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Abstract— This work explores how contextual information
and human intention affect the motion prediction of humans
during a handover operation with a social robot. By classifying
human intention in four different classes, we developed a
model able to generate a different motion for each intention
class. Furthermore, the model uses a multi-headed attention
architecture to add contextual information to the pipeline, such
as the position of the robot end effector (REE) or the position
of obstacles in the interaction scene. We generate predictions up
to two and half seconds in the future given an input sequence
of one second containing the previous motion of the human.

The results show an improvement of the prediction accuracy,
both for the full skeleton prediction and the human hand used
for the delivery. The model also allows to generate different
sequences with the desired human intention.

I. INTRODUCTION

Human-Robot Interaction (HRI) is a really challenging
research field. While the robot side of the equation is widely
researched and several improvements have been achieved,
the human counterpart is a source of uncertainty during every
HRI activity.

Most HRI studies relay on the human agreeing to follow a
set of rules for the specific task. The human is commonly pre-
sented with a group of tools that trigger different responses
from the robot. The HRI study, then evaluates how the human
can create a relation with the robot using those tools. In
reality, researchers have to be very clear when defining the
rules to human volunteers in order to establish meaningful
experiments.

When we predict how humans will move, we can’t con-
sider only the human himself, we also need to pay attention
to the environment and contextual information related to the
task being performed.

Nonetheless, humans will naturally move in ways that
robots won’t expect. In the end, these unexpected movements
are the result of the human taking decisions based on his/her
perception. We argue that by observing the motion of the
human, robots should be able to classify their human partner
attitude in order to be prepared and answer in the best
possible way. Taking a further step, robots should understand
how different intentions modify the human motion.

In this work we will focus on human-robot handovers. We
want to study how to introduce contextual information and
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Fig. 1. Visualization of the data used by the robot during the integration.
Left: Spatial visualization of the robot. The blue dots represent the current
pose of the human. The green dots represent the predicted pose 2,5 seconds
in the future. Top-right: Scene image seen by a external camera, for
visualization purpose only. Bottom-right: Image recorded by the robot with
the skeleton landmarks information.

human intention in a human motion prediction model. Thus,
our model should be able to both predict the future intention
of the human and to generate different motion predictions
given a desired human intention, all of this considering two
contextual information queues: the position of the REE and
different obstacles in the scene.

II. RELATED WORK

Contextual information has been previously used in other
works that deal with motion prediction.

The approach from [3] is philosophically very similar,
since the model predictions are conditioned on the objects
around the humans, such as tables or doors. The model uses
a GAN architecture to exploit this added information.

Another very interesting work is the one presented by [14],
where they use Transformer VAE, also using attention to
predict the human motion, but they condition their prediction
with the action that the human is performing, which arguably
may be considered as context.

If we look at the human motion prediction field in a wider
sense, we can find different approaches that take advantage
of different model architectures.

In [11] by Martinez et al., the problem is approached as
a time series algorithm, proposing a RNN architecture able
to generate a predicted human motion sequence given a real
3D joint input sequence. Although the results obtained in this
model are quite interesting, the work raises attention in very
particular case: a non-moving skeleton can often improve
results in a L2 based metric. This is commonly the most
studied approach, used in [4] or [6].

The most relevant work for our proposal is Mao et
al. [10], where the temporal joint information is encoded



using a discrete cosine transformation (DCT). This approach
mitigates the problems related to auto-regressive models, and
has yield to very good results in other works such as [1] by
Aksan et al.

The same study of the field can be done in the robotics
side, where there have been previous attempts to introduce
the prediction in human-robot tasks, specifically handovers.

In [5], Hoffman et al. compare anticipatory versus reactive
agents. The first methods tend to feel more fluent and
natural to humans that collaborate with robots, stressing the
importance of being able to predict the intention of the
human partner.

In [7], Lang et al. use a Gaussian Process clustered with
a stochastic classification technique for trajectory prediction
using an object handover scenario. Other studies about the
handover task which focus on human-human handovers are
[13] and [2].

In [12], Nemlekar et al. developed an efficient method for
predicting the Object Transfer Point between a robot and a
human.

III. MODEL

We have developed a new attention deep learning model
based on the Mao et al. [10], which is able to not only predict
the future 3D human motion, but also the human intention.

A. Problem definition

Consider Xp
1:N = [x1, x2, x3, ..., xN ] the motion history

encoding of the human motion, where xi ∈ RK , being K
the number of features describing each pose, in our case the
3D coordinates of each joint.

Our goal is to predict the T future poses Xp
N+1:N+T

and the predicted intention of the human for each predicted
frame.

Furthermore, we want to include also contextual infor-
mation related to the specific task of handover. The first
contextual information we considered is the REE, since the
human goal in the task is to place the object near said end
effector. In consequence, we add a new queue Xr

1:N =
[xr

1, x
r
2, x

r
3, ..., x

r
N ] encoding the 3D motion history of the

REE, being xr
i ∈ R3.

The next contextual information consists on the scenario
obstacles 3D position. We encode the obstacles position
Xo

1:N = [xo
1, x

o
2, x

o
3, ..., x

o
N ], where each xo

i ∈ R3,3 contains
the 3D coordinates of the 3 obstacles. This 3D is considered
as the the obstacle centroid.

For each input sequence Xp
1:N we also define a goal

intention i ⊂ [0, c− 1] where i ∈ N and c is the number of
defined intention classes (more details in Section IV). This
value defines the intention that the human will express in the
predicted frame îN+1:N+T .

B. Architecture

1) Attention channels: The first modification consists on
the introduction of multiple information channels as our
model input. Whereas the original model only considered
the human 3D skeleton data as input, we wanted to consider

multiple contextual information too. Thus, we created an at-
tention channel for each contextual queue that we considered.

In order to compute the attention scores, we divide each
input sequence Xp

1:N ], X
r
1:N , Xo

1:N into N − M − T + 1

sub-sequences Xj
i:i+M+T−1, being i the time-step index of

the sub-sequence and j the reference to the corresponding
information channel. By creating this division, we ensure that
each sub-sequence is composed by M + T frames, being
our goal to predict these T frames given the M previous
frames. This data structure can be fit in the classical attention
formulation of keys, values and query.

We define all the possible M length segments of the sub-
sequence Xj

i:i+M−1 as the keys. The whole sub-sequence
Xj

i:i+M+T−1 is transformed to the frequency domain using
a discrete cosine transform (DCT), which output is treated
as the value for each key. Finally, we take the last M frames
of the sub-sequence Xj

N−M+1:N as the query.
Before computing the attention scores, the keys and query

are processed respectively by the mapping functions f j
k :

RKxM → Rd and f j
q : RKxM → Rd, which encode the

input data into vectors of dimension d. Both functions are
modeled using neural networks.

kji = f j
k(X

j
i:i+M−1), q

j = f j
q (X

j
N−M+1:N ) (1)

2) Multi-headed Attention: In order to compute the at-
tention scores we use multi-head attention, inspired by [15].
Basically, the same attention operation is computed in par-
allel inside each defined head. Each attention head receives
as input a different embedding kh,ji and qh,j for each head
h ⊂ [1, H]. The attention scores for each information channel
and head are then computed.

ah,ji =
qh,jkh,j

T

i∑N−M−T+1
i=1 qh,jkh,j

T

i

(2)

3) Information fusion: The output of each attention chan-
nel is then computed:

Uh,j =

N−M−T+1∑
i=1

ah,ji V h,j
i (3)

Where each Uh,j ∈ RK×(M+T ). This output is then
concatenated with the rest of heads and fed into a linear
function fh:

U j = fh(U
1,j ∥ U2,j ∥ ... ∥ UH,j) (4)

Finally, we perform a weighted sum of all the attention
channels to obtain to obtain the attention module output:

U = αpUp + αrUrαoUo (5)

4) Intention conditioning: The output U is then com-
bined with the intention conditioning module. The desired
human intention is represented by i. A function fi : N →
RK×(M+T ) is defined to map the intention information:

U ′ = U + i′, i′ = fi(i) (6)



Fig. 2. Layout of the model. The left-side module corresponds to the attention architecture. The attention scores of the human motion, REE and obstacles
positions are computed. An additional input representing the human intention is integrated in the module. The predictor generates both the future human
motion and classifies each predicted skeleton intention.

5) Motion and intention prediction: The output U’ is used
by the graph convolution network (GCN) to reconstruct the
predicted motion of the skeleton X̂N+1:N+T in the same
way than [10]. Additionally, we generate another output for
the GCN: the predicted intention of the human for each
predicted frame îN+1:N+T using additional layers at the end
of the GCN. These layers consist on two one-dimensional
convolution layers with a ReLU activation function between
them. By adding a Softmax layer at the end, we then solve
a multi-class classification problem for each frame.

6) Loss function: In order to optimize our model and
obtain feasible human motions, we implement several loss
terms.

The main loss component is the L2 distance between the
predicted motion joints position and the ground truth position
Lxyz .

We wanted to penalize predictions where the human hand
last position is too far away from the REE since the human
should try to deliver the object, thus we added LREE

consisting on the L2 distance between the human right hand
and the REE.

The predictions shouldn’t be allowed to predict that the
human will cross the obstacles of the scenario, so we added
Lo to the loss to heavily penalize predictions where the
human hips crossed any obstacle.

Finally, we wanted to predict the human intention in each
predicted frame, so we applied a cross-entropy loss Li in
order to tackle the multi-class classification problem.

L = Lxyz + LREE + Lo + Li (7)

IV. DATASET

In our previous work [8] we created a custom dataset in
our laboratory. This time, we wanted to explore with the
idea of obstacles in the scenario and the differences when
the human is the one delivering the object. Thus, we created
a new dataset with new conditions.

The dataset was collected using the anthropomorphic robot
IVO and human volunteers performing a handover task
where the human is the giver and the robot the receiver
(see Fig. 3). In this case, the human takes the role of master
and the robot takes the role of slave, because the robot has
to follow human movements to reach the position of the
object. The human and the robot approach towards each other
avoiding the obstacles and extend their arms to reach their
partner. At the end of this experiment, the human places the
object in the robot end effector and then the robot grasp it.
The delivered object is a 10 cm long cylinder handled by the
human to the robot using always the right arm.

A video of each sequence is recorded using the Intel
RealSense D534i camera placed inside the robot’s head. The
videos are recorded at 10 fps. The recording is finished when
the human places the object in the REE.

The skeleton of the human is extracted from each sequence
using Mediapipe [9] to extract the 2D joint locations on the
image. These 2D joints and the camera depth map data are
used to obtain the 3D coordinates of each joint.

Only the upper body (from the hips to the head) of the
human is used to avoid occlusions of the legs when the
human is close to the robot.

The volunteer delivers a cylindrical object to the robot
in 3 different scenarios: the first scenario has no obstacles,
the second scenario incorporates one obstacle between the



human and the robot and in the last scenario there are 3
obstacles. Since we wanted to have enough data representing
all the different approaches that the human could take to
move towards the robot, we defined different approaching
paths for the humans (see Fig. 3). In the end, we defined 3
paths for the first scenario, 4 paths for the second scenario
and another 4 paths for the last scenario. By creating all these
situations, we wanted to study two separate aspects: how
would our model responds to the human lateral movement
(in our previous work we only considered straight trajectories
between the human and the robot) and how would the
obstacles affect our predictions.

Moreover, we ask the human volunteers to repeat three
times each trajectory: the first time they are asked to perform
the task in a natural way (they perform the master - slave
behavior as expected), the second time they are asked to
perform a random gesture during the task (such as waving
their hands, scratch their heads, checking their smartphones,
...), although they finally deliver the object as expected, and
finally they are asked to walk towards the robot and then not
deliver the object (this is denominated adversarial behavior).
These different behaviors were defined to allow us to study
how different human intentions interfere with the motion
prediction.

Once all the sequences were recorded, we performed a
sanity check of the data using visual inspection. We also
labeled each recorded frame with an intention class. We
considered 4 different intentions: Collaboration, Gesture and
No collaboration.

• Collaboration: the human is willing to deliver the object
to the robot.

• Gesture: the human is performing a gesture (we do
not differentiate between communicative and non-
communicative gestures).

• Neutral: the human does not raise the right hand towards
the robot, but will not make any movement to oppose
the robot.

• Adversarial: the human moves the right hand away from
the robot.

We also record the REE position and the robot odometry
during all the sequences.

We used ten volunteers (5 women and 5 men, ages ranging
from 25 to 60 years old) to perform the recordings. Each
volunteer records all the possible scenarios, totaling 33

sequences for each volunteer. We end up with 330 sequences
in our dataset, each sequence ranging from 4 to 15 seconds.

The human and the robot start each sequence 6 meter away
from each other.

V. TRAINING AND EXPERIMENTAL RESULTS

A. Training details

Since our dataset isn’t very long, we decided to evaluate
our model using the leave one out technique: we first train
the model with subjects 2 to 10 and consider the human 1 as
test and evaluate the accuracy of the model on the human 1
sequences, then we repeat the same but considering human 2
as test. This is repeated for all 10 humans, and we consider
the average accuracy as the result.

For training, we use 50 frames (5 seconds) as input and
output 25 frames(2.5 seconds). We fix the number of heads
to 10, use an Adam optimizer. We perform an ablation study
considering each single feature of the model separately, more
the number of attention heads, the attention channels and the
intention condition.

In order to compare with other methods, we train and val-
idate other human motion prediction models in our dataset.
Since we test these models in our own dataset, the results
obtained might be different to the results provided in their
respective papers, where they usually train their models with
bigger datasets such as H3.6M and AMASS.

All the results shown in Table I are obtained using our
validation dataset.

B. 3D Human motion prediction experiments

We compute the L2 distance in Cartesian coordinates
between our predicted sequences and the ground truth se-
quences for the same input sequence. Table I contains the
computed errors along the test dataset before overfitting over
the training dataset.

We also compute how many frames in the sequence have
an error equal or less than 0.15m and 0.25m, and give the
percentage of successful frames.

Finally, we check the L2 error for the right hand of the
human (HEE), since it is the most important joint in the
handover task.

As we can see in Table I, adding context into our
predictions improve the accuracy of the model. Using the
REE position information reduces the computed error of the
human right hand (used to deliver the object). On top of

Fig. 3. Overview of the three scenarios defined in the dataset from a top-side view. For each scenario, the human is represented by the right figure, the
robot is represented by the left figure and obstacles are represented by the red squares. The paths represented correspond to the human, the robot moves
towards the corresponding point in each sequence.



Fig. 4. Last frame of predicted sequences (green-orange) given the same input sequence using different intention goals, ground truth skeleton (red-blue)
for comparison. From left to right: collaborative, gesture, neutral and adversarial. The collaborative prediction is the one where the predicted right hand
position is closer to the REE (blue dot).

Fig. 5. Handover sequence using the prediction information in ROS environment. The blue dots represent the current position of the human, green dots
represent the predicted position in the next 2.5 seconds.

that, adding the REE information also improves the accuracy
of the whole upper body. A possible explanation is that, by
improving the right hand accuracy, the rest of the body takes
advantage using the spatial relationship between joints.

Adding the position of the obstacles seem to reduce the
amount of frames with error over 35 and 40 cm. This might
happen due to the skeleton being less prone to follow im-
possible paths and thus presenting trajectories more similar
to the ground truth.

Adding the intention conditioning clearly improves the
predicted intention accuracy, but the interpretation of these
result can be misleading. By adding the intention condition-
ing in the model, we are ”warning” the model with the inten-
tion of the ground truth sequence. Thus, this improvement
in accuracy must be carefully considered.

Actually, by conditioning the model with the human
intention we are able to generate different predicted motion
based on the desired intention. Thus, given the same input
sequence, we can generate one predicted motion for each
human intention.

C. Handover Human-Robot validation

The predictor model was integrated in the robot as can be
seen in Fig.5. The model was wrapped in a ROS node and
the model feed forward was computed in a NVidia Jetson
Xavier platform inside the robot. For every new message
coming from the skeleton extractor, the model outputs 25
future frames representing the future 2.5 seconds.

We tested the model with two volunteers that didn’t
participate in the dataset collection and the results were
encouraging. For the intention conditioning, we assumed that
the human would collaborate with the task, but in future
works we would like to use the model predicted intention
for the next time step prediction.

Some model parameters had to be tuned down in order
to achieve real-time performance. We used the REE to
condition the predictions, but considered scenario with no
obstacles.

To test the model, we repeated the task approaching the
robot from different angles and observed that the predictions
were consisting with the human trajectory, always facing
towards the robot in the last stages.

VI. CONCLUSIONS AND FUTURE WORK

We presented an attention based neural model to character-
ize the motion of a human skeleton 2.5 seconds in the future,
performing a handover task with a robotic partner and ob-
taining the future human motion predictions using contextual
information, specifically the the position information of the
REE and obstacles.

We proposed a modular approach to add contextual queues
to the model to enhance predictions in handover tasks, but
the same idea can be extrapolated to other tasks and new
contextual information such as gaze or obstacle positions.

We obtained better results than previous models both
for the average body joints and the human right hand by
adding these contextual queues. Additionally, we are able
to generate different predicted motions by controlling the
desired intention of the prediction.

Given that the model was successfully validated in the
robot, we will further study how human volunteers rate the
handover interaction quality with the robot when using the
prediction information.



Model L2 (m) % Samples ≤ 0.35m % Samples ≤0.40m Right Hand
L2 (m)

Intention
Accuracy

RNN [11] 0.793 3.49 11.62 0.677 -
Hist. Rep. Itself [10] 0.403 34.13 37.14 0.188 -

REE conditioning
no obstacle conditioning
no intention conditioning

0.378 41.65 45.78 0.174 56.45%

no REE conditioning
obstacle conditioning

no intention conditioning
0.444 41.31 44.87 0.187 62.02%

no REE conditioning
no obstacle conditioning

intention conditioning
0.453 30.81 36.15 0.173 86.29%

REE conditioning
obstacle conditioning

no intention conditioning
0.381 41.60 47.38 0.172 74.16

REE conditioning
no obstacle conditioning

intention conditioning
0.375 34.84 38.86 0.162 85.44%

no REE conditioning
obstacle conditioning
intention conditioning

0.387 40.22 43.73 0.17 88.69%

REE conditioning
obstacle conditioning
intention conditioning

0.355 32.15 35.73 0.151 88.90%

TABLE I
RESULTS OBTAINED ACROSS THE VALIDATION DATASET.
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