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Abstract— The field of robotics faces inherent challenges in
manipulating deformable objects, particularly in understanding
and standardising fabric properties like elasticity, stiffness, and
friction. While the significance of these properties is evident
in the realm of cloth manipulation, accurately categorising
and comprehending them in real-world applications remains
elusive. This study sets out to address two primary objectives:
(1) to provide a framework suitable for robotics applications to
characterise cloth objects, and (2) to study how these properties
influence robotic manipulation tasks. Our preliminary results
validate the framework’s ability to characterise cloth properties
and compare cloth sets, and reveal the influence that different
properties have on the outcome of five manipulation primitives.
We believe that, in general, results on the manipulation of
clothes should be reported along with a better description of
the garments used in the evaluation. This paper proposes a set
of these measures.

I. INTRODUCTION

Manipulating deformable objects presents a significant set
of unresolved challenges in robotics, encompassing mod-
elling, perception, control and dataset standardisation [1–
4]. Recent attention in the robotics community has been
directed towards understanding fabric properties such as
elasticity, bending, and friction, especially in the context of
cloth manipulation [5–7]. Nonetheless, fundamental research
questions remain open: How to construct comprehensive
datasets for benchmarking real-world applications? What are
the most influential cloth properties for manipulation? And
to what extent do we need precise property identification?

The focus of this work concentrates on two objectives:
providing methods to characterise a cloth-like deformable
object (CDO) based on its properties; and investigating the
influence of such properties on manipulation tasks. The
properties of CDO range from physical attributes such as
size, shape or color, to mechanical properties like elasticity,
friction, and stiffness [8]. Real-world labelled datasets usu-
ally characterise objects based on type, shape and size [9,
10]. Mechanical properties, instead, are often not included
due to the challenges of inferring them from visual ob-
servation, being necessary physical interactions. To avoid
this limitation, in [11] the authors proposed a taxonomy of
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Fig. 1: Representation of literature cloth sets [6, 14, 15] based
on the physical and mechanical cloth properties.

textiles anchored on the material and construction techniques.
Although these properties influence mechanical properties,
they fail to provide quantitative measures of these. The textile
industry provides standardized methods for the characterisa-
tion of elasticity, friction and stiffness. Yet, widely used tests
like KES [12] and FAST [13] are destructive, making them
unsuitable for robotic applications.

In this study, we address both objectives. Firstly, we equip
the community with a measuring framework grounded in the
textile industry’s standard practices. This framework offers a
set of easy-to-use measurement systems for both physical and
mechanical cloth properties, allowing one to label individual
cloth properties and compare different cloth sets. Secondly,
leveraging the labels from our proposed framework, we con-
duct a novel analysis of how the properties of CDO (stiffness,
elasticity and friction) influence robotic manipulations.

Our experimental results demonstrate the framework’s
capability of annotating cloth sets through their properties,
representing them on a radar chart, and assessing the diver-
sity of real-world object sets (Fig. 1). In addition, preliminary
findings from analysing the influence of CDO properties
indicate that cloth properties are highly intertwined, but some
may have more impact in certain manipulation primitives.
Specifically, stiffness is a predominant property influencing
all evaluated manipulation primitives. Elasticity, on the other
hand, becomes critical when the cloth undergoes stress, while
friction is distinctly influential during interactions between
the cloth and various surfaces.



We expect our tools to improve standardized assessments
of clothes, allow the creation of better cloth sets and foster
benchmarking for improving cloth manipulation.

II. RELATED WORK

We discuss the related work from two perspectives: cloth
manipulation and textile engineering. Firstly, we identify
cloth manipulation tasks, objects and related cloth properties
commonly used in deformable object manipulation. Sec-
ondly, we will search for the current measurement systems
used to assess these properties in textile engineering.

A. Cloth manipulation

Cloth manipulation presents many challenges due to the
complexity of representing, understanding and predicting the
behaviour of cloth. However, a complete understanding of the
whole task is not necessarily required for accomplishing it.
In [16] it is presented a compact and simplified definition of
tasks that allows representing them as graphs described by
sequences of states and transitions. The transitions of these
graphs are the manipulation primitives necessary to change
the state of the cloth. In [17], they identified the most tack-
led tasks in literature, recognising among them unfolding,
folding and flattening. These tasks comprise commonly used
primitives such as drag, fold, lift, push and place [18–21].

In recent years, many studies in cloth manipulation and
perception have used a set of objects to test their meth-
ods, indirectly showing the generalization of the method.
However, these sets are often small and lack information
about the objects’ variability. In [22] they reported the
thickness of the objects used but also mentioned surface
texture and stiffness without providing any measurements.
System’s generalization to unseen garments of different
colour, shapes, and stiffness was claimed in [18], yet their
real-world experiments involved only a limited set of objects
(2 T-shirts and 1 towel). Contrarily, [23] took a comprehen-
sive approach by employing objects from various categories
and materials, but classified them based on a subjective
ranking of properties such as thickness, stiffness, material,
stretchiness, etc. Several studies have attempted to assess
specific cloth properties more rigorously. Li et al. [21] con-
ducted experiments in a real environment to measure shear
resistance and frictional forces, aiming to transfer the same
cloth behaviour to simulation. Kabaya [24] performed a test
to measure fabric ”softness,” but the details of the procedure
remain unclear. It is worth mentioning, that some works
such as [25], applied the Kawabata’s Evaluation System
(KES) [12], a systematic standard approach to measure in
detail various cloth properties. However, this system requires
specific machines that are not accessible to most researchers.
This makes it challenging to replicate results or quantify the
method’s generalization. Efforts have been made to establish
object sets for benchmarking manipulation [14, 26, 27]. Yet,
maintaining the exact same objects, especially with textiles,
is difficult due to stock variability. To address this, it’s
essential to establish a standardized approach by reporting
the properties that characterize textile objects.

These prior works demonstrate that there is interest in
identifying and assessing textile properties, needed to val-
idate the generalisation of the proposed results. However,
most of these works do not report quantitative measures
of these parameters due to the lack of useful and effective
measurement systems.

B. Textile engineering

The textile engineering sector specializes in understanding
and measuring the properties of textiles. To do so, specialized
testing equipment and techniques are used to measure them
accurately.

Stiffness: Standard measurement systems for stiffness are
the Pierce’s cantilever [28] and KES [12]. Nonetheless,
these techniques are sensitive to fabric weight and edge-
related influences. The Cusick drape test [29], quantifies
the stiffness through its drapeability behaviour, suspending a
fabric sample in a circular plate and sensing the shape of the
shadow of the draped cloth projected using a light source.

Friction: Regarding friction, the KES system [12] is also
used to measure the coefficient of friction placing the fabric
on a standard surface and applying a known force. Applying
a known force requires specific tools, which does not reflect
our goal to provide an easy-to-use system with simple tools.
On the contrary, with the inclined plane test [30] the friction
is measured using only a flat surface and inclining the plane.

Elasticity: The tensile test [31] is used to measure stretch-
ability by subjecting the cloth to a controlled force. This
method can also be performed manually by stretching the
sample until it offers resistance. However, these approaches
always use cut strips of cloth. We propose a set of systems
that do not require damaging the textiles in any way.

III. TEXTILE CHARACTERIZATION

We propose a framework to characterise textile objects
through a set of measurement systems. The proposed systems
are grounded in the methods used in textile engineering,
adapted so that they can be used in robotic manipulation. The
goal is to provide information about how the entire object
will behave in cloth manipulation tasks. We followed the
criteria:

• Non-destructive: The measurement methods do not re-
quire cutting or damaging the object in any way.

• General: Objects of different categories can be used,
including household or clothing objects. Independently
of their wear or features.

• Easy to use: The proposed methods are easy to perform
with simple tools.

• Repeatable: The systems have clear procedures that can
be consistently repeated to obtain the same results.

Check the related website for more details of the measure-
ment systems 1.

1 http://www.iri.upc.edu/groups/perception/#ClothStandardization



Fig. 2: Reference lines for measuring size and elasticity.

A. Physical properties

The physical properties are inherent characteristics of the
object and can be observed and measured without subject-
ing the material to external forces or manipulations. These
properties describe how a material appears under static or
non-changing conditions.

Size: The size of an object determines the necessary
workspace to properly handle it. To measure different shapes,
we define lines (see Fig. 2) according to their role in different
tasks. For example, lines 1 and 3 of a T-shirt, top or pants
are relevant for dressing, while line 4 is relevant for folding.

Weight: The mass of an object is generally considered
taking into account the payload capacity of the robotic
manipulator. The total mass of the object can be measured
in Kilograms using a standard scale.

Shape: The shape of the cloth provides information of
its category and intended purpose. We propose to report
the number of different shapes by classifying them into
categories (e.g. rectangular clothes, shirts, skirts, pants, etc.).

Color: The colour of an object plays a significant role in
perception algorithms. We propose to identify only the plain
primary and secondary colours, to avoid entering into colour
hue details and also differentiate prints.

Fabric material: In previous works [11] we showed how
the material is relevant for robot manipulation, and therefore,
should be taken into account. Examples include natural fibres
such as cotton, linen, silk, and wool, as well as synthetic
fibres like polyester, nylon, and acrylic.

Construction technique: The construction technique
refers to the method or process used to create the fabric. The
most common are woven and knitted, which can be identified
by visual inspection. As shown in [32], the construction tech-
nique significantly influences mechanical properties, such as
elasticity.

B. Mechanical properties

The mechanical properties are parameters that describe
how a material responds to applied forces or manipulations.
They will depend on physical properties such as weight, fibre
material or the fabric construction technique.

Stiffness: Cloth stiffness or rigidity influences how it
behaves under manipulation as it determines the resistance

Fig. 3: (a) Setup to measure stiffness, (b) examples of cloth
drapeability and contour and (c) areas used for stiffness
formula.

to deformation. Understanding cloth stiffness can help in
predicting cloth behaviour when manipulating and therefore
improve planning tasks.

Our goal is to design systems tailored for robotic manip-
ulations, using whole objects without needing to cut them
into standardized sizes. We seek to capture the behaviour
of the cloth, including its inhomogeneities caused by added
features such as buttons or hems. For example, in the case
of two exact napkins of the same fabric and size, but where
one of them has hems on the edges and the other one does
not, we will see less stiffness with the hems due to heavier
edges. This is expected and it is desirable to be detected,
since during real manipulation executions, these two objects
will behave differently under the same manipulations.

We propose a method inspired by the Cusick drape test
[29], placing the object on a flat circular surface and measur-
ing the draped cloth’s area from above. However, instead of
relying on specialized machines, we designed a perception
algorithm that measures this area using zenithal images of the
draped cloth and detecting its contour. To measure objects of
different sizes without cutting cloth samples of standardize
dimensions, we adapt the size of the flat surface used to
place the cloth. In the original test, the 60% of the cloth
sample covered the plate, leaving the remaining 40% of the
fabric hanging and determining the stiffness. We maintain the
same hanging cloth ratio by creating circular plates, whose
diameter is determined by the shortest edge of the object.
Furthermore, to simplify the measurement process of objects
with complex shapes (T-shirts or pants) or very big sizes
(larger than 50cm), we use the objects folded in rectangular
shapes. This standardization facilitates the area measurement
as well as the whole assessment procedure.

The formula used to measure the stiffness is the same as
used in the original Cusick drape test:

stiffness =
A3 −A2

A1 −A2
(1)

where A1 is the initial area of the cloth, A2 is the plate area
used and A3 is the area of the draped cloth given by the
code (see Fig. 3-c).



Elasticity: The elasticity or stretchability of clothes refers
to the ability to extend its length when subjected to external
forces. It is an important property in dressing tasks, where it
plays an important role in safety, as it helps in compensating
movements of the user, reducing the risk of causing him
harm. It is measured by pulling two sides of the cloth in
opposite directions and assessing its elongation with:

elasticity =
lf − li

li
(2)

where li is the length of the cloth between the subjected
points at rest and lf is the length to which the cloth arrives
while pulling.

We aim to standardise the measurement systems as much
as possible with the goal of designing replicable and compa-
rable systems. Thus, we propose the use of a luggage scale
to apply a controlled tensile force of 0.5Kg. We also specify
clamps as the way to grasp the fabric since the area of the
contact point can influence in the measurement of elasticity.

The stretchability of fabric depends on the construction
technique and the direction of the yarn (warp, weft or bias).
For this reason, we define several direction lines where
to measure the elasticity, which are the same defined for
measuring the size (Fig. 2). The type of fibre used in the
textile plays a significant role. Synthetic fibres like spandex
and elastane have inherently high elasticity, while natural
fibres like cotton and linen have lower inherent elasticity.

Friction: The friction force of cloth can be defined as the
resistance of the object to slide in contact with a surface. To
measure the friction, we place the cloth object on a plane
and gradually increase its angle of inclination by lifting one
side of the plane until the sample starts to slide. In a similar
way as with the stiffness system, for practical reasons, we
fold objects of complex shapes or large sizes (such as T-
shirts or tablecloths) to fit inside the surface. We standardise
the surface to have comparable values, specifying the use of
a standard printing paper, which should have the necessary
dimensions so that the object stays completely inside, and
must be fixed to the selected surface where the test is going
to be performed (e.g. a table). We obtain the coefficient of
friction (µ) through trigonometry, knowing that the frictional
force Ff = µN = µmg cos(θ), the force of gravity is
Fg = mgsin(θ) and θ = sin−1(hl ), as:

friction = µ = tan

(
sin−1

(
h

l

))
(3)

where h is the reported height and l is the length of the
surface used.

We have selected this method to measure the friction since
it is valuable to assess the slip resistance of textiles, which
is the main aspect that will influence cloth manipulations. In
addition, this method has also been used previously in [21].

Detailed guidelines of the systems with explanatory fig-
ures, resources and protocols can be found in the related
website1.

Fig. 4: Cloth sets evaluated: (a) Elastic Object Set [6], (b)
Household Cloth Object Set [14], (c) Dressing Object Set
[15].

C. Cloth set benchmarking

In addition to characterizing objects by quantifying their
properties, we can use the abovementioned measurement
systems to benchmark various cloth sets, by identifying their
strengths in terms of variability. To do so, we can build a
radar chart by collecting measures for various objects and
computing the range between the maximum and minimum
values of each property, determining the extent of variability.
Thus, each axis will have different scales according to the
units of the corresponding property. This is a visual manner
to compare which cloth sets have more diversity in each
property, providing knowledge of in which applications an
object set would be useful. For example, a cloth set with a
lot of variation in colors or shapes is useful for evaluating the
generalization of perception algorithms, while if it has a high
range in stiffness or elasticity then is useful for manipulation
purposes.

As showcase, we gathered measures for all the objects
of three different cloth sets found in the literature of cloth
manipulation [6, 14, 15] (see Fig. 4). We also use this
representation to analyse the adequacy of them for the meant
purposes as well as what strengths they have. The first
object set, which we have called Elastic Object Set (EOS),
was created in [6] to train a model that learns the inherent
elastic properties of fabrics through the exploration of pulling
actions. It includes 37 rectangular textile samples of similar
sizes. The second object set, called Household Cloth Object
Set (HCOS), was introduced in [14] to foster benchmarking
in cloth manipulation through the standarization of objects.
It is composed of 27 household cloth objects with different
sizes, shapes and features for performing different tasks. The
last object set, Dressing Object Set (DOS), was used in [15].
It comprises a set of 10 clothing items that were used for
creating a dataset of 117 color images used to train a model
for category classification and landmark detection.

From the resulting radar chart seen in Fig. 1, which
represents the variability of each measured property for
the three object sets, we can see that EOS dataset has
high variation in the three mechanical properties (stiffness,
stretchability and friction), but low variability in size and
weight. This is because the dataset was composed of small
samples with low mass (around 10 gr on average) and similar
size (up to 32cm). However, it was used for learning elastic
properties, so we can say that this object set is effective
for its purpose. It is also the dataset with more number of



colors and materials, as it included samples from different
clothing items of different prints and types of fibres. By
contrast, we see a dominance of the HCOS in size and
weight, due to its variety of objects for household chores,
including smaller items like towels for storing, as well as
larger objects like bedsheets and tablecloths for bed-making
or table-setting tasks. It also presents a high stiffness given
that this mechanical property is highly dependent on these
two physical properties. Regarding the DOS, it is composed
of clothing items, which stand out for their varied shapes. It
also has a high variation of stiffness and elasticity, although
this was useless for its purpose (perception evaluation), due
to the inclusion of denim objects, which are characterized
for having a very low elasticity and high stiffness, and tank
tops made of elastane and cotton, which usually provide low
stiffness and high elasticity.

From this evaluation, we can say that creating a cloth
set that covers a wide range in all properties is a complex
task. For this reason, the proposed measurement systems can
help in improving the creation of a cloth set that suits your
purpose.

IV. RELEVANCE OF CLOTH PROPERTIES IN ROBOTIC
MANIPULATION

This section aims to explore the influence of the mechan-
ical properties in the manipulation of CDO. Manipulation
tasks can be divided into sequences of low-level actions [16],
also referred to as primitives. We focus on the following set
of quasi-static action primitives: lift, drag, fold, stretch and
push.

A. Action Primitives

We define each action primitive through the set of the
initial pose, final pose, and the trajectory connecting the
two poses, assuming that the cloth starts from a flattened
configuration (see Fig. 5). For the lift, drag, and fold primi-
tives, we operate under the assumption that the cloth begins
in a pre-grasped state. For the stretch and push primitives,
we utilize a 3D printed end effector, which boasts a finger-
like design akin to the one described in [33]. We employ
a Franka-Emika Panda robot for executing these primitives.
Our primary objective is to consistently apply these action
primitives across objects with varying properties, to discern
how these properties impact manipulation outcomes. We
define the action primitives as:
Lift: From a flattened configuration where a corner of
the cloth is grasped 3cm above the table, the robot arm
elevates the cloth until it is completely hanging, reaching
a final position 35cm higher than the starting point in a
direction perpendicular to the table’s surface, following a
linear trajectory.
Drag: The top-left corner of the cloth is grasped 1cm above
the table, and the arm moves the cloth reaching a final
position 20cm further from the initial position in a direction
parallel to the table’s plane, following a linear trajectory.

Fig. 5: Example visualisations of the initial (left) and final
states (middle) of each manipulation primitive (Lift, Drag,
Fold, Pull, Push) and the mask of segmented cloth in the
final state.

Fold: The top-left corner of the cloth is grasped 3cm above
the table, and the arm reaches the final position, correspond-
ing to the opposite corner of the cloth, using a triangular
path peaking at 11cm at the midpoint between the start and
end positions.
Pull: We define the initial contact point with the cloth in the
middle of the shorter edge of the cloth. We simultaneously
fix the opposite side of the cloth with a heavy object to force
the elastic behaviour. The robot pulls the cloth to the final
pose which is 5cm further along the axis parallel to the table
surface, following a linear trajectory.
Push: We define the initial contact point with the cloth in
the middle of the shorter edge of the cloth. The robot then
pushes the cloth to the final pose which is 10cm towards the
centre of the cloth, following a linear trajectory.

B. Evaluation Metrics

To explore the influence of the cloth properties on the ma-
nipulation primitives, we focus on the mechanical properties
(i.e. elasticity, stiffness, and friction) as the ones leading to
different responses to applied forces or manipulations. Using
the results of the measurement systems presented in the radar
chart of Fig. 1, we selected samples from the EOS dataset
ensuring to include the extremes of each property.

We use shape-retention as the metric to evaluate the
outcome of the drag, lift, push and pull primitives. This



TABLE I: Results of the action primitive for 6 samples (A-B), characterized with their values obtained in the radar chart
for the stiffness, elasticity and friction properties. The results of each primitive represent the Final Ratio (FR). In bold we
represent the results with highest FR, corresponding to minimum deformation (or best fold for the Fold primitive), while
we underline the results showing the lowest FR, corresponding to the highest deformation (or worst fold).

Sample Stiffness Elasticity Friction Lift Drag Fold Pull Push

A 85% 43% 53% 0.31± 0.01 0.97± 0.01 1.00± 0.0 0.94± 0.02 0.83± 0.00
B 34% 7% 45% 0.23± 0.00 0.96± 0.02 0.63± 0.01 0.97± 0.00 0.84± 0.01
C 36% 87% 52% 0.23± 0.02 0.90± 0.01 0.63± 0.00 0.72± 0.07 0.64± 0.03
D 39% 35% 93% 0.20± 0.00 0.84± 0.02 0.63± 0.01 0.90± 0.03 0.69± 0.05
E 59% 100% 60% 0.21± 0.01 0.93± 0.00 0.60± 0.02 0.91± 0.01 0.65± 0.02
F 32% 64% 52% 0.20± 0.00 0.79± 0.03 0.60± 0.00 0.88± 0.02 0.66± 0.02

type of metric evaluates to what extent the initial shape
of the cloth is maintained after the manipulation, starting
from a flattened configuration. We measure shape-retention
by computing the Final Ratio (FR) between the area covered
by the cloth before (Ai) and after (Af ) the execution:

FR =
Af

Ai

Thus, a task will be considered successful when the cloth
retains its shape after the execution, corresponding to a
FR = 1. For the folding primitive, instead, we define as
evaluation metric the alignment of the two halves of the cloth
after the folding execution. We measure the alignment by
evaluating the Final Ratio (FR) between the area covered by
the top half of the cloth (At) and the final area covered by the
entire cloth after execution (Af ), computed as FR = At/Af .
We obtain At from the evaluation of the uncovered area of
the bottom half of the cloth (Ab) as At = Af−Ab. Therefore,
a value FR = 1 represents a good fold, corresponding to a
perfect alignment of the two halves. We compute the areas
for each metric by segmenting the cloth with [34], and
counting the number of pixels of the segmentation mask (see
right images of Fig. 5).

C. Results

For the comparison among different mechanical prop-
erties, we selected 6 samples from the EOS dataset. We
reported the outcome of each primitive in Table I, along
with the characterisation of the samples measured with our
framework. The results show that sample A, the one with
the highest stiffness, is achieving the highest FR for the
lift, drag and fold primitives. Sample B obtained the highest
FR for the pull and push primitives being the one with the
lowest friction, despite the low stiffness. Sample F has low
stiffness and undergoes high deformations (lower FR) under
the lift, drag and fold primitives. Sample D, on the other
hand, due to the high elasticity and the low stiffness, deforms
the most under the pull and push primitives. These results
confirm that stiffness emerges as a crucial factor influencing
shape retention across all primitives, while friction has a
fundamental role where there is contact between the cloth
and the environment during the manipulation. Elasticity,
instead, plays a pivotal role in scenarios where the cloth is
under stress.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced practical and scalable systems
to measure cloth properties, designed for robotics applica-
tions. Our framework enables the characterization of cloth-
like deformable objects by quantifying their physical and
mechanical properties, and provides a structure to build and
compare cloth sets. We compared three cloth sets from
the literature, highlighting the challenge of creating a set
with a broad range of properties. Furthermore, to improve
understanding of garment manipulation approaches, works
should include detailed descriptions of the objects used
in the evaluations. These descriptions would clarify if the
evaluation involves clothes with either narrow or broad sets
of characteristics, indicating its relevance to the application.
Our proposed framework, in particular, will be valuable for
measuring these cloth descriptions and enhancing bench-
marking in the cloth manipulation community.

We have further analysed the relevance of cloth mechani-
cal properties showing how the outcome of the manipulations
changes significantly for different properties. This novel
quantitative analysis highlights the impact of cloth properties
on robotic manipulations, previously unexplored due to the
absence of objective measurement systems.

Our research directions will tend towards expanding this
framework for performing local measurements of cloth parts.
This enhancement will make possible to provide detailed
information not only of the entire object but also of the parts
that will be manipulated, capturing the inhomogeneities (e.g.
buttons, zippers, etc) and enabling the robot to better under-
stand the intricacies of fabric. In addition, we plan to extend
the presented study with more complex manipulations and
objects, including different sizes and shapes, to identify more
in-depth relations and effects and to explore the influence of
the physical properties in robotic manipulations.
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