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ABSTRACT
In this paper, an offline tuning strategy and an online parameter estimation method are proposed to
calibrate the solid oxide fuel cell mathematical model. The offline tuning strategy is developed in order
to tune the model under various operation condition. First, the particle swarm optimization method
with gradient-based searchmethod is applied to tune unknown parameters in the state-spacemodel and
the steady-state model for each operation condition. Then, the sensitive parameters are expanded to
the polynomial equations. Moreover, the reconstructed model including coefficients in the polynomial
equations are determined by using the particle swarm optimization method with gradient-based search
method for whole operation conditions. To show the slowly time-varying performance of a solid oxide
fuel cell, an adaptive optimal learning law is proposed to online minimize a cost function with the
information of the estimation error. The estimation error is extracted through several low-pass filters
and simple algebraic calculation. Finally, the proposed offline tuning strategy and the developed online
adaptive estimation method are verified by conducting experiments on a practical solid oxide fuel cell
test bench.

1. Introduction
1.1. Motivation

Various renewable energy technologies have received
increasing concerns due to serious environmental pollution
and rapid traditional energy consumption. Fuel cells are
considered as one of the most promising candidates, which
have the property of high power density and zero-release
of pollution gases. Based on the material of the electrolyte,
fuel cells can be classified into different types, such as
polymer electrolyte membrane fuel cells, direct methanol
fuel cells, solid oxide fuel cells, etc [10]. Among them, the
solid oxide fuel cell (SOFC) has advantages of high energy
conversion efficiency and high tolerance to fuel impurities.
The operation temperature of SOFC is between 600oC with
1000oC. During long-period operation, degradation might
affect SOFC system due to the high temperature operation
condition [18]. Therefore, the main obstacle for SOFC wide
utilization is the relatively low reliability and durability.
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In order to interpret and analyze the performance, reli-
able mathematical models of SOFC are required. Due to the
complexity and nonlinearity of SOFC, linear models cannot
provide essential information of the system performance.
On the other hand, the detailed knowledge of the fuel cell
structure may not be available and high-order models are
not convenient for control design. To enhance the model
accuracy for the control-oriented nonlinear model, model
identification methods can be applied to tune the dominating
structural model errors [20]. However, the nonlinearity leads
to some difficulties to obtain transfer functions and state-
space equations through the simple linear model identi-
fication method. Therefore, parameter estimation methods
of model identification methods for the nonlinear system
is mainly considered in order to understand how fuel cell
systems work and to deal with model tuning.
1.2. Literature Review

To calibrate SOFC models, parameter estimation meth-
ods can be divided into two categories: off-line parameter
estimation methods and on-line parameter estimation meth-
ods. Specifically, off-line parameter estimation methods are
mainly dependent on optimization techniques. Evolutionary
algorithms are a particular class of optimization techniques,
which can be mainly classified into two types: conventional
gradient-based search algorithms [21] and global stochas-
tic optimization approaches. Gradient-based algorithms are
used to find a local optimum based on the gradient infor-
mation to determine the search direction. Global stochastic
optimization approaches are non-gradient methods to de-
termine a global optimum, which mainly include genetic
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algorithm (GA) [16, 4, 26], simulated annealing (SA) [17],
differential evolution (DE) [6], particle swarm optimization
(PSO) [9, 19, 27], etc. In [16], two different GAs were
compared for tuning a fuel cell model. The results illustrated
that the GA highly depended on the set range for each
parameter. Yang el al. [26] proposed a modified genetic
algorithm to tune a tubular SOFC model. The improved
part is that a new fitness evaluation function was proposed
and crossover was replaced with a reorganization strategy.
The comparative results with the standard GA showed the
effectiveness of the modified GA through the experimental
data. In [4], the SOFC model was built by an artificial
neural network and the GA was utilized to select the optimal
parameters. However, there are some drawbacks existing in
GA [27]. Especially, the efficiency degradation may happen
in crossover and mutation when the tuning parameters are
highly correlated. To address those drawbacks, the PSO
algorithm inspired by the swarm behavior of animals has
been widely used to tune unknown parameters in the fuel cell
models. In [27, 19], a lumped parameter model of a fuel cell
with some unknown constant parameters had been applied
by PSO method in order to tune the model by using experi-
ment data. Askarzadeh el al. [2] proposed an improved PSO
method, where a new inertia weight function was proposed
in order to enhance the convergence speed. More recently,
Li el al. [11] proposed a hybrid PSO algorithmwith adaptive
inertial weight for achieving global search and local search.
For each generation, the Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method was used to do the local search. And
a randomized regrouping strategy was used to regroup the
generation for increasing the diversity. However, the above-
mentioned optimization strategies are proposed to calibrate
the mathematical model for the polarization curve under an
operation condition such that the optimization strategiesmay
not be suitable for different experimental data under various
operation conditions.

Since evolutionary algorithms rely on the offline fitting
procedures, unknown parameters cannot be estimated on-
line. Moreover, material properties of a SOFC stack are
slowly changing such that unknown model parameters are
time-varying. In order to show the slowly time-varying
performance of unknown parameters, adaptive parameter
estimation methods have been widely used to achieve on-
line parameter estimation for each operation condition, such
as gradient descent algorithms [5], recursive least-squares
(RLS) [23, 7]. In [23], the RLS method was used to estimate
unknown parameters and fit themaximum power point curve
of a fuel cell. In [7], constant parameters in the semi-
empirical model of a fuel cell was estimated by the RLS
method. More recently, the gradient descent algorithm was
used to estimate slowly time-varying resistance in the equiv-
alent circuit model for a fuel cell [5]. The main idea of these
adaptive estimation methods is to minimize the output error
and the robustness of these methods has been discussed in
[12]. However, estimating time-varying parameters remains
as an open and theoretically challenging issue [14, 15].

1.3. Contribution and Organization
The aim of this paper is to exploit an offline tuning strat-

egy and an online parameter estimation method for a SOFC
system in order to calibrate the mathematical model. To de-
velop the offline tuning strategy for multiple operation con-
ditions, the PSO method with gradient-based search method
is first used to tune the state-space model and the steady-
state model of a SOFC system for each operation condition,
respectively. Then, sensitive parameters are expanded to the
polynomial equations. Finally, the global model including
coefficients in the polynomial equations are determined by
using the PSO method with gradient-based search method
again for whole operation conditions. For the online param-
eter estimation method to estimate unknown time-varying
parameters, an adaptive optimal learning law is proposed
to minimize a cost function with the information of the
estimation error. The estimation error is extracted through
several low-pass filters and simple algebraic calculation.
Finally, the proposed methods are verified by conducting
experiments on a practical SOFC test bench.

To this end, the main contributions of this paper are:
1. An offline tuning strategy is proposed to calibrate

state-space and steady-state models for a SOFC sys-
tem under multiple operation conditions such that the
SOFC models for various operation conditions can be
obtained.

2. An adaptive optimal parameter estimation method is
proposed to online estimate time-varying parameters
in the SOFC models for each operation condition. As
a consequence, the slowly time-varyingmaterial prop-
erties can be presented by the estimated parameters.

3. Comparison and discussion about offline and online
parameter estimation methods for a SOFC system are
provided and experimentally validated.

The paper is organized as follows: The SOFC model and
the problem formulation are given in Section 2. In Section
3 and Section 4, the offline global tuning strategy and the
online parameter estimation method are proposed, respec-
tively. Practical experiments and the method validation are
presented in Section 5. Several conclusions are drawn in
Section 6.

2. SOFC Model with Unknown Parameters
2.1. Description of SOFC

The SOFC is a sustainable energy conversion device that
uses hydrogen and oxygen to produce electricity, thermal
heat and water [10]. In this paper, a SOFC stack with 30
cells is taken into account. Figure 1 shows a practical SOFC
system in the fuel cell laboratory of the Institut de Recerca en
Energia de Catalunya (IREC). The dry hydrogen and the air
as input gases enter into the SOFC. During the chemical re-
action, unused gasses are directly released to the atmosphere
and the generated steam water are reserved in the vessel.
Since a SOFC stack operates at the high temperature, a
preheat facility of the climatic chamber is required. Besides,
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Figure 1: The SOFC test facility at IREC.

the climatic chamber can be used to regulate the temperature
of the SOFC stack, including heating and cooling processes.

The detailed modelling and the control-oriented analysis
of this SOFC system have been addressed in the recent
work [25], where the mass balance model, the voltage bal-
ance model and the thermal energy balance model are intro-
duced. In the following, a brief description of voltage and
thermal energy models related to the parameter estimation
will be provided in the following.
2.2. Mathematical Model of a SOFC system

The voltage balance of the SOFC is modeled as [25]:
Ufc = Ncell ⋅ (Uner−Uact,ca−Uact,an−Uoℎm−Ucon) (1)

where Ncell denotes the number of cells. Uner is the Nernstvoltage, which is represented as
Uner = ΔU + f1(Tfc)

where ΔU denotes the standard potential for each cell of
SOFC. The nonlinear function f1(Tfc) is defined in Ap-
pendix A. Moreover, activation losses at the cathode and an-
ode (Uact,ca,Uact,an), Ohmic losses Uoℎm and concentration
losses Ucon are three types of irreversible potential losses
during the SOFC operation. They can bemodeled as follows:

Uoℎm = R0Ifcf2(Tfc)

Uact,ca = 1
�ca

Tfcf3(Ifc)

Uact,an = 1
�an

Tfcf4(Ifc)

Ucon = Tfcf5(Ifc)

where the nonlinear functions from f2 to f5 are given in
Appendix A. The constants of charge transfer for anode
and cathode are �an and �ca, respectively. R0 represents thereference resistance determined by the experiment at the
reference temperature T0.The lumped parameter model of the thermal energy
balance is established as [13, 24]
dTfc
dt

= 1
mfcCfc

(H in+Hr−Hout−UfcIfc−Hcv+Hcc)

(2)
where mfc and Cfc are the stack’s mass and specific heat
capacity of SOFC, respectively. H in, Hr and Hout are re-
spectively the input heat flux, the generated heat flux and the
output heat flux removed by output gases, which are given
in Appendix A. Between the surface of the SOFC stack and
the climatic chamber, there are two types of heat flux taken
into account, which are the convection heat fluxHcv, and theheat flux provided by the heating and cooling process of the
climatic chamberHcc . They are modeled as

Hcv = a1Tfc + a2
Hcc = KccRcc

where a1 and a2 are empirical constants of the convection
heat. The power rate of the climatic chamber is denoted
as Rcc . And Kcc is the empirical constant for the climatic
chamber model.
2.3. Problem Formulation

The model of a SOFC system is highly nonlinear, where
many parameters in the model cannot be directly deter-
mined through experiments. Besides, material properties of
a SOFC stack are slowly time-varying during the SOFC
operation. To be specific, the theoretical potential ΔU is
usually considered as 1.2 V. However, this value is not
precise in practice and it could be affected by the operation
temperature.Moreover, charge transfer constants �an and �cafor activation losses show the property of the charge transfer,
which can be changed based on the operation condition.
Ohmic losses Uoℎm have a major impact on the electro-
chemical model for the practical SOFC, where the reference
resistance R0 is affected by the operation condition. For the
model of the thermal balance, it is difficult to determine the
empirical constant of the convection heat a1. Meanwhile,
the coefficient of climatic chamber Kcc is an unknown
parameter. Therefore, parameter estimation methods of the
nonlinear system identification are required in order to en-
hance the accuracy of the SOFC model.

In this paper, the following parameters in the SOFC
model are chosen as unknown parameters:

Θ1 =
[

a1 Kcc
]

Θ2 =
[

ΔU R0
1
�ca

1
�an

]

Furthermore, the aforementioned mathematical models
(1) and (2) can be rewritten as the following nonlinear state-
space model:

Ṫfc = Φ1Θ1 +W1 (3)
Ufc = Φ2Θ2 +W2 (4)

where the temperature Tfc is the measurable state and the
voltage Ufc represents the system output. Moreover, the
computable regressor vectors Φ1 and Φ2 are expressed as

Φ1 =
[

− Tfc
mfcCfc

Rcc
mfcCfc

]T
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⎦
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The known nonlinear functions areW1 =
1

mfcCfc
(H in+Hr−

Hout − UfcIfc − a2) andW2 = f1(Tfc) −NcellUcon.Hence, this paper aims to investigate offline and online
parameter estimation methods to estimate unknown param-
eters for a SOFC system through measurable temperature
Tfc , voltageUfc and current Ifc . The offline tuning strategy
is proposed to calibrate the SOFC model under multiple
operation conditions such that the calibrated model is suit-
able for various operation conditions. To show the time-
varying material properties of a SOFC stack, an adaptive
optimal parameter estimationmethod is proposed to estimate
unknown parameters online for each operation condition.

3. Offline Parameter Estimation Method
In this section, we will present an offline global tuning

strategy in order to achieve tuning the SOFC model under
different operation conditions.

The complete model of the SOFC system proposed in
[25] can be summarized as the nonlinear state-space model,
that is

ẋ = f
(

x, u,Θ1,Θ2
)

y = ℎ
(

x, u,Θ1,Θ2
)

,
(5)

where x ∈ ℝn×1 denotes as the state vector, where the tem-
perature Tfc is the measurable state. u ∈ ℝm×1 represents
the input, which is the current Ifc and the input mass flows
of hydrogen and air for the SOFC system. y ∈ ℝr×1 is the
measurable output, where the voltage Ufc is considered as
the output for the SOFC system. f ∈ ℝn×1 and ℎ ∈ ℝr×1

are nonlinear function vectors. Hence, (3) and (4) belong to
the state-space model (5).

The state-space model in (5) contains the information
of transient and steady-state behaviors. Only regarding to
steady-state behavior, the steady-state model is taken into
account, where the system can keep the stable condition
forever unless an external disturbance applies on the system
[22]. In the steady-state condition, the system inputs, states
and outputs are at the equilibrium points. Thus, the steady-
state model is expressed as:

0 = f
(

xeq , ueq ,Θ1,Θ2
) (6)

yeq = ℎ
(

xeq , ueq ,Θ1,Θ2
)

, (7)
where xeq , ueq and yeq represent the state, the input and the
output at the equilibrium points, respectively. It is worthy
noting that the system includes infinite equilibrium points,
where equilibrium points xeq and ueq are directly determined
by (6). Then the output equilibrium points yeq in (7) are
computed through the obtained equilibrium points xeq and
ueq .
Remark 1. For a fuel cell, the polarization curve illustrates
the steady-state voltage at a given current. Consequently, the
steady-state model of (7) is the model to interpret the polar-
ization curve of a fuel cell. Moreover, the electrochemical
impedance spectroscopy (EIS) technique [1] is a common
diagnostic testing method for a fuel cell, which can be used
to determine the equivalent circuit of the fuel cell. For each
EIS test, the impedance spectra of the fuel cell is recorded
when the fuel cell stack reaches to the steady-state voltage by
a given current. Thus, the EIS test provides the information
from the equilibrium point, which also can be interpreted by
the steady-state model of (7). In this paper, we only focus on
the polarization curve of a SOFC to determine the steady-
state model of (7).

The state-space model (5) and the steady-state model
(6), (7) explicitly depend on the system parameters Θ1 and
Θ2. Thus, output errors for the state-space model etr and thesteady-state model ess are calculated as:
etr(Θ1,Θ2, t) = ‖Ue(t) − Ufc(Θ2, t)‖2 + ‖Te(t) − Tfc(Θ1, t)‖2

ess(Θ2, i) = ‖Ua(i) − Ufc,eq(Θ2, i)‖2

where Ue and Te are the experimental data of voltage
and temperature, respectively; Ua denotes the value of the
steady-state behavior for the experimental voltage data.
Ufc,eq is the output equilibrium points of the voltage.

In order to achieve calibrating the state-space model
(5) and the steady-state model (6), (7) simultaneously, an
objective function is defined based on themean-square error:

J (Θ1,Θ2) = �0
t=kTs
∑

t=0
etr(Θ1,Θ2, t)+(1−�0)

i=Ne
∑

i=1
ess(Θ2, i)

where Ne denotes the number of experimental steady-state
value Uave; Ts is the sampling time and k is the sampling
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period, which both depend on the experiment; �0 representedas a weight constant to be manually set, which is 0 ≤ �0 ≤ 1.The weight constant �0 is used to make a trade-off between
calibrating the state-space model (5) and the steady-state
model (6), (7). When the experimental data contains more
information of the steady-state behavior, the weight constant
�0 can be set as a small value. Especially, only the steady-
state model is to be calibrated when the weight constant is
set as �0 = 0.Thus, the problem of the model tuning can be summa-
rized as

min
Θ1,Θ2

J (Θ1,Θ2)

s.t. Θ1,min ≤ Θ1 ≤ Θ1,max,
Θ2,min ≤ Θ2 ≤ Θ2,max

(8)

where Θ1,min and Θ2,min are the minimum values of Θ1 and
Θ2, respectively. The maximum values of Θ1 and Θ2 are
respectively denoted as Θ1,max and Θ2,max. They can be set
based on their physical properties and empirical value.

Since the cost function (8) may not be a convex problem,
the widely used PSOmethod with the classic gradient-based
search method is used to minimize the objective function
J for each operation condition. The flowchart of the model
calibration for each operation condition is shown in Figure
2. To be specific, the mathematical model of the fuel cell
system is first built by using MATLAB/Simulink. Then, a
mapping of potential parameter Θ1 and Θ2 given by PSO
are used for the state-space model (5) and the steady-state
model (6), (7) to obtain the tuning errors etr and ess. Toget equilibrium points for computing ess, it is not trivial
due to the highly nonlinear property of the steady-state
model (6), (7). We can numerically solve the steady-state
model of (6) and (7) through using the given value for the
equilibrium points of the input ueq and the stack temperature
Tfc,eq . Meanwhile, we can set initial values for each state in
order to avoid divergent results during the numerical solving
procedure. Consequently, the ’findop’ MATLAB command
has been used to compute equilibrium points. Furthermore,
the PSO will minimize the objective function J in order
to achieve the global search. When the maximum number
of PSO iteration is satisfied, the tuning parameters Θ1 and
Θ2 are near optimum points. Additionally, the solution from
PSO is set as initial points for the classic gradient-based
search method. The gradient-based search method will be
used to achieve the local search and to obtain more precise
solution. The merits of the PSO method with the gradient-
based search method are its faster convergence and more
efficient response since the number of potential parame-
ters for PSO can be reduced and the gradient-based search
method has a good performance for the local search. Finally,
the PSO method with the gradient-based search method is
implemented by the MATLAB command ’particleswarm’
and ’fmincon’.

After using the PSO method with the classic gradient-
based search method for each operation condition, the so-
lution of Θ1 and Θ2 is different among multiply operation

conditions. In order to obtain a group of the solution for
Θ1 and Θ2 under different operation conditions, an offline
tuning strategy for a SOFC system is proposed. Specifically,
there are three steps to achieve minimize the objective func-
tion J under various operation conditions.

1. The PSO method with the gradient-based search
method in Figure 2 is used to tune the state-space
model (5) and the steady-state model (6), (7) for each
operation condition.

2. The sensitive parameters with respect to the operation
condition are expanded into the polynomial equations.

3. The whole unknown parameters including coefficients
in the polynomial equations are determined by us-
ing the PSO method with the gradient-based search
method again under whole operation conditions.

Finally, the mathematical model of fuel cell systems for
different operation conditions can be calibrated offline based
on the proposed tuning strategy.

4. Online Parameter Estimation Method
The mathematical model of a SOFC system for multiple

operation conditions can be obtained offline by the proposed
tuning strategy. However, material properties of a SOFC
stack are slowly changing during the operation time. In order
to show the time-varying performance of unknown param-
eters, an online parameter estimation method is presented
in this section for each operation condition. Moreover, the
following assumptions for the proposed online parameter
estimation method are first provided as:
Assumption 1. The unknown parametersΘ1,Θ2 are slowlytime-varying and their derivatives are bounded such that
‖Θ̇1‖ ≤ �1 and ‖Θ̇2‖ ≤ �2 hold for positive constants
� > �1 > 0 and � > �2 > 0.
Remark 2. For SOFC, the unknown parameters are chang-
ing slowly such that Assumption 1 can be trivially fulfilled.
Besides, the upper bounds �, �1 and �2 are not needed to
known, which are used for the following analysis.

For SOFC, it is trivial to measure the SOFC stack tem-
perature and voltage in practice. In order to avoid requiring
the information of temperature derivative Ṫfc in (3), the
following filtered variables are given as:

⎧

⎪

⎨

⎪

⎩

�Ṫfc,f + Tfc,f = Tfc , Tfc(0) = 0
�Φ̇1,f + Φ1,f = Φ1, Φ1(0) = 0
�Ẇ1,f +W1,f = W1, W1(0) = 0

(9)

where � is a tuning constant. For the practical SOFC, the
SOFC temperature Tfc , voltage Ufc and current Ifc are
bounded and measurable. Meanwhile, parameters in Φ1 areconsidered as known constants. Thus, we can derive that the
vectorΦ1 is bounded. Furthermore, the filtered variableΦ1,fis bounded such that the fact ‖Φ1,f‖ ≤ 
 fulfills for a positive
constant 
 > 0.
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To show the effectiveness of the defined variables in (9),
the thermal energy balance of SOFC in (3) is filtered by a
low-pass filter 1∕(�s + 1). Consequently, we can get

s
�s + 1

{Tfc} =
1

�s + 1
{Φ1Θ1} +

1
�s + 1

{W1}. (10)
Compared (10) with (9), we can further derive the fol-

lowing equation based on the Swapping Lemma [8].

Ṫfc,f =
Tfc − Tfc,f

�
= Φ1,fΘ1 −

�
�s + 1

{Φ1,f Θ̇1} +W1,fc

= Φ1,fΘ1 +W1,fc + d
(11)

where the bounded disturbance denotes as d = −�∕(�s +
1){Φ1,f Θ̇1}, which fulfills ‖d‖ ≤ �d for a constant �d > 0.Moreover, it can be neglected that the initial value passes
through the low-pass filter, which will be exponentially
vanishing.
Lemma 1. For the disturbance d = 0 satisfied, the auxil-
iary variable is expressed as

z =
Tfc − Tfc,f

�
− Φ1,fΘ1 −W1,fc , (12)

which is uniformly ultimately bounded with the property of
exponentially converging to a compact set around zero such
that the fact

lim
�→0

{ lim
t→∞

{(Tfc−Tfc,f )∕�−Φ1,fΘ1−W1,fc}} = 0 (13)

holds. Consequently, the invariant manifold (Tfc−Tfc,f )∕�−
Φ1,fΘ1 −W1,fc = 0 is obtained for � > 0 and d = 0.

PROOF. To proof the boundedness of the auxiliary variable
z, we first take the differential of (12), that is

ż = −(z + �Φ1,f Θ̇1)∕�.

Then we choose Vz = zTz∕2 as Lyapunov function. Its
derivative is

V̇z = −
1
�
zTz − zTΦ1,f Θ̇1

≤ −1
�
‖z‖2 + 1

2�
‖z‖2 + �

2
‖Φ1,f Θ̇1‖2

≤ −1
�
Vz +

�
2

2�21.

Furthermore, we can get that Vz(t) ≤ e−t∕�Vz(0)+�2
2�21∕2.Thus, the auxiliary variable z is uniformly ultimately bounded.
Subsequently, we can derive that ‖z‖ =

√

2Vz ≤
√

z2(0)e−t∕� + �2
2�21 such that we can conclude that the
auxiliary variable z will exponentially converge to a small
compact set. This compact set is determined by the constant
� and the upper bounds ofΦ1,f and Θ̇1. Besides, we can getthe fact lim

t→∞
z = �
�1 for � > 0 and d = 0. Furthermore,

we can derive that the auxiliary variable z can reduce to zero

(i.e., lim
�→0

lim
t→∞

z = 0) when the constant � is a small value
or the unknown parameter Θ1 is constant (i.e., Θ̇1 = 0).
Therefore, we can conclude that z = 0 is an invariant
manifold for � > 0 [3].

It is worth mentioning that the invariant manifold z in
(12) is independent of the temperature derivative Ṫfc . Basedon this fact, the model of SOFC can be rewritten as the
following based on (4) and (11).

Y = ΦΘ +Dd (14)
where Y = [(Tfc − Tfc,f )∕� −W1,f Ufc −W2]T is the
known output. Θ = [Θ1 Θ2] is the unknown parameter
to be estimated. Based on Assumption 1, the parameter
derivative is bounded such that the fact ‖Θ̇‖ ≤ � holds
for a positive constant � > 0. Φ = diag{[Φ1,f Φ2]}is the calculable regressor matrix, which is bounded (i.e.,
‖Φ‖ ≤ 
1, ∀
1 > 0). diag{⋅} denotes as the diagonal matrx.
Moreover, Dd = [d 0]T is considered as the bounded
disturbance vector, that is ‖Dd‖ ≤ �d .In order to derive the adaptive law, the filtered matrices
are defined as
⎧

⎪

⎨

⎪

⎩

Ṗ1 = −lP1 + ΦTΦ∕m21, P1(0) = 0
Q̇1 = −lQ1 + ΦTY ∕m21, Q1(0) = 0
Ḣ1 = −lH1 + [ΦT(Y − ΦΘ̂)]∕m21] − P1

̇̂Θ, H1(0) = 0
(15)

where l > 0 is a constant to ensure that the matrix P1and vectors Q1, H1 are bounded. The normalizing signal is
m21 = 1 + ‖ΦTΦ‖. Θ̂ is the estimated parameter.

Then, we can derive the following matrix, which is
related to the estimated parameter Θ̂.

{

H1 = Q1 − P1Θ̂
ℎ = (ΦTΦΘ̂ − ΦTY )∕m21

(16)

Lemma 2. The definedmatrix in (16) can be further derived
the following fact, that is:

H1 = P1Θ̃ −D1 (17)
ℎ = −(ΦTΦΘ̃ + ΦTDd)∕m21 (18)

where the estimated error is denoted as Θ̃ = Θ − Θ̂. D1 =
∫ t0 e

−l(t−�)(ΦT(�)Dd(�)∕m21(�) − P1(�)Θ̇(�))d� is consid-
ered as a bounded residual disturbance, that is ‖D1‖ ≤ �1for a constant �1 > 0. Moreover, ΦTDd∕m21 is also a bound
disturbance, that is ΦTDd∕m21 ≤ 
21∕(2km

2
1) + k�

2
d∕(2m

2
1) ≤

�2 for constants k > 0 and �2 > 0.
PROOF. First, we integrate (15) and further get

{

P1 = ∫ t0 e
−l(t−�)ΦT(�)Φ(�)∕m21(�)d�

Q1 = ∫ t0 e
−l(t−�)Φ(�)TY (�)∕m21(�)d�.

(19)
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From (14), we can derive that Y − ΦΘ̂ = ΦΘ̃ + Dd By
multiplying elt into (15) and substituting (19), we get

eltḢ1 + leltH1

=eltΦ
TΦ
m21

Θ̃ + elt
ΦTDd

m21
− eltP1Θ̇ + eltP1

̇̃Θ

=eltΦ
TΦ
m21

Θ̃ + (∫

t

0
el�

ΦT(�)Φ(�)
m21(�)

d�) ̇̃Θ

+ elt(
ΦTDd

m21
− P1Θ̇).

(20)

Then we can further get
d
dt
{eltH1} =

d
dt
[(∫

t

0
el�

ΦT(�)Φ(�)
m21(�)

d�) ̇̃Θ]

+ elt(
ΦTDd

m21
− P1Θ̇).

(21)

By integrating it, we get

H1 =(∫

t

0
e−l(t−�)

ΦT(�)Φ(�)
m21(�)

d�)Θ̃

+ ∫

t

0
e−l(t−�)(

ΦT(�)Dd(�)
m21(�)

− P1(�)Θ̇(�))d�
(22)

Hence, (17) can be obtained. Then the fact (18) can be
proved by combining (14) with (16).

From Lemma 2, the matrixH1 and the vector ℎ contain
the estimation error Θ̃. In the following, we adopt the idea
of optimization to establish a cost function and minimize the
estimation error Θ̃. Moreover, a time-varying gain can be
derived to improve the performance of the matrix H1, thevector ℎ and further achieve parameter estimation.

In order to contain the information of the matrixH1 andthe vector ℎ, auxiliary matrices are first defined as
{

P = P1 + �ΦTΦ∕m21
Q = Q1 + �ΦTY ∕m21

(23)

where � > 0 is a constant coefficient. The matrices P andQ
are bounded by ‖P‖ ≤ �1 for a constant �1 > 0.Furthermore, the cost function for the optimization is
expressed as

J (Θ̂, t) =1
2 ∫

t

0
e−l(t−�)

[Q(�) − P (�)Θ̂(t)]T[Q(�) − P (�)Θ̂(t)]
m2(�)

d�

+ 1
2
e−lt[Θ̂(t) − Θ̂(0)]TS0[Θ̂(t) − Θ̂(0)]

(24)
where the normalizing signal is denoted asm2 = 1+‖P TP‖.
S0 = ST

0 > 0 is the constant weight matrix. l is the forgetting
constant, which used to exponentially decrease the effect of
initial value Θ̂(0).

Since the convexity of the cost function J1(Θ̂, t) withrespect to Θ̂, the optimization problem is expressed as

min
)J (Θ̂, t)
)Θ̂

= 0

s.t. t > 0.
(25)

Subsequently, we can derive that
)J (Θ̂, t)
)Θ̂

= e−ltS0[Θ̂(t) − Θ̂(0)]

− ∫

t

0
e−l(t−�)

P T(�)Q(�) − P T(�)P (�)Θ̂(t)
m2(�)

d� = 0.
(26)

Then, (26) can be rewritten as
Θ̂ = ΓS (27)

where the inverse of time-varying gain is expressed as

Γ−1 =∫

t

0
e−l(t−�)

P T(�)P (�)
m2(�)

d� + e−ltS0. (28)
And the matrix S is expressed as

S =∫

t

0
e−l(t−�)

P T(�)Q(�)
m2(�)

d� + e−ltS0Θ̂(0) (29)
However, it is nontrivial to compute (27) with (28) and (29)
for estimating parameter online. In order to address this
problem, we first differentiate (28), that is:

d
dt
{Γ−1} = − l ∫

t

0
e−l(t−�)

P T(�)P (�)
m2(�)

d�

− le−ltS0 +
P TP
m2

= − lΓ−1 + P TP
m2

.

(30)

Then, we consider the following equality [8], that is
d
dt
{ΓΓ−1} = Γ̇Γ−1 + Γ d

dt
{Γ−1} = 0. (31)

Based on (30) and (31), we can derive that
Γ̇ = lΓ − ΓP

TP
m2

Γ, Γ−1(0) = S0 > 0 (32)
Following the same procedure for the matrix S, we get

Ṡ = −lS + +P
TQ
m2

(33)
Based on (23) the adaptive law is designed as

̇̂Θ = Γ̇S + ΓṠ

= (lΓ − ΓP
TP
m2

Γ)S + Γ(−lS + +P
TQ
m2

)

= Γ
P T(Q − P Θ̂)

m2
= Γ

P T(H1 − �ℎ)
m2

(34)

Before we show the convergence of the adaptive law (34), the
regressor matrix Φ fulfilling the persistent excitation (PE)
condition needs to be defined and analyzed. Besides, the
boundedness of time-varying gain Γ is required to analyze.
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Lemma 3. [15] The regressor matrix Φ fulfills the PE
condition such that ∃T1 > 0, �1 > 0, ∫ t+T1t Φ(�)TΦ(�) ≥
�1I, ∀t ≥ 0. Moreover, the positive definite matrix P1 in (15)
can be derived, such that the minimum eigenvalue �min{P1}
is large than zero (i.e., �min{P1} > �1 > 0, ∀�1 > 0).

Lemma 4. Based on the fact that the regressor matrix Φ
fulfills the PE condition, the time-varying gain Γ satisfies
that

$I ≤ Γ ≤ $I (35)
where the lower bound is$ = 1∕(�min{S0} + 1∕l) > 0 and
the upper bound is$ = elT2m2∕�21 > 0.

PROOF. Based on the factsP TP∕m2 ≤ I and ∫ t0 e−l(t−�)d� ≤
1∕l, (28) can be derived that

Γ−1 ≤ I ∫

t

0
e−l(t−�)d� + S0 ≤ I∕l + S0 (36)

From the PE condition illustrated in Lemma 3, (28) can be
obtained that for t > T2 > 0,

Γ−1 ≥ ∫

t

0
e−l(t−�)

P T(�)P (�)
m2(�)

d�

≥ ∫

t

t−T2
e−l(t−�)

P T(�)P (�)
m2(�)

d� ≥
�21
m2
e−lT2I.

(37)

Finally, (35) is verified.
In the following, the convergence of the proposed adap-

tive law (34) is provided.
Theorem 5. Consider system (3) and (4) with Assumption
1, the adaptive law (29) with the filter operation (9) and
auxiliary variable (15) is used.Moreover, the system satisfies
the PE condition defined in Lemma 3, then the estimation
error Θ̃ = Θ − Θ̂ will exponentially converge to a compact
set around zero.

PROOF. We choose V = Θ̃TΓ−1Θ̃∕2 as the Lyapunov
function. Then, its derivative is expressed as

V̇ =Θ̃TΓ−1 ̇̃Θ + 1
2
Θ̃TΓ̇−1Θ̃

=Θ̃TΓ−1Θ̇ − l
2
Θ̃TΓ−1Θ̃ − 1

2
Θ̃TP TP

m2
Θ̃

+Θ̃TP TD1
m2

− �Θ̃TP TΦTDd

m2m21

(38)

Then we apply the Young’s inequality with a constant k1 >
0. We can get

V̇ ≤ −(
�21
m2

− 3
2k1

+ l
$
)‖Θ̃‖2 +

k1�2

2$2
+
k1�21�

2
1

2m2
+
k1�2�21�

2
2

2m2

≤ −aV + b
(39)

Table 1
Search range of unknown parameters in the SOFC model for
each operation condition

Parameter ΔU R0 �ca �an a1 Kcc
Lower 1 0.5 0.2 0.2 0.01 1
Upper 1.2 1.5 10 10 15 250

Table 2
Tuning results for unknown parameters in the SOFC model for
each operation condition

Parameter ΔU R0 �ca �an a1 Kcc
750oC 1.069 1.331 10.000 2.474 14.851 8.116
790oC 1.057 1.203 10.000 0.608 11.553 250.000

where a = �21∕m
2 − 3∕(2k1) + l∕$ and b = k1�2∕2$2 +

k1�21�
2
1∕2m

2 + k1�2�21�
2
2∕2m

2 are positive constants for
k1 ≥ 3∕(2�21∕m

2 + 2∕$). The solution of (39) is V ≤
e−atV (0) + b∕a. Then we can further derive that ‖Θ̃‖2 ≤
√

2V $ ≤
√

‖Θ̃(0)‖2$2e−at + 2b$∕a. Hence, the estima-
tion error Θ̃ will exponentially converge to a compact set
around zero.

5. Practical Model Tuning and Validation
In this part, the experiment is conducted on the practical

SOFC test bench (as shown in Figure 1) for two operation
conditions. The target temperature of SOFC for two oper-
ation condition is set as 750oC and 790oC. The sweeping
current range is set from 0 A to 13 A. The mass flows of
hydrogen and oxygen are set as 4.88 slpm and 15 slpm,
respectively. The experimental data of the system input for
SOFC is shown in Figure 3.
5.1. Offline Model Tuning Results

Based on the proposed tuning strategy, the PSO search
range setup for unknown parameters under two operation
conditions is provided in Table 1. Subsequently, by using
the PSO method with the gradient-based search method for
each case, tuning results are shown in Table 2. Moreover, the
following parameters are the chosen sensitive parameters,
which are expanded into the polynomial equations with
respect to the stack temperature Tfc :

ΔU = ΔU01 + ΔU02(Tfc − T0)
R0 = R01 + R02(Tfc − T0)
�ca = �ca1 + �ca2(Tfc − T0)
�an = �an1 + �an2(Tfc − T0)

(40)

where the reference temperature is set as T0 = 700oC.The SOFC model with (40) is considered as the global
model to be calibrated. Table 3 shows the PSO search range
of unknown parameters in the SOFC global model. To make
the value of polynomial equations fulfill the search range in
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Figure 3: The experimental data of the input for SOFC (current Ifc and power rate of the climatic chamber Rcc).

Table 3
Search range of the unknown parameters in the SOFC model
for whole operation conditions (750oC and 790oC)

Parameter ΔU01 ΔU02 R01 R02 �ca1
Lower 1 −8.5 × 10−4 0.5 −4.7 × 10−4 0.2
Upper 1.2 8.5 × 10−4 1.5 4.7 × 10−4 10

Parameter �ca2 �an1 �an2 a1 Kcc

Lower −1.9 × 10−4 0.2 −1.9 × 10−4 1 1
Upper 1.9 × 10−4 10 1.9 × 10−4 15 250

Table 4
Tuning results for the unknown parameters in the SOFC model
for whole operation conditions (750oC and 790oC)

Parameter ΔU01 ΔU02 R01 R02 �ca1
Value 1.0548 1.1008 × 10−4 1.2566 −4.7 × 10−4 0.2095

Parameter �ca2 �an1 �an2 a1 Kcc

Value −1.9 × 10−4 4.6732 −1.9 × 10−4 14.9905 78.5876

Table 1, the objective function is redefined as follows:

J1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

J ,

if 1 ≤ ΔU ≤ 1.2,
and 0.5 ≤ R0 ≤ 1.5,
and 0.2 ≤ �ca ≤ 10,
and 0.2 ≤ �an ≤ 10.

J + 1020, otherwise.

(41)

Furthermore, the tuning results for the SOFC global
model is shown in Table 4 by using the PSO method with
the gradient-based search method.

In order to show the calibrated model performance, the
comparative results among the model simulation results,
the global model simulation results and the experimental
data are depicted from Figure 4 to Figure 6. It is shown
that the transient behaviors of temperature and voltage from
the calibrate model (Figure 4, Figure 5) are similar to the
experimental data. Moreover, the global model with one
group of tuning parameters in Table 4 can provide similar

performance, compared with the model with two groups
of tuning parameters in Table 2. Therefore, it is illustrated
that the global tuning strategy is effective to calibrate the
SOFC model for various operation conditions. However,
there are some discrepancy between simulation results and
experimental data. Due to these errors, the steady-state
model cannot provide accurate value of the voltage (Figure
6), especially for the case that the current is larger than 6 A.
5.2. Online Model Tuning Results

The proposed parameter estimation method will be con-
ducted on the SOFC model by using the same experimental
data for each operation condition. The learning parameters
in the proposed method (34) are set as � = 9 × 10−3,
l = 70, and l = 100, � = 0.05. The initial values of
the estimated parameters are set as Θ̂1(0) =

[

5 100
],

Θ̂2(0) =
[

1 1 1 1
]. The sampling time is 1× 10−3. The

computation time required by the proposed adaptive method
at each time step is around 1.3 × 10−4 s.

Figure 7 and Figure 8 illustrates the result profiles of the
estimated parameters by using the proposed method (34).
It is shown that the estimated parameters are slowly time-
varying. In order to verify the estimation results, the tem-
perature and the voltage of the SOFC system are computed
by substituting the estimated results and compared with
the experimental data. The comparative results are shown
in Figure 9. It is shown that the model with estimation
results of the proposed method (34) can provide a good
performance. Since the offline tuning strategy obtains a
constant value of the parameter for the whole experimental
data, the unavoidable variations in the system may not be
captured. Hence, the proposed adaptive estimation method
can obtain a superior performance. However, the proposed
adaptive estimation method can only calibrate the model for
each operation condition such that it cannot provide a global
model. Therefore, the offline global tuning strategy based on
the PSO method and the gradient-based search method can
be used to tune the SOFC model under variable operation
conditions. The proposed adaptive estimation method can
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Figure 4: The tuning transient profiles of the SOFC stack voltage and temperature at T = 750oC and T = 790oC.

Figure 5: The zoom-in tuning transient profiles of the SOFC stack voltage and temperature at T = 750oC.
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Figure 6: The tuning equilibrium points of the SOFC stack
voltage (Ufc) by using parameter values in Table 4.

be used to estimate the time-varying parameters for each
operation conditions.

6. Conclusion
In this paper, an offline global tuning strategy and an

online parameter estimation method for a SOFC system are
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Figure 7: The estimation results by using the proposed adaptive
method (34).

investigated to calibrate the mathematical model. The offline
global tuning strategy is developed in order to tuning the
model under various operation conditions. First, the PSO
method with gradient-based search method is applied to
tuning the state-space model and the steady-state model for
each operation condition. Then the sensitive parameters are
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Figure 8: The estimation results by using the proposed adaptive
method (34).

expanded to the polynomial equations to guarantee global
fitting. Moreover, the global model including coefficients in
the polynomial equations are determined by using the PSO
method with gradient-based search method for whole oper-
ation conditions. For online parameter estimation method,
an adaptive optimal learning law is proposed to minimize a
cost function with the information of the estimation error.
The estimation error is extracted through several low-pass
filters and simple algebraic calculation. Finally, the proposed
tuning strategy and adaptive estimation method are verified
based on the experimental data from a practical SOFC test
bench. The comparative results illustrate that the offline
global tuning strategy is effective to calibrate the state-space
model and the steady-state model for multiple operation con-
ditions. The online parameter estimation method can capture
the slow time-varying behavior of the parameters, while
it can be used for single operation condition. Finally, the
proposed offline and online parameter estimation methods
are efficacy to calibrate the SOFC model.

Appendix
A. The model detail of SOFC

The nonlinear functions involved in the voltage balance
(1) are expressed as

f1(Tfc) =
TfcR
2F

ln

⎛

⎜

⎜

⎜

⎝

PH2

√

PO2
PH2O

⎞

⎟

⎟

⎟

⎠

(42)

f2(Tfc) =
1
Afc

e

[

Ks

(

1
Tfc

− 1
T0

)]

(43)

f3(Ifc) =
R
2F
sinh−1

( Ifc
2i0,caAfc

)

(44)

Table 5
SOFC Model Parameters and coefficients

Symbol Description Value
Afc SOFC stack area 38 [cm2]
Eact,an anode activation energy 1 × 104 [J⋅mol−1]]
Eact,ca cathode activation energy 7 × 104 [J⋅mol−1]]

an anode pre-exponential factor 1.02 × 106 [A⋅m−2]]

ca cathode pre-exponential factor 1.43 × 104 [A⋅m−2]]
Pref absolute pressure 1.01325 × 105 [Pa]
F Faraday’s constant 9.6485 × 104 [C⋅mol−1]
R gas constant 8.3145 [J⋅mol−1⋅K−1]
Tan,in anode input gas temperature 623 [K]
Tca,in cathode input gas temperature 623 [K]
Tref reference temperature 25 [℃]
mfc SOFC stack mass 4.3 [kg]
MH2 H2 molar mass 2 × 10−3 [kg⋅mol−1]
MH2O H2O molar mass 18 × 10−3 [kg⋅mol−1]
MO2 O2 molar mass 32 × 10−3 [kg⋅mol−1]
Ncell number of cells 30
ΔHo

r specific heat of reaction −241.83 [kJ⋅mol−1]
T0 reference temperature for specific resistance 973 [K]
Il limiting current 90 [A]
Ks coefficient in the Steinhart-Hart equation 2870

f4(Ifc) =
R
2F
sinh−1

( Ifc
2i0,anAfc

)

(45)

f5(Ifc) =
R
2F

ln(1 −
Ifc
Il
) (46)

where PH2
, PO2 and PH2O represents the partial pressure of

hydrogen, oxygen and water vapor, respectively.

i0,ca = 
ca

( PO2
Pref

)0.25

e

(

−
Eact,ca
Tref R

)

i0,an = 
an

( PH2

Pref

)(PH2O

Pref

)

e

(

−
Eact,an
Tref R

)

The nonlinear functions for the thermal energy balance (2)
are expressed as

H in =
∑

ca

wini
Mi ∫

Tca,in

Tref
Cp,i (T ) dT

+
∑

an

wini
Mi ∫

Tan,in

Tref
Cp,i (T ) dT

(47)

Hr = −
wrH2

MH2

ΔHo
r (48)

Hout =
∑

an+ca

wouti
Mi ∫

Tfc

Tref
Cp,i (T ) dT (49)
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