh, pulled back by the
previous positions, adding a form of delay.

The considered variants of MA filters were Simple (SMA),
Weighted (WMA) and Exponential (EMA). The same set of
experiments was executed for all three variants and different
weight values, as well as using no filter. The best results
(KPI1 < 6 cm, KPI2 < Ts) were obtained using EMA, i.e.,

yf (k) = αy(k) + (1− α)yf (k − 1), (12)

with α = 0.66, also obtained empirically. Therefore, this was
the selected filter for all experiments. Other approaches such
as [28] report novel strategies to be used in the design and
implementation of filters for our context, showing promising
results that can be incorporated within the cloth manipulation
setup as further research in the future.

Fig. 8: Picture of the WAM used in the real setup, with details of its end-
effector and piece that connects to the cloth

The filtered feedback data is sent back to the MPC node.
To avoid spurious and unreliable data affecting the system, a
final filtering step discards data points with delays or distances
to the simulated B-SOM over certain thresholds. In the real
implementation, the B-SOM satisfies another important func-
tion when real data is received. The incoming sample can be
received on the RT node with a significant delay with respect
to when it was captured (tc). Setting this data directly as the
current initial state can lead to unsuccessful tracking, hence
the need to update it from tc to current time. This is done
with another instance of the B-SOM simulating the required
steps with a history of previously applied control signals until
the current step, yielding xV . Finally, the B-SOM state vector
xSOM is updated with the new sample with

xSOM ←WV xV + (1−WV)xSOM , (13)

where WV is the Vision weight, analogous to an observer gain,
added to reduce the effect of the remaining noise to the MPC
and obtain smoother evolved trajectories.

As a summary of all the steps the captured Vision data must
go through to close the loop, we show Algorithm 1.

V. RESULTS

All simulations were performed using CPU power only on
an i7-8550U @1.80GHz with 8GB RAM using the optimiza-
tion toolbox CasADi [29] in MATLAB. All real experiments
were executed with the described setup, using ROS Kinetic
(written in C++). All executions were done with a square piece
of cloth of 30× 30 cm.

A. Model Validation

The linear model presented in (1) has seven parameters to
tune in order to follow the same behavior as a real cloth: spring
stiffness kx, ky, kz , damping bx, by, bz and the ∆l0z length
previously introduced. It was found that these parameters
depend on mesh size and sampling time Ts. Therefore, a
combination of parameters was found from training data for
each tested situation.

First, we gathered data of real cloth (open-loop execu-
tions, without MPC) following a set of trajectories, to ensure
movement in all directions of space. After being filtered and
regularized in time, these trajectories were used to find the
parameters of the linear model via black-box optimization.
We used a direct policy search method called Relative Entropy

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 10

Algorithm 1 Closing the loop with Vision feedback data

Require: Camera publishing RGB-D images
1: for each image captured at time tc do
2: Use Vision Node to get the mesh positions p(tc)
3: Apply EMA to obtain pf (tc)
4: Order the node positions left to right, bottom to top
5: Apply a base change from camera to world reference
6: Add velocities to obtain full state vector
7: Publish mesh using acquisition time stamp, xV (tc)
8: Receive mesh on MPC Node: callback function
9: Compute delay ∆t = t− tc

10: if ∆t > ∆tmax then
11: Discard feedback data
12: Exit callback function
13: else
14: Update data using B-SOM ⌈∆t/Ts⌉ steps,

get xV (t)
15: if ∥xV (t)− xSOM (t)∥ > ∆dmax then
16: Discard feedback data
17: Exit callback function
18: else
19: xSOM (t)←WV xV + (1−WV)xSOM

20: end if
21: end if
22: Exit callback function
23: end for

Policy Search (REPS) algorithm [30], which assumes a Gaus-
sian distribution over the parameters and iteratively converges
towards a better solution by maximizing the expected reward
while keeping the Kullbach-Leibler divergence between the
updated distribution and the previous one bounded. As a
reward, we use a function penalizing the squared errors in
node positions for the entire mesh, but with higher weights
for the lower corner nodes, as they will be the output to
be tracked. This parameter optimization process is performed
prior to the solution of the optimization problem in (8) related
to the predictive controller. Therefore, the parameters of the
model are not changing online during execution, preventing
the loss of recursive feasibility.

Learning experiments were conducted to learn the model
parameters for square meshes of sizes n = 4 and 7, and for
time steps of Ts = 10, 15, 20 and 25 ms, obtaining results
for all eight combinations. Figure 9 shows the evolving of
the lower corner positions for the learnt linear model (n =
4, Ts = 15 ms) and the real cloth (dashed black line). We can
see how both evolving trajectories have the same behavior,
with a final RMSE of 1.5 cm.

Even though errors increase with n = 7 and larger time
steps due to small oscillations that try to capture the nonlinear
behavior of the real cloth, the errors are always within the same
order of magnitude, and the lower corner evolving trajectories
of the linear model have the same behavior as the real ones.
Therefore, the model in (1) is validated with a real cloth, with
parameter combinations for all studied cases.

Fig. 9: Lower corner evolving trajectories of the learnt linear model (n =
4, Ts = 15 ms) and the data gathered from the real cloth (dashed line)

Fig. 10: RMSE obtained with all the considered structure options

B. Controller Structure and Tuning

Given the amount of parameters and weights present in
the predictive controller, REPS was also used in closed-
loop simulations to find its optimal structure and tuning. All
experiments were made to learn the weight values inside
matrices Q and R depending on different conditions, with
the following options:

• Using the adaptive weight in (5) or not to obtain Q.
• Minimizing the control signals u or the slew rates ∆u.
• Three different structures of matrices Q and R: scalars

times the identity (qI, rI), with different weights per
coordinate only for Q (Qxyz, rI), or with both having
different weights per coordinate, but with the matrices
being proportional to each other (Qxyz = kRxyz).

• A reward function only penalizing tracking RMSE or also
adding a cost for computational times over the considered
step time (TOV = max(τ̄ /Ts − 1, 0)).

Altogether results in a total of 24 learning experiments
executed. We can organize their results in groups with the same
weight structure and reward function, and make comparisons
purely based on the use of ∆u and Qa, as shown in Figure 10.

The worst results are always obtained using Qa and u
regardless of weight structure and reward function, and the
opposite selection, with a constant Q and ∆u, yields the best
outcome. This is the reason behind using ∆u in (8).

Differences in computational time are minimal, with only
a slight time increase when using ∆u. Knowing how time
measurements are sensitive to memory and CPU usage, and
obtaining roughly the same results with both reward functions,
the second one, with TOV, was discarded for the following
experiments.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 11

Fig. 11: Obtained RMSE using different linear model sizes

The final tracking error is approximately the same regardless
of the chosen weight structure (less than 0.5% difference
between best and worst), and the minimum errors are actually
obtained with the first and simplest option. This means that the
more complex structures, with weights depending on direction,
do not adapt better to the trajectory leading to smaller errors.
Experiments on two other trajectories confirmed this tendency,
which, together with simplicity, pushed us to select the first
structure, with just two weights, leaving only one degree of
freedom to learn as the final controller tuning: the proportion
between Q = qI and R = rI .

Proceeding with more learning experiments, it was observed
that the tracking errors decreased with low R/Q ratios, until
a certain threshold where R is too small and the system can
unstabilize. This behavior was found to be consistent across
all tested trajectories and conditions, with the threshold only
varying slightly between them.

This led us to set a unique tuning to guarantee the best
performance in any given situation. The idea is getting as
close as possible to the limit without crossing it for any case.
A possible combination that works safely for all considered
trajectories is R/Q = 0.2 (e.g., q = 1, r = 0.2). It is worth
noting that, even for the case where the threshold had the
lowest ratio, using 0.2 increased the error less than 1 mm,
which does not represent a great sacrifice in performance.

C. Trajectory Tracking Results

With the scheme successfully tested in simulation, real
experiments were conducted with the conditions explained
in Section IV. To obtain the best trajectory tracking, an
experimental analysis was conducted with two parts. The first
one compared results with different linear model sizes in the
same set of situations, while the second analyzed the effects of
the remaining control parameters (Ts, Hp, WV) on tracking
performance.

1) Linear model sizes: Given that we have two available
sizes and two linear models, and that the COM must be
simpler or the same as the B-SOM, there are three possible
combinations. Executing them in five different situations, we
obtained the results shown in Figure 11. It is clear how
larger mesh sizes yield worse results, meaning the increase in
computational time is more important than the improvement
in accuracy. Therefore, size n = 4 was selected for both linear
models in the following experiments.

Fig. 12: Results of all executed experiments depending on Ts, Hp, WV

2) Control analysis: The range of Ts values analyzed
comes from the obtained parameters through learning, being
10, 15, 20 and 25 ms. The prediction horizon Hp can take any
arbitrary (Z+) value, but thanks to the executed simulations,
we have an indicative range with relatively low errors without
increasing computational times over the limit. As the condi-
tions in the real setup are different with regards to timing and
feedback data, horizons were tested from 10 to 30 steps, in
increases of 5 (10, 15, 20, 25 and 30). Finally, the weight WV

in (13) was tested in increases of 0.1 from 0 to 0.5. While
higher values were also tested, the majority of combinations
resulted in unsuccessful executions. This results in a total of
120 finished real-robot experiments under the same conditions
except for these three parameters. After they were completed,
however, some additional changes were made to test execu-
tions with higher WV . They only worked after reducing the
Cartesian controller gains and using a filter with α = 0.5, but
all cases with WV = 1 finished correctly. This makes a total
of 140 experiments, with all their results shown in Figure 12.
Given the conditions for WV = 1 had to be different from
the rest, and that the obtained results were consistently worse
than their WV = 0.5 counterparts, no values of WV were
tested in between to keep them separated and focus on the
120 executed with the same conditions. It is worth noting that
the worst result within these 120 experiments had an RMSE
of 12.1 cm, thus adding the additional experiments does not
change the color scale significantly. We have also marked all
results within the best 10% of errors, i.e., with an RMSE lower
than 4 cm with a magenta circle.

With these results, we can see how a low Ts combined with
a high Hp does not produce correct tracking. During execution,
these experiments produced several timeouts on the optimizer,
trying to keep up with a very fast rate while predicting a lot
of steps into the future. Other issues were detected during the
execution of all experiments with Ts = 10 ms and WV ≥ 0.3,
where feedback data was consistently being discarded either
for it being too much into the past (could not be updated) or
too distant to the simulated state of the B-SOM. This means
that these experiments actually have an effect of the feedback
data closer to WV = 0 than their actual value, as most of
the time the real data was unusable. Furthermore, a smaller
time step results in an increased difference between the rate at

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 12

which the control signals are computed and sent to the robot
and the rate at which the Vision node outputs feedback data,
being around 10 times slower in these conditions. This makes
computed errors less reliable, as there are fewer captured
points to compare with the reference. With all this, even if
we have some results with really good tracking errors using
Ts = 10 ms, it is clear that this sampling time is too fast
for the majority of cases, and must be avoided to obtain
the best possible tracking results. For both Ts = 15 ms
and Ts = 20 ms, a horizon of 10 steps is too short to
track correctly, regardless of WV . This effect disappears with
Ts = 25 ms, having optimal results with the shortest Hp too,
which means that it is a problem related to total prediction
time and maximum allowed time for the optimizer.

We can also see a tendency of errors increasing with
higher WV , with some optimal results being obtained without
considering the Vision feedback at all. This is a product of
noise, present even after filtering. In the executed experiments,
there were no strong rotations, sudden movements, offsets, nor
other disturbances (e.g., wind or human actions), and the B-
SOM always started in the exact same position as the real
cloth, making its simulated evolution an accurate one without
any added noise. Of course, WV = 0 means the control loop
is not closed, and cannot be applied in a general scenario,
where external forces or initial deviations can make the B-
SOM state have an unreliable evolution, and the real feedback
would have to correct its state. Unfortunately, with the current
camera and Computer Vision algorithms, this comes at the cost
of updating the initial state of the MPC with noisy data, which
can increase optimization times. A general application of this
scheme would need a camera with a faster refresh rate, more
precision, not fixed in place to enable more movements and
orientations without losing the cloth, and a fast and reliable
algorithm to obtain an updated mesh.

All in all, even discarding cases with Ts = 10ms, WV = 0
and 1, and the cases with Hp = 10, there is no delimited region
with optimal results, but a tendency towards longer prediction
horizons as the time step increases and the MPC module
has more time to compute. Even then, the remaining cases,
65 different combinations, yielded errors lower than 5.5cm,
which is not far from the previously considered threshold, and
an acceptable error considering the large range of options it
includes, as well as the precision of the camera and Vision
algorithms used, in the order of centimeters.

3) Final tracking performance: Choosing Ts = 20 ms,
Hp = 25 and WV = 0.2 as an example of a combination
that yielded optimal tracking, with an RMSE of only 3.8 cm,
we can plot the evolved trayectories of all corners, as shown
in Figure 13. We can see how some noise persists, but the
reference is tracked accurately.

Trajectories with changes in orientation can also be tracked.
In the real setup, we were limited by the fixed camera, as
the Vision algorithm infers the mesh of the cloth when the
majority is visible, with the best results being in a fully frontal
perspective. Nevertheless, Fig. 14 shows a trajectory ending
with a rotation of 45◦ followed by a counter rotation of 90◦ .

Fig. 13: Cloth corner evolved trajectories for Ts = 20 ms, Hp = 25, WV =
0.2

Fig. 14: Trajectory tracking with oscillating motion wrt frontal view.

D. Experiments with Disturbances

Two different cases were studied: blocking the camera and
applying forces to the robot arm during execution.

1) Blocking the camera: During execution, a human walked
between the camera and the cloth, covering its view for about
two seconds on two occasions. The obtained results are shown
in Figure 15, where shaded areas correspond to moments
where the camera was blocked.

Sudden changes in captured mesh positions are caught
before updating the state of the linear models and discarded,
so even if we see them in the Vision data, they do not affect
the controller. This is checked with the obtained TCP evolved
trajectories, smooth even during these moments. This can be
achieved thanks to the B-SOM inside the controller, which
simulates the real evolution of the cloth during the moments
where the vision feedback cannot provide updated data.

2) Human-robot interaction: The used Cartesian controller
allows movements in the null space of the WAM without of-

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 13

Fig. 15: Cloth corners and TCP evolved trajectories with camera blocking

fering much resistance [25]. If a human moves the elbow joint,
while theoretically it would not change the TCP pose, during
a real experiment there are slight displacements and forces
that are transmitted from the arm into the cloth, producing
disturbances that are picked up by the camera.

In fact, the captured experiment started with a person
walking in front of the camera as before, and after moving
the elbow joint, the rigid piece connecting the upper corners
of the cloth was pressed down on the right side, causing a
slight rotation and a vibration when released. This situation
can be seen in Figure 16.

The results of this experiment are shown in Figure 17. The
shaded region in magenta corresponds to the interval when the
camera was blocked, as in the previous experiment, while the
region shaded in gray corresponds to the time when a human
agent was interacting with the robot arm.

Blocking the camera has the same effects as before. Moving
the elbow of the arm (from around 11 s to 15 s) produces

Fig. 16: Disturbance created by a person poking the cloth

Fig. 17: Cloth corners and TCP evolved trajectories with human interaction

slight movements in the TCP, which are also visible in the
upper corners, and are propagated to have a greater effect on
the lower corners due to the non-rigid nature of the cloth.
When the rigid piece between the upper corners is pressed
and released around the 15 s mark, we can see how it creates
a sudden disturbance, very clear in the right upper corner,
which adds to the oscillations already present in the lower
corners. Even in these situations, we can see how the reference
trajectory is tracked correctly. In real experimentation, we had
to add a security layer which, in case the difference from
the mesh estimated from vision and the belief in the linear
model is too large, filters out the vision feedback. This was
added to prevent aggressive control reactions to large errors
or flickering in the mesh feedback, and limits the amount of
interaction the robot allows during trajectory tracking. A test
experiment was performed in which the authors held back a
lower corner of the cloth while the robot was moving and,
while the robot started to pivot its gripper to compensate for
it, the safety layer was then triggered and the robot ignored
the deviation from there on, working in open loop.

With these results, we can say that the developed implemen-
tation has proven to work in demanding conditions, and even
under the effects of an external agent creating disturbances
while keeping a good trajectory tracking performance. These
last two experiments yielded RMSEs of 5.5 and 5.6 cm,
respectively, once the incorrect data obtained when the camera
was partially obstructed (magenta regions) had been removed.

E. Error Analysis

A final set of experiments was conducted with a different
trajectory, which was also printed in real scale to record
videos showing the obtained tracking behavior. One of these

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 14

videos can be found in the supplementary material. These
experiments were conducted to test the control scheme in
situations outside the ones used for testing and obtaining the
optimal parameters, and to do an analysis of all the possible
error sources, quantifying each one. From the components of
the used control scheme (Figure 7), the ones that can introduce
significant errors are i) the MPC, ii) the Cartesian Controller,
iii) the physical robot, and iv) the Vision feedback, both from
the actual camera limitations and the processing algorithm.

To evaluate the errors introduced by each of these com-
ponents, we can compare the following data: i) the input
reference, which is a sequence of lower corner positions, ii)
the MPC output, a TCP pose from which we can obtain the
corresponding desired TCP positions, iii) the actual position
of the TCP at all times obtained via IK, and finally, iv) real
Vision data, processed to obtain positions of the entire mesh
every instant, and the lower corners in particular. To compare
TCP (ii & iii) and lower corner positions (i & iv), we can
add a fixed offset of the initial distance between them. This
is an approximation, as the cloth is flexible and their relative
position can change, but these differences are reduced on slow
trajectories, as the tested one.

The new trajectory consists in a sinusoidal movement in the
X-axis while moving closer to the camera at a constant height,
followed by a linear movement to return to the initial position.
Figure 18 shows a comparison of the four aforementioned
signals for the lower right corner in one execution. The MPC
output (plus a fixed offset) follows the reference trajectory
closely in situations of constant velocity, and tends to smooth
out changes in direction. Part of this behavior can be explained
due to its predictive nature, seeing future points after the
direction change, and also given the flexible nature of the
linear cloth model (COM), which will continue going in the
previous direction due to inertia for a short time after the
change. Even without considering these factors, the worst error
is of 4.8 cm, and happens in one of the sharp changes in X.
The RMSE between these two trajectories is only 1.7 cm.

Additionally, we can compare the errors due to orientation,
given that the reference trajectory has the TCP pointing down.
Of course, we cannot say a change in rotation produces an
error of the angle times the entire length of the cloth, as it is
a non-rigid object, but we have a rigid link between the TCP
and the cloth of 9 cm that can produce some position error
due to changes in orientation. In this case, the MPC output
follows the reference almost perfectly, with maximum errors
of 0.1 mm in position due to orientation errors.

Next, we can obtain the error between the desired TCP
pose and the real one, also saved throughout the experiment.
In Figure 18, we can see how these two trajectories (blue
and magenta) are close, with some discrepancies in the Z-
axis and especially on the change of direction in the Y-axis.
The maximum position error between the two is of 2.6 cm,
with an RMSE of 1.7 cm. In the plots, we can see how in
the most critical points (turns), the two mentioned errors are
additive, meaning the actual TCP position is even further to
the input reference. With regards to changes in position due to
orientation errors, here they are more notable, with a maximum
of 1 cm and an RMSE of 5 mm.

Finally, the last signal corresponds to the processed data
from the Vision algorithm. While we could expect this signal
to deviate from the TCP evolved trajectories due to the flexible
nature of the cloth piece, ideally being between the last signals
and the input reference, here we are also adding the errors
produced by the camera itself, with its maximum resolution
and frame rate, and by the subsequent algorithm to detect and
extract the positions of all the mesh nodes, and as we can
see in Figure 18 (red line), as in all previous experiments, the
obtained data is very noisy. Besides that, it is clear how it is
also unreliable in the Z-axis, as the TCP does not change in
this direction, the cloth is always extended vertically, but we
get an evolution with constant changes. This difference being
the most severe in this axis can be due to the table placed
directly under the cloth with the reference trajectory, to serve
as a visual indicator for the videos, which might affect the
detection process. In the X and Y axes, we can see how the
reference is tracked correctly, with the largest deviations being
in the direction changes. While in X the trajectory seems to
be between the TCP and reference, in Y we always have it
further from the reference, adding onto the previous errors.

The final RMSE of the experiment (from reference to Vision
data) is of 4.1 cm, but the error is not constant or distributed
evenly, as it reaches maximums of 4.4, 5.7 and 5.8 cm in X, Y
and Z, respectively. While these errors can seem large at first,
they are the result of adding several sources together, and we
do not have the exact position of the lower corners without
camera noise and error, making difficult the isolation of the
error due to the predictive controller. For example, for the
worst case in the Y-axis, the difference between reference and
MPC output is 1.4 cm, as shown in Figure 19 (in blue), while
the remaining 4.3 cm come from other sources (Cartesian
controller and physical actuators in red, and not predicted cloth
behaviors and Vision error together in yellow). Additionally,
this difference is a conservative measure, as we are adding a
constant offset to the TCP position and not accounting for the
inertia and non-rigid behavior of the cloth, which, in theory,
would help make the real evolution be closer to the input
reference. We can see how this is not the case here, but as
another example, in the X-axis, the captured evolution is closer
to the reference than the MPC output. This is what we would
expect in good tracking, as the MPC must consider these
behaviors and correct them, and the TCP evolution must not
be a perfect copy of the reference trajectory with a constant
offset, as it would be with a rigid piece. In this case then, we
can only remove the error between the desired and actual TCP
pose (around 1 cm) and say that the remaining 3.4 cm of error
are shared between MPC and Vision processing.

All in all, without separating error sources, we obtain values
of KPI1 similar to the ones obtained before, and this new
analysis proves that the errors come from different parts of the
control scheme and are added together, and how the Predictive
Controller itself is not the main source of error.

The trajectory must be slow enough to adapt to the framerate
of the camera and Vision algorithm, which is not part of
the contribution of this paper. A new set of experiments
was carried out to compare results using no Vision feedback
(WV = 0), which means the controller relies completely on the

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 15

Fig. 18: Obtained trajectories of all relevant signals in the control scheme, showing the different error sources

Fig. 19: Mean and maximum errors in the Y-axis of the right lower corner,
and their distribution in different sources

simulation of its model to update the initial states. The MPC
error was consistently larger in open loop, but the vision error
is dominant and makes it hard to assess the types of motions
for which the degradation is statistically significant; this would
require an in-depth analysis using a less error-prone vision
procedure, which is left to future work, as mentioned in the
Conclusions section.

F. Comparison

Evaluating the performance of our proposed cloth manip-
ulation method is currently hindered by the lack of literature
on real-time closed-loop cloth manipulation. Using a classical
controller like PID could be a straightforward solution, but a
PID controller cannot integrate the dynamical model, including
physical/operational constraints, and motion predictions. As a
result, a direct comparison is not possible.

A potentially similar approach using MPC techniques ap-
plied to cloth manipulation can be found in [11], where the
goal of the authors is to have position precision on the entire
cloth. However, whereas they solve the optimization problem
in several minutes, we solve it in milliseconds as we only focus
on the lower corners’ positions. Another existing technique for
cloth manipulation is presented in [12], where a PR2 robot
folding towels is presented. However, the cloth manipulation
is static or quasi-static, as in the majority of the existing
literature. By contrast, our approach is to dynamically ma-
nipulate cloth by incorporating a dynamic cloth model in the
control system. A different dynamic manipulation approach is
presented in [31], complementary to the approach presented
here. It tries to learn cloth movement without a previous

model using RL. However, the learning requires thousands
of simulated samples, and the policies generated for specific
tasks would require further real-robot samples to transfer from
simulation to reality.

VI. CONCLUSIONS

In this paper, we propose an MPC framework to track
reference trajectories of certain indirectly controlled parts
of a deformable object, given an approximate model of its
dynamics and a camera that can update the belief of the
object’s state in real time. Our proposed method is generalistic
as regards the task to be performed, as it is given by a reference
trajectory of the indirectly controlled points. Moreover, our
controller is robust against camera occlusions, thanks to the
dynamics model. We applied this framework to a robotic cloth
manipulation task, in which the lower corners of a square cloth
garment are controlled by the motion of its upper corners. To
the best of the authors’ knowledge, this is the first time that
an MPC using a cloth model is used in real time for this
kind of manipulation. Moreover, we have developed a linear
cloth model that is shown to be an accurate approximation of
real cloth and, therefore, is suitable to be used as a Control-
Oriented Model in the MPC strategy.

Both the linear cloth model and the predictive controller
have been improved via RL. The parameters of the model
have been validated against the behaviour of a real cloth in
several scenarios, and to enable its use inside the MPC, as well
as learning the optimal structure and tuning of the controller.

Simulations showed accurate 3D trajectory tracking results,
yielding mean errors in the order of millimeters for a cloth of
30×30 cm, and solving the optimization problem in near real
time. After the simulations, a full closed-loop control scheme
was implemented in a real setup, including MPC, a Cartesian
controller, and Vision feedback and processing. Working with
a real environment raised additional issues, like noise and
timing, which had to be addressed. The final implementation
runs at a constant rate fixed by the chosen Ts, it filters the
output noise and has fail-saves against optimizations taking
too long and vision data being too unreliable (with a B-
SOM serving as a reference). Tracking errors are larger, to
the order of centimeters, in the real robot, but they include
new sources of error only present in the real setup, such

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, AUGUST 20XX 16

as sensor noise, actuator tolerances, and Cartesian controller
inaccuracies. Even with disturbances, the considered errors are
around the 5 cm, and an error analysis shows its principal
source is not the Predictive Controller, even when considering
a conservative approach.

The outcome of this paper can serve as a proof of concept
of a new methodology for robotic cloth manipulation: using
MPC with cloth dynamics prediction in real-time. A key aspect
that allows for such real-time capability is the fact that, unlike
other approaches [11], we do not need to predict an accurate
evolution for the entire cloth mesh, but rather few relevant
points (e.g., lower corners plus the grasped points). There are,
however, aspects that can be further developed in the future:

• While the cloth models proposed can be changed ac-
cording to the user/task demands and situations, finding
a general expression for the parameters of the linear
model could improve the method described in this paper.
We have seen how these parameters depend on both the
sampling time Ts and the mesh size n, and found the
values for some combinations through learning, but an
interesting step could be to try to find relations between
these two conditions and the resulting parameters, and
with enough time and data, even a model that can be
used for any combination within a given range of values.

• Applying Online Learning. The tuning and controller
structure found have proven to be the optimal ones for the
tested cases, but for a more general application, a learning
algorithm could use recent data during executions to
adapt the parameters of the controller to their optimal
values for the task at hand.

• Change the Vision setup. The current vision procedure
clearly limits the aplicability of the method, thus we are
currently devising a vision strategy to improve the quality
of the feedback and, therefore, allow the robot to carry
out cloth manipulation tasks at higher velocities.

• Model external dynamics. Other dynamic events such as
air resistance were left out of this work, but could be
included in the future by using disturbance estimators
or by complementing the robustness statement approach
already used for compensating/rejecting the effect of the
wind on the cloth behavior.

REFERENCES

[1] A. Colomé and C. Torras, “Dimensionality reduction for dynamic move-
ment primitives and application to bimanual manipulation of clothes,”
IEEE Transactions on Robotics, pp. 602–615, 2018.

[2] A. Colomé, A. Planells, and C. Torras, “A friction-model-based frame-
work for reinforcement learning of robotic tasks in non-rigid envi-
ronments,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5649–5654, 2015.

[3] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine,
“Combining self-supervised learning and imitation for vision-based rope
manipulation,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2146–2153, 05 2017.

[4] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, 2017.

[5] J. M. Maciejowski, Predictive control: with constraints. Pearson
education, 2002.

[6] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “Storm: An integrated framework for fast
joint-space model-predictive control for reactive manipulation,” in 5th
Conference on Robot Learning (CoRL), vol. 164, pp. 750–759, 2022.

[7] X. Man and C. C. Swan, “A mathematical modeling framework for
analysis of functional clothing,” Journal of Engineered Fibers and
Fabrics, vol. 2, no. 3, pp. 10–28, 2007.

[8] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Phys-
ically based deformable models in computer graphics,” in Computer
Graphics Forum, vol. 25, pp. 809–836, Wiley Online Library, 2006.

[9] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Pro-
ceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 43–54, 1998.

[10] X. Hu, Y. Bai, S. Cui, X. Du, and Z. Deng, “Review of cloth modeling,”
in ISECS International Colloquium on Computing, Communication,
Control, and Management, vol. 4, pp. 338–341, 2009.

[11] Y. Bai, W. Yu, and C. K. Liu, “Dexterous manipulation of cloth,” in
Computer Graphics Forum, vol. 35, pp. 523–532, Wiley Online, 2016.

[12] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with appli-
cation to robotic towel folding,” in 2010 IEEE International Conference
on Robotics and Automation, pp. 2308–2315, IEEE, 2010.

[13] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,” in
Conference on Robot Learning CoRL, vol. 155, pp. 564–574, 2021.

[14] Z. Erickson, H. M. Clever, G. Turk, C. K. Liu, and C. C. Kemp, “Deep
haptic model predictive control for robot-assisted dressing,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4437–4444, IEEE, 2018.

[15] Y. Avigal, L. Berscheid, T. Asfour, T. Kröger, and K. Goldberg,
“Speedfolding: Learning efficient bimanual folding of garments,” in
2022 IEEE/RAS International Conference on Intelligent Robots and
Systems (IROS), pp. 1–8, 2022.

[16] J. Hietala, D. Blanco-Mulero, G. Alcan, and V. Kyrki, “Learning
visual feedback control for dynamic cloth folding,” in 2022 IEEE/RAS
International Conference on Intelligent Robots and Systems (IROS),
pp. 1455–1462, 2022.

[17] V. Petrı́k and V. Kyrki, “Feedback-based fabric strip folding,” in 2019
IEEE/RAS International Conference on Intelligent Robots and Systems
(IROS), pp. 773–778, 2019.

[18] X. Provot et al., “Deformation constraints in a mass-spring model to
describe rigid cloth behaviour,” in Graphics Interface, pp. 147–154,
Canadian Information Processing Society, 1995.

[19] F. Coltraro, J. Amorós, M. Alberich-Carramiñana, and C. Torras, “An
inextensible model for the robotic manipulation of textiles,” Applied
Mathematical Modelling, vol. 101, pp. 832–858, 2022.

[20] C. Zhou, X. Jin, and C. C. Wang, “Efficient and stable simulation of
cloth undergoing large rotations,” Computing in Science & Engineering,
vol. 10, no. 4, pp. 30–40, 2008.

[21] D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for
tracking piecewise constant references for constrained linear systems,”
Automatica, vol. 44, no. 9, pp. 2382–2387, 2008.

[22] D. Limón and T. Alamo, “Tracking model predictive control,” in
Encyclopedia of Systems and Control, 2019.

[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[24] Stanford Artificial Intelligence Laboratory, “Robot Operating System -
Kinetic Kame.” https://wiki.ros.org/kinetic.

[25] D. Parent, A. Colomé, and C. Torras, “Variable impedance control in
cartesian latent space while avoiding obstacles in null space,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 9888–9894, IEEE, 2020.

[26] M. Arduengo, C. X. Zheng, A. Colomé, and C. Torras, “Cloth Point
Cloud Segmentation.” https://github.com/MiguelARD/cloth point
cloud segmentation, 2021.

[27] S. W. Smith, “Chapter 15 - moving average filters,” in Digital Signal
Processing (S. W. Smith, ed.), pp. 277–284, Boston: Newnes, 2003.

[28] Y. Zhao, X. He, J. Zhang, H. Ji, D. Zhou, and M. G. Pecht, “Detection
of intermittent faults based on an optimally weighted moving average t2
control chart with stationary observations,” Automatica, vol. 123, 2021.

[29] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, 2018.

[30] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,” in
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[31] R. Jangir, G. Alenyà, and C. Torras, “Dynamic cloth manipulation with
deep reinforcement learning,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4630–4636, IEEE, 2020.

https://wiki.ros.org/kinetic
https://github.com/MiguelARD/cloth_point_cloud_segmentation
https://github.com/MiguelARD/cloth_point_cloud_segmentation

	INTRODUCTION
	PROBLEM STATEMENT
	PROPOSED SOLUTION
	Control-Oriented Model Definition
	Integration of the model
	Linearizing the spring force dynamics
	The super-elastic problem

	Control Strategy
	Cost function
	System constraints
	Optimization problem formulation
	Weighting matrix tuning

	Real-Time Control
	Stability analysis

	CASE STUDY DESCRIPTION
	Application to Single-Arm Manipulation
	Simulation
	Experimental Setup

	RESULTS
	Model Validation
	Controller Structure and Tuning
	Trajectory Tracking Results
	Linear model sizes
	Control analysis
	Final tracking performance

	Experiments with Disturbances
	Blocking the camera
	Human-robot interaction

	Error Analysis
	Comparison

	CONCLUSIONS
	References

