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Abstract— “Hey, robot. Let’s tidy up the kitchen. By the way, I
have back pain today”. How can a robotic system devise a shared
plan with an appropriate task allocation from this abstract goal
and agent condition? Classical AI task planning has been ex-
plored for this purpose, but it involves a tedious definition of an
inflexible planning problem. Large Language Models (LLMs)
have shown promising generalisation capabilities in robotics
decision-making through knowledge extraction from Natural
Language (NL). However, the translation of NL information
into constrained robotics domains remains a challenge. In this
paper, we use LLMs as translators between NL information
and a structured AI task planning problem, targeting human-
robot collaborative plans. The LLM generates information that
is encoded in the planning problem, including specific subgoals
derived from an NL abstract goal, as well as recommendations
for subgoal allocation based on NL agent conditions. The
framework, PlanCollabNL, is evaluated for a number of goals
and agent conditions, and the results show that correct and
executable plans are found in most cases. With this framework,
we intend to add flexibility and generalisation to HRC plan
generation, eliminating the need for a manual and laborious
definition of restricted planning problems and agent models.

I. INTRODUCTION

Let us consider a scenario in which a human initiates a
collaboration by saying “Let’s tidy up the kitchen. By the
way, I have back pain today”. In this situation, human agents
would be able to use common sense to devise a plan with
specific subgoals, such as storing a spoon in a drawer, and
to allocate these subgoals appropriately, for example, not
assigning the task of tidying up a heavy casserole to the
human with back pain. Now, let us consider a Human-Robot
Collaboration (HRC) where a similar goal is shared, and a
number of specific and executable tasks must be planned and
assigned to each agent. In this case, how can a robotic system
leverage the available abstract information in a natural and
flexible manner to generate an executable HRC plan with
specific subgoals and an appropriate task allocation?

AI task planning may be used [1], [2], but has a main
drawback: the planning problem, including a world model
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(domain) with an initial state and goal (problem), needs
to be carefully designed. This is a time-consuming task,
which often results in a rigid problem definition, difficult
to generalise and adapt to a range of different situations.

Alternatively, Large Language Models (LLMs) can gen-
erate plans with no need for careful design [3], [4], by
extracting common-sense knowledge from Natural Language
(NL), such as an abstract goal. However, this domain-
independent method suffers from grounding problems, often
resulting in plans that are not executable by the robot.

An added challenge arises when planning for HRC, con-
sisting of allocating tasks to different agents based on their
strengths, limitations, or preferences. This remains an open
question, as agent models are often limited and unrealistic,
unable to cover all elements representing the agent states.

In this paper, we propose to combine the strengths of AI
task planning and LLMs for effortless and adaptive HRC plan
generation. We present PlanCollabNL (see Fig. 1), a frame-
work to generate grounded collaborative plans from three
pieces of information: an abstract NL goal, the current scene
state specified in NL (objects, locations, agent conditions),
and the available tasks defined in the planning domain. The
key contributions of this work are:

1) A method leveraging LLMs to derive grounded plan-
ning subgoals from an NL abstract goal and the current
environment state. This eliminates the need for a
manual definition of a specific planning problem goal.

2) A method that uses LLMs to reason about NL agent
conditions and influence the task allocation in the
HRC plan. This eliminates the need for restricted and
unrealistic agent models, and enables a high degree of
adaptability to the collaborating agents’ conditions.

3) A framework that integrates these methods and trans-
lates their acquired common-sense knowledge into a
structured task planning problem implemented using
Planning Domain Definition Language (PDDL) to ef-
ficiently generate grounded plans.

The framework is evaluated for a number of NL abstract
goals and agent conditions, with results showing that exe-
cutable plans with a coherent task allocation between the
agents are obtained in most cases.

II. RELATED WORK

AI task planning for HRC. AI (or automated) task plan-
ning frameworks have been used to efficiently generate and
distribute the sequence of actions required to achieve a shared
goal [1], [2], [5]–[8]. Defining the planning problem consti-
tutes a laborious task, and is usually based on restricted,



NL goal
Let's tidy up the kitchen and prepare a meal.

Subgoal generation

Subgoal allocation
recommendation

NL agent conditions

The human loves to cook.
The human has back pain.

The robot can't pick small objects.

salmon, cooked, oven
mop, used to clean, floor

spoon, stored, drawer

salmon, cooked, oven
mop, used to clean, floor

spoon, stored, drawer

Planning - Collaborative PDDL plan

(move human init table)
(pick human spoon table) 
(move human table drawer) 
(store human spoon drawer)
(move human init counter)
...
(cook human salmon oven)

(move robot init mop_loc)
(pick human mop mop_loc)
(move robot mop floor)
(clean robot mop floor)

1

2

3
   Planning Action Costs (in PDDL)

(cook human salmon oven) --
(clean human mop floor) ++

(store robot spoon drawer) ++

Planning Goals (in PDDL)

(cooked salmon oven)
(used_to_clean mop floor)
(stored spoon drawer)

SCENE DESCRIPTION LARGE LANGUAGE MODEL (LLM) AI TASK PLANNING

NL locations: fridge, sink, oven, drawer 
NL objects: salmon, spoon, broom

PDDL: Planning Domain Definition Language
positive / negative 

favoured / disfavoured 

decreased cost / increased cost 

LLM

LLM

salmon, cooked, oven
mop, used to clean, floor

spoon, stored, drawer

Filtering

Fig. 1. PlanCollabNL: an LLM is used to generate and filter subgoals from an abstract goal and the current environment (1), and later to reason about
the subgoal allocation among the agents, favouring or disfavouring subgoals for each agent based on their conditions (2). This information is encoded into
the PDDL planning problem, translating the LLM output subgoals into PDDL goals, and modifying the action costs based on the LLM recommendations.
The complete planning problem is given to a planner to produce grounded and executable collaborative plans that consider the agent states (3).

not generalisable and closed-world models. This limits the
ability of the systems to deal with complex and abstract
tasks, and to adapt the plan to both the environment and the
contributing agents. We are thus motivated to take advantage
of LLMs’ reasoning abilities, whilst maintaining the use of
AI planning to guarantee sound, complete and executable
solutions, something which LLMs still fail to do [9]. In this
work, the planning problem is defined using PDDL [10],
a standardised planning encoding consisting of two files: a
domain and a problem. The domain includes the definition of
the world and underlying rules, whilst the problem contains
the initial state and goal conditions. Planners are then able to
find a plan based on a search guided by heuristics extracted
automatically from the problem representation.

Agent modelling for plan adaptability. For successful
HRC, the planner should adapt the plan and assign the
appropriate complementary actions to the team members
based on their state and capabilities. In previous work [1], we
targeted the gap between human modelling and its effective
integration in the planning framework. This is something
other works have attempted to do [2], [11], with some of
the elements modelled including factors such as knowledge
[7], [8], capacity, distraction and fatigue [12]–[14]. In these
works, the models are fixed and unable to encompass the full
complexity of the agents’ states. LLMs have been adopted to
model and simulate human behaviour [15], [16], or to learn
human preferences from past experiences [17]. However,
none of the works exploit LLMs to reason about other agents’
conditions for collaborative plan adaptation. In our work, we
remove the need for a limited agent model, by leveraging
LLMs reasoning capacities to influence the plan based on
any agent condition expressed in NL form.

LLMs in robotics planning. Recent studies have show-
cased LLMs’ reasoning and few-shot generalisation abili-
ties, motivating their integration into embodied systems for
decision-making [18]–[20]. Nevertheless, a major challenge
remains in grounding language to the robot capabilities, and

dealing with LLMs’ hallucinations. We identify two lines of
research, where LLMs are used directly as a planner, or as an
auxiliary helper bringing knowledge to the planning system.
When using LLMs as planners, several methods have been
proposed to mitigate grounding issues, including affordance
functions for action feasibility [3], or semantic translation of
plan steps to admissible actions through an LLM [4]. Other
works [21]–[24] add sources of NL feedback such as scene
information or precondition errors during plan execution
to enable dynamic replanning. In [25], the plan is nested
within the LLM-generated policy code for direct execution
by the robot. Although these approaches are promising,
executability issues are still present, raising the question of
whether LLMs are ready to plan and to fully take control of
robot behaviours [9]. The second line of research investigates
LLMs as an auxiliary tool for planning, noting in [26] and
[27] that while LLMs fail to directly solve many problems,
they can be useful in guiding the search. They call for further
research on the topic and highlight real-time implementation
challenges. Other works use LLMs to translate natural lan-
guage to structured PDDL format, focusing on goals [28], ac-
tion definitions [29], or full planning problems [30]. Despite
achieving promising results, directly generating structured
planning language increases the likelihood of syntax errors
and unsolvable plans. We build on the idea of combining the
strengths of grounded AI task planning with flexible LLM
capabilities, bringing adaptability and facilitating the tedious
task of defining a rigid planning problem. In this work,
the planning domain capabilities are not modified. LLMs
reason about planning subgoals, which are then filtered and
grounded before being integrated into the planning problem,
avoiding executability issues and guaranteeing sound plans.
We also notice that none of the works integrating LLMs with
task planning address HRC plans, using LLMs to reason
about the environment’s and agents’ states. The uses of
LLMs to generate grounded and filtered planning subgoals
from an NL goal and to reason about NL agent abilities in



an HRC planning scenario are both novel contributions to
the existing literature.

III. METHODOLOGY

A. Framework

The implemented framework (as seen in Fig. 1) generates
an adapted HRC plan to reach a given abstract NL goal,
taking into account the current scene (objects, locations,
and agent conditions) and the available actions defined
in the planning domain. Regarding the LLM, we utilise
the pretrained GPT-3 [31] without further fine-tuning, and
apply n-shot learning, where the prompt includes n previous
examples. The process consists of three main phases:

1) Subgoal generation and filtering (Sec. III-B): The
LLM initially divides the abstract goal of the plan
(e.g. prepare a meal) into a number of subgoals, in the
form of: “object”, “task (predicate)”, “location” (e.g.,
“salmon, cooked, hob”), considering the current scene
and available actions. These subgoals are generated,
grounded and filtered in three stages.

2) Subgoal allocation recommendation (Sec. III-C):
The LLM reasons about the preferred subgoals’ allo-
cation among the agents based on their conditions.

3) PDDL task planning (Sec. III-D): The outputs from 1)
and 2) are integrated into the PDDL planning problem.
The subgoals are parsed and formatted into PDDL
goals, and the subgoal allocation recommendation is
translated into action costs associated to the relevant
subgoals. The final HRC plan can then be generated by
a planner from the complete domain and the problem.

B. Generation of Grounded Planning Subgoals from an
Abstract NL Goal

The first component of the framework receives an NL
abstract goal from the user and generates grounded planning
subgoals in the form of “object, predicate, location” (e.g.,
“spoon, stored, drawer”). The process is done in three stages,
depicted in Fig. 2. In the first stage, the system generates a
prompt based on a template, incorporating the user’s goal
and the environment information, and queries the LLM
to output a list of subgoals (Fig. 2-Stage 1). The prompt
includes five previous examples, made of the goal, available
predicates, objects, locations, and the subgoals expected as
output. After prompting the LLM with a new goal, the
returned list of subgoals is grounded to the available objects,
locations and predicates in the planning domain (Fig. 2-Stage
2). Finally, the subgoals are filtered with further templated
LLM prompts, generated by the system based on the current
subgoals. Incorrect subgoals are filtered out by the LLM
based on common sense and on their contribution to the
high-level goal (Fig. 2-Stage 3). The full prompts containing
the examples are made available1. This method provides
a robust, natural and effortless way of defining specific
planning subgoals for an NL abstract goal, where all stages
are essential to ensure the executability of the final plan.

1See http://www.iri.upc.edu/groups/perception/#HRC_
TaskPlanningLLM

Subgoal generation and filtering

Stage 1 - Subgoal generation through LLM

Stage 3 - Subgoal filtering through LLM

...n previous examples for n-shot learning...

Goal: I want to tidy up the cuttlery and clean the fridge. 
Predicates: stored, used to clean, served, placed, cooked
Objects: fork, banana, cloth, mop
Locations: sink, drawer, floor, fridge

Subgoals:

fork, stored, drawer
cloth, used to clean, fridge
mop, used to clean, fridge
fork, washed, sink

Common-sense check for each subgoal e.g. mop, used to clean, fridge

Use common sense. Answer yes or no.
A mop is used to clean the fridge. Does it make sense?

No

Goal contribution check for each subgoal e.g. fork, stored, drawer

The goal is: I want to tidy up the cuttlery and clean the fridge. 
Would the following subgoal contribute to the goal? Answer yes or no.
A fork is stored in a drawer.

Yes
Final Subgoals:

fork, stored, drawer
cloth, used to clean, fridge

Subgoals generated:
fork, stored, drawer

cloth, used to clean, fridge
mop, used to clean, fridge

fork, washed, sink

Stage 2 - Ground subgoals to planning domain

Subgoals remaining:
fork, stored, drawer

cloth, used to clean, fridge
mop, used to clean, fridge

fork, washed, sink

Subgoals remaining:
fork, stored, drawer

cloth, used to clean, fridge
mop, used to clean, fridge

1

LLM output

System Prompt

LLM output

LLM output

System Prompt

System Prompt

for subgoal in subgoals:
 if [predicate] not in PDDL domain
 or [object] not in PDDL domain
 or [location] not in PDDL domain:
  discard subgoal

Fig. 2. Subgoal generation stages: in the first stage, an LLM generates a
set of subgoals from a prompt constructed by the framework from an NL
abstract goal. These subgoals are then grounded to the planning domain
capabilities. The third stage filters the remaining subgoals by querying an
LLM on whether they make sense and contribute to the high-level goal.

C. Reasoning About Subgoal Allocation Based on NL Agent
Conditions

In a collaboration, actions should be assigned to different
agents based on their capabilities and preferences. The
second component of the framework takes in the filtered
subgoals along with the given NL agent conditions, and
queries the LLM to identify which subgoals should be
favoured or disfavoured for each agent (see Fig. 3). Note
that the LLM decision does not force the planner to allocate
the actions, but influences the planner allocation, penalising
the corresponding actions with a cost. A detailed explanation
of this process is provided in the next Section III-D. This
approach offers a flexible and efficient means of adapting
the plan to any agent condition expressed in NL form, elim-
inating the need for complex and restrictive agent models.

D. Generalisable PDDL Task Planning Problem Definition

The planning problem is defined in PDDL [32] and
consists of a domain, including the object types, predicates,



Subgoal allocation recommendation

Subgoal allocation recommendation through LLM

...n previous examples for n-shot learning...

A human and a robot are collaborating together to
achieve some goals. The tasks are distributed between the agents.

I have the following tasks:
mop, used to clean, floor
spoon, stored, drawer

The human doesn't want to get wet.
The agent should disfavour these tasks:
mop, used to clean, floor

The agent should favour the tasks:
None

2

LLM output

System Prompt

Fig. 3. Subgoal allocation recommendation: The LLM suggests to favour
or disfavour certain subgoals for an agent based on their conditions.

functions and actions that can exist within the model, and a
problem, collecting what objects exist, what the states of the
predicates and functions are, and what the end goal is. The
PDDL files are provided at the link in footnote 1.

PDDL domain. In our framework, the domain is fixed and
encompasses all agents’ capabilities and scenario constraints.
It is important to note that the LLM only modifies the
PDDL problem and not the domain, ensuring the generation
of grounded plans and reducing executability issues. The
environment is defined in terms of agents, objects and
locations, represented as object types in the domain: agent,
obj, loc. With the aim of creating a planning definition
that is easily extendable to different tasks, we have defined
two types of actions and predicates: standard and subgoal
(see Fig. 4). A subgoal action (e.g., store) has a subgoal
predicate (e.g., stored) as an effect, directly achieving a
subgoal which might be part of the goal. It has a linked
cost (e.g., stored cost) as an additional effect, associated to
the action parameters (agent, obj, loc), which increases the
total cost of the plan. The standard predicates and actions
are needed as intermediate steps in the plan to reach the
subgoal elements, and remain internal to the planning sys-
tem. A standard action (e.g., move) has standard predicates
(e.g. at loc) as effects, and has no cost. This provides a
generalisable framework, extendable to a great number of
scenarios where an LLM can reason to provide external
planning knowledge, as described in the paragraph below.
To define a new scenario with new capabilities, the possible
tasks must be identified (e.g., painting) and associated to
a subgoal action (e.g., paint), predicate (e.g., painted), and
cost (e.g., painted cost). This will enable the LLM system
to automatically specify subgoals involving the task, and to
influence their allocation, as detailed next.

PDDL problem. For each new situation, the initial PDDL
problem only contains the existing objects, locations and
agents, and the initial state of the standard predicates. The
subgoal predicates composing the goal and the subgoal
action costs are determined by the LLM based on the
current situation, as described in Sec. III-B and Sec. III-
C, respectively. The outputs of the LLMs are translated into

PDDL DOMAIN

:types

:predicates

:actions

:functions

obj loc agent

standard predicates

at_loc ?agent ?loc

subgoal predicates

stored ?obj ?loc

subgoal actions

store ?agent ?obj ?loc

effects stored_cost ?agent ?obj ?loc

plan_cost

standard actions

move ?agent ?loc

preconditions

effects

PDDL PROBLEM

:objects
obj - apple, fork...
loc - drawer, table...
agent - human, robot

:init

at_loc human table
at_loc robot  table
...

*stored_cost robot fork drawer = 100
...

:goal
*stored fork drawer
*placed apple table

...

...

...

*determined by LLM

preconditions

...

...

Fig. 4. PDDL planning definition: two types of actions have been defined
in the planning domain (subgoal and standard). The subgoal actions directly
achieve a subgoal, which is defined using a subgoal predicate. These actions
have an associated cost. The standard actions are intermediate steps to reach
the subgoals and have no cost. The planning problem contains the planning
goal (made of subgoals) and the action costs, determined by the LLM.

PDDL elements in the following way:
PDDL goals. The subgoals returned by the LLM in the

form of “object, predicate, location” are converted to PDDL
goals, defined as subgoal predicates such as “predicate ?obj
?loc” (e.g., “used to clean mop floor”). The LLM is only
allowed to reason about the subgoal predicates that constitute
the planning goal, and cannot modify standard predicates.

PDDL action costs. The planner is responsible for dis-
tributing the actions in the plan to the appropriate agents. As
it attempts to minimise the plan cost, it will avoid actions
involving a high cost for an agent. The agent conditions
should therefore be reflected in the action costs. Manually
encoding the agent conditions in PDDL would be a com-
plex and tedious task. We therefore take advantage of the
LLM and map its recommendations to PDDL action costs.
As an example, if the subgoal “used to clean mop floor”
shall be disfavoured for the human, the corresponding cost
“used to clean cost human mop floor” is increased, and the
planner will tend to avoid assigning the action “clean mop
floor” to the human, as its effects increase the total cost by
this value. Oppositely, for a subgoal that is favoured for one
agent, the cost of its corresponding action will be increased
for the other agents in the collaboration, thereby disfavouring
the assignment of the favoured subgoal to these other agents.
Decreasing the cost instead would lead to negative plan
costs that the planner would be unable to deal with. With



this method, the automatic plan generation is now able to
consider any agent condition in the action allocation.

IV. EVALUATION

The system is evaluated in two stages. In Sec. IV-A,
the results of generating planning subgoals from a list of
NL abstract goals are presented. In Sec. IV-B, we evaluate
the subgoal allocation for a list of NL agent conditions,
on a number of scenarios with subgoals generated in the
first evaluation. This second evaluation, therefore, assesses
the full framework from the inputs (NL abstract goal and
agent conditions) to the output (executable collaborative
plan). The time taken for the process was evaluated on 320
runs, taking an average of 4.719 ± 4.208 seconds: where
3.143 seconds are for subgoal generation, 1.076 seconds
for subgoal allocation recommendation, and 0.5 seconds
for planning (based on a planning timeout, where a valid
plan was returned in all cases). This result encourages the
implementation of the system on real applications.

Scenario. The scenario evaluated consists in a kitchen
setting, comprising 27 objects (cup, sponge, salmon...) and
17 locations (hob, fridge, table...). The available tasks are
cooking, cleaning, storing, serving and placing.

Ground Truth. The datasets1 created for the evaluation
of the system contain a number of defined test cases, along
with the expected ground truth (GT) output.

Metrics. The following metrics are used for evaluation:
1) Completeness: Number of generated subgoals corre-

sponding to a GT subgoal, over the number of GT
subgoals: n correct subgoals

n GT subgoals . If no subgoals should be
generated and some are generated, completeness is 0.

2) Correctness: Number of generated subgoals corre-
sponding to a GT subgoal, over the number of gen-
erated subgoals: n correct subgoals

n generated subgoals . For no subgoals
generated, correctness is 1 if GT matches, 0 otherwise.

3) Planning: Whether a plan can be generated from the
output subgoals. If the subgoals are not represented in
the planning domain, a plan cannot be generated.

4) Executability: Whether the resulting plan is executable.
A subgoal might be translated into a legal action such
as cleaning the floor with an object. If this object is
not valid for the goal (i.e., an apple), the plan is not
considered executable.

A. Evaluation of Planning Subgoals Generation from an NL
Abstract Goal

Dataset. A dataset containing 114 different NL goals has
been created by adapting the data used in [3]. Their dataset
varies in terms of time horizon and language complexity
and was created via crowd-sourcing on Amazon Mechanical
Turk, in-person kitchen user interviews, and benchmarks for
everyday activities [33], [34]. Our work differs from theirs in
two main aspects: we deal with a goal-focused collaboration
rather than an instruction-driven assistive scenario, and we
generate subgoals for posterior planning instead of using
LLMs to generate a final plan. The instructions have been
selected from the dataset and adapted into the form of a goal.

Fig. 5. Subgoal generation results: The correctness of the subgoals, plan
success and executability are increased throughout the stages, whilst the
completeness of the subgoals is decreased in stage 3. This represents a trade-
off between completeness in the plan subgoals and final plan executability.

Furthermore, two new goal types have been added to deal
with a wider range of abstract tasks: multi-task and high-
level abstraction. Table I provides, for each goal type, an
explanation, example, and expected output subgoals.

Results. Figure 5 shows the results of the subgoal genera-
tion at the three stages described in Sec. III-B. In stage 1, the
LLM’s raw response is considered without any grounding
to the planning domain (happening in stage 2) or further
filtering by the LLM (occurring in stage 3). As expected,
subgoal correctness, planning success and executability are
increased throughout the stages, whilst completeness of the
subgoals decreases in stage 3. At stage 2, all the subgoals
(with 89% correctness) are grounded to the domain and
planning reaches 100%, whilst only 1% of the plans are not
executable due to legal subgoals not making sense (e.g. bowl
used to clean sink). At stage 3, after filtering the subgoals
based on common sense and goal contribution through an
LLM, correctness increases to 94% and all plans are exe-
cutable, at the cost of a decrease in completeness (84%). The
filtering stage greatly increases correctness, though a good
compromise between completeness and executability needs
to be found by tuning the filtering prompts. In most cases, our
system proves to generate correct and executable HRC plans
from an NL abstract goal. The subgoals are automatically
defined by taking into account the current environment,
eliminating the laborious step of manually defining a specific
planning problem for each scenario.

B. Evaluation of Subgoal Allocation for Different NL Agent
Conditions

Dataset. A dataset including 28 agent conditions has been
created to evaluate the subgoal allocation adaptation to the
collaborating agents. Conditions are divided into positive and
negative, intended to result in some subgoals being favoured
or disfavoured for the involved agent respectively. Table II
provides, for each condition type, an example condition and
its GT LLM output. Each condition is evaluated in four
different scenarios (generated in the evaluation Sec. IV-A),
resulting in a total of 112 tests evaluating the full system.



Goal Type (n examples) Explanation Example Goal Ground Truth Output Subgoals

NL Single Primitive (4) NL queries for a single primitive. I want to let go of the coke can. coke, placed, trash can

NL Nouns (25) NL queries focused on abstract
noun synonyms.

I want to serve something with
caffeine at the table. coffee, served, table

NL Verbs (25) NL queries focused on abstract
verb synonyms. I want to prepare a chicken meal. chicken, cooked, grill

vegetables, cooked, hob

Structured Language (15) Structured language queries. I want to pick up the apple and
move it to the trash. apple, placed, trash can

Context/Disturbances (15) Queries in unstructured formats. My favorite drink is redbull, I want
one. I am at the counter. redbull, placed, counter

Long-Horizon (15) Long-horizon queries that
require many steps of reasoning.

I spilled my coke on the table, I want
to throw it away and bring
something to clean.

coke, placed, trash can
cleaning cloth, used to clean, table

Multi-task (10) Multi-task queries. I want to clean the floor and cook a
salmon.

mop, used to clean, floor
salmon, cooked, hob

High-level abstraction (5) No mention of specific objects
or locations. I want to tidy up the room.

spoon, stored, drawer
cup, stored, cupboard
banana, stored, fridge, etc.

TABLE I
GOAL TYPES USED FOR EVALUATION

Agent
Condition Type Example Condition GT Output Subgoals to

Favour/Disfavour

+ve Robot The robot is fast at
tidying up objects.

Favour robot:
cup, stored, cupboard

+ve Human The human loves
to cook.

Favour human:
salmon, cooked, hob

-ve Robot The robot can’t
get wet.

Disfavour robot:
mop, used to clean, floor

-ve Human The human has back
pain.

Disfavour human:
cloth, used to clean, floor

TABLE II
EXAMPLE AGENT CONDITIONS USED TO EVALUATE THE SYSTEM

Subgoals to favour Subgoals to disfavour
Agent
Condition Type Compl. Corr. Compl. Corr.
+ve Robot 74% 75% 96% 96%
+ve Human 71% 71% 100% 98%
-ve Robot 96% 96% 72% 77%
-ve Human 96% 96% 75% 77%
All 84% 84% 86% 88%

TABLE III
RESULTS FOR SUBGOAL ALLOCATION REASONING

(COMPLETENESS AND CORRECTNESS)

Results. The results in Table III show how the system finds
the right subgoals to favour in 84% of cases, and to disfavour
in 86% of cases. Although there is no significant difference
between the human and robot conditions, there exists a dif-
ference in performance for positive and negative conditions.
Positive conditions involve some subgoals to favour and
none to disfavour, whilst negative conditions involve some
subgoals to disfavour and none to favour. The system demon-
strates greater performance in determining that no subgoals
should be favoured or disfavoured, achieving success in more
than 96% of such cases, as opposed to the 71-77% success
rate observed when it needs to identify particular subgoals
to either favour or disfavour. In addition to further tuning of
the LLM prompts, common-sense knowledge covering social
interactions [35] could be injected into the LLM to increase
the performance. Nevertheless, we demonstrate how LLMs
have the potential to help robots reason about NL agent
conditions during HRC plans, bringing in a large level of
adaptability and naturalness in such scenarios.

V. LIMITATIONS AND FUTURE WORK DIRECTIONS

We identify a number of limitations of the system, present-
ing potential opportunities for future work. Firstly, the system
inherits the limitations of LLMs, the performance of which
significantly depends on the prompt given. Grounding and
filtering have proven to get rid of incorrect LLM responses,
but the trade-off between executability and flexibility in the
system still remains. Retrieval Augmented Generation [36]
could be implemented, integrating common-sense social,
physical and eventive knowledge [35] into pretrained LLMs.
A second limitation lies in the fact that the system reasons
and plans based on subgoals that have no temporal dependen-
cies between them. This, although limiting the complexity
of the application, allows for a framework generalisable to
other applications with any type of independent goals. Lastly,
for an optimal workload allocation among the agents to be
obtained, further research such as the one presented in [37]
should be conducted to find “optimal” cost values for the
favoured or disfavoured subgoals.

VI. CONCLUSIONS

In this paper, we have implemented a reasoning and
planning framework, PlanCollabNL, that combines LLMs
and AI task planning to improve HRC plan generation in
two principal ways. Firstly, the planning problem definition
is simplified and accelerated by leveraging LLM common-
sense reasoning capabilities to automatically generate plan-
ning subgoals from an NL abstract goal. Secondly, a high de-
gree of adaptability to the collaborating agents is achieved by
influencing the allocation of the planning subgoals based on
an LLM reasoning about NL agent conditions. The planning
problem definition has been structured in a generalisable way,
so that the system can be easily extended to a wide range
of tasks. The framework has been evaluated for a number
of goals and agent conditions, and is now ready for imple-
mentation in a real robot. Results show that executable and
agent-adapted plans are successfully generated in most cases,
eliminating the need for a manual and tedious definition of
restricted and inflexible planning problems and agent models.
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