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Abstract— This brief contributes to the application of model
predictive control (MPC) to address the combined sewer overflow
(CSO) problem in urban drainage systems (UDSs) with uncer-
tainty. In UDS, dealing with uncertainty in rain forecast and
dynamic models is crucial due to the possible impact on the
UDS control performance. Two different MPC approaches are
considered: tube-based MPC (T-MPC) and chance-constrained
MPC (CC-MPC), which represent uncertainty in deterministic
and stochastic manners, respectively. This brief presents how to
apply T-MPC to UDS, by establishing a mathematical relation
with CC-MPC, and a rigorous mathematical comparison. Based
on simulations using the Astlingen benchmark UDS, the strengths
and weaknesses of the performance of T-MPC and CC-MPC in
UDS were compared. Differences in the involved mathematical
computations have also been analyzed. Moreover, the comparison
in performance also indicates the applicability of each MPC
approach in different uncertainty scenarios.

Index Terms— Chance-constrained, combined sewer overflow
(CSO), model predictive control (MPC), tube, uncertainty, urban
drainage system (UDS).

I. INTRODUCTION

URBAN drainage systems (UDSs) are critical infrastruc-
tures that transport wastewater and rainwater to be treated

in wastewater treatment plants (WWTPs) before releasing
them into the environment. However, in heavy-rain situations,
the water inflow may exceed infrastructure capacity, causing
overflows and pollution to the recipient environment, which is
the combined sewer overflow (CSO). Therefore, one important
operational objective of UDS is to reduce the pollution of
CSO. Model predictive control (MPC) has been proven an
adequate approach in practice and research for such objec-
tives [1], [2], [3], [4].

MPC is an optimal control method, which has been matured
into a well-researched field and an effective approach to solve
multivariable constrained control problems in many types of
infrastructures; water networks, smart grids, etc., [1], [2], [3],
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[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. For the UDS application, the majority of MPC research
has focused on the case with deterministic rain forecasts, with
only a few having considered the uncertainties [17], [18].
However, in reality, the dynamic models and rainfall forecasts
would include uncertainties possibly affecting the operation
of UDS, which might involve more CSO and the consequent
pollution of the environment [19].

Handling uncertainty is, therefore, important within MPC
[5], [6], [8], [16], [17], [18], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29]. Depending on whether uncertainty
models are deterministic or statistic, the MPC extensions can
be grouped into robust or stochastic methods. In [17] and [18],
the presence of CSO complicates the handling of uncertainties
in UDS using stochastic chance-constrained MPC (CC-MPC),
with the need for a weir-oriented reformulation.

Therefore, this brief will consider and verify how a robust
approach: tube-based MPC (T-MPC) using zonotopes, can be
applied to the case of UDS with uncertainty, both in theory and
application in comparison to CC-MPC. This brief contributes:

1) a formulation of the zonotopic T-MPC applicable to
UDS with uncertainties;

2) a mathematical comparison of T-MPC and CC-MPC,
their constraint formulations, and the propagation of
uncertainty;

3) a performance comparison of T-MPC and CC-MPC in
solving the CSO problem in UDS, based on a well-
known benchmark the Astlingen UDS; and

4) a comparative discussion to clarify selections of MPC
approaches.

A. Related Work

Robust MPCs use set knowledge to bound uncertainties,
considering the worst case of the constraints and occasionally
cost function [8], [16], [21], [24], [27], [29]. The easiest
way relies on exploiting inherent robustness, where open-loop
control action is determined without explicitly considering
uncertainties [19]. However, due to the possible diminished
control performance, feedback control could be designed to
explicitly consider uncertainty [27], [29]. For robust MPC, the
min–max approach is a common method, which leads to con-
servative results [26] and generally intractable computational
load [16]. T-MPC is the robust approach with conservative
solutions at reasonable computational loads [8], [24], [30],
which bounds the uncertainty deviation through a sequence
of invariant sets in the state space, the so-called tubes [6],
[21], [25].

Stochastic MPC considers the probabilistic nature of uncer-
tainties in the controller design [28] through using a stochastic
distribution of the uncertainty to ensure that the control strate-
gies satisfy the constraints for the most likely realizations [5],
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Fig. 1. Modeling concept for virtual tanks.

[20], [22], [23], [25], [28], [31], [32]. Stochastic MPC includes
approaches from scenario-based MPC [31] to CC-MPC [33].

The CC-MPC method uses probabilistic constraints consid-
ering the violation probability under a chosen confidence level
[34], with application in several domains [5], [18], [20], [22].
The scenario-based MPC approximates the robust approach,
and is a simple method, though its pure form scales badly
for high probabilistic coverage, the linear case is scalable for
approximating CC-MPC [35]. Both methods have been applied
and compared in water network management [36].

Although T-MPC and CC-MPC are typical representative
approaches in the robust and stochastic families of MPC, there
has been no comparison between them especially in the UDS
application. The selection of the two approaches T-MPC and
CC-MPC comes from the facts that: 1) they have a similar
approach to constraints, both relying on tightening, and 2)
they resemble each other from the mathematical perspective.

B. Nomenclature

In this brief, vectors and matrices are denoted by bold
font, and the dimension of a function or variable f is given
by n f . The minimum and maximum of a function f (x) are
noted by f and f , respectively, while the sampling time
and sample number are denoted by 1T and the subscript k,
respectively. A stochastic variable X following a distribution
F is written as X ∼ F , while its expectation is given by
E{X}. The probability function for the value of x is denoted
by Pr{X ≤ x}, likewise, the cumulative distribution function
(cdf) is given by 8X {x}.

II. MPC DESIGN FOR UDS

A. Control-Oriented Model

The control model in this brief is based on [37], where the
UDS was divided into connected subgroups of catchments and
treated as interconnected virtual tanks, see Fig. 1. The model
for catchments or virtual tanks at the kth time step was based
on the water volume balance

vk+1 = vk + 1T (qin
k − qout

k − qCSO
k ) (1)

where vk is water volume of catchments or tanks at time step
k; 1T is the time interval; and qin

k , qout
k , and qCSO

k are sum of
inflows, outflows, and the amount of overflow, respectively.

The tanks are connected with main sewage pipes which con-
vey outflows from tanks T and inflows from the environment

q in
i,k = qhouse

i,k + ϕi Si Pi,k +

∑
j∈T

qout
j,k−d j

(2)

where qhouse
i is the wastewater from houses, ϕi is the ground

absorption coefficient, Si is the area, and Pi,k is the precipita-
tion intensity in 1T for the i th catchment, with d j being the

delay time of the outflows through the pipe. The outflows are
either passive or controlled. Passive outflows are assumed to
be proportional to the tank level

qout
i,k = βivi,k (3)

where calibration procedure of ϕ and β is given by [38]. In the
controlled case, the tank outflow is controlled directly through
the variables ui using a retention gate, qout

i,k = ui,k . While pipes
use redirection gates to divert flow from the outflow

qout
i,k = q in

i,k −

∑
j

u j
i,k (4)

where j is the index of manipulated flows. Based on the
presented models, the collected tank volumes of UDS is

xk+1 = Axk + Buk + BcsoqCSO
k + Gwk (5)

where xk is a vector with states such as tank volumes, uk
represents manipulated flows, wk corresponds to rain and
wastewater inflows, qCSO

k represents the overflows, and con-
stant matrices A, B, Bcso, and G are the system matrices.

B. Model Constraints

For MPC in UDS, the constraints typically describe the
limits of the different flows in the network (e.g., qout

i,k ≤ q̄out
i ),

or the limits on tank volumes [18], [39]. The complete set of
constraints can usually be written as

9xk + 0uk + 0csoqCSO
k + 2wk ≤ φ. (6)

C. Control Objectives

Control of UDS may have multiple objectives [4] with
decreasing priority order: Objective 1) minimization of CSO
volume; Objective 2) maximizing flow to the WWTP; and
Objective 3) minimizing control changes.

The overflows in the first objective can be described either
through logic (qCSO

j,k = 0 ↔ v j,k ≤ v̄ j ) or slack variables

rcl(v j,k − v j )/1T ≤ qCSO
j,k , 0 ≤ qCSO

j,k . (7)

Typically, the above objectives are formulated using norms

cccl1 = ∥4cso∥1 l2 = −∥4TP∥1 l3 = ∥41u∥2 (8)

where 4cso is a weighted vector containing the CSO volume
across the prediction horizon Hp. Similarly, 4TP contains the
flows to the WWTPs, and 41u contains the changes of control
actions. Other objectives or priorities can exist.

For both overflow and wastewater treatment, the 1-norm is
used to optimize the total quantity and not specific peaks.

III. MPC METHODS: TUBE AND CHANCE CONSTRAINED

In this section, we outline and compare the MPC methods
used in this brief. A detailed focus will be given to the
case of linear systems with additive uncertainty, as it is a
standard approach to represent UDS, using virtual tanks [39].
If we denote a sequence of states, inputs, and disturbances,
respectively, by

Xi |k = [xT
0|k xT

1|k . . . xT
i |k]

T (9)



Ui |k = [uT
0|k uT

1|k . . . uT
i |k]

T (10)

Wi |k = [wT
0|k wT

1|k . . . wT
i |k]

T (11)

then, the general deterministic MPC with a prediction horizon
Hp, minimizing a cost l subject to the constraints of a process
function: f : Rnx +nu+nw → Rnx , and an inequality constraint
function: g : Rnx +nu+nw → Rng , is given by

J = min
UHp−1|k

l(XHp |k, UHp−1|k, WHp−1|k) (12)

s.t. xi+1|k = f(xi |k, ui |k, wi |k), i = 0, . . . , Hp − 1
(13)

gi (xi |k, ui |k, wi |k) ≤ gi , i = 0, . . . , Hp − 1.

(14)

For the linear case, the process and j th constraint is

f(xi |k, ui |k, wi |k) = Axi |k + Bui |k + Gwi |k (15)
gi, j (xi |k, ui |k, wi |k) = 9i, j xi |k + 0i, j ui |k + 2i, j wi |k ≤ φi, j

(16)

where

A ∈ Rnx ×nx , B ∈ Rnx ×nu , G ∈ Rnx ×nw (17)

9i, j ∈ R1×nx , 0i, j ∈ R1×nu , 2i, j ∈ R1×nw , φi, j ∈ R. (18)

The state at the i th time can be written as

xi |k = Ai x0|k +

i−1∑
j=0

Ai−1− j Bu j |k +

i−1∑
j=0

Ai−1− j Gw j |k (19)

describing the propagation of inputs and disturbances. The
corresponding propagated j th constraint is given by

9i, j Ai x0|k + 0̃i, j Ui |k + 2̃i, j Wi |k ≤ φi, j (20)

with the new constraint matrices being

2̃i, j = [9i, j Ai−1G 9i, j Ai−2G . . . 9i, j G 2i, j ] (21)

0̃i, j = [9i, j Ai−1B 9i, j Ai−2B . . . 9i, j B 0i, j ]. (22)

T-MPC and CC-MPC are discussed in the following, for
the case of uncertainty being present. In both cases, the
dynamics in (13) are substituted into the cost and constraint
formulations.

A. Tube-Based

Robust methods deal with uncertainty by handling the worst
case scenario [25]. As this depends on knowing all values the
uncertainty can take, it usually requires the uncertainty to be
bounded. If each disturbance wi |k is bounded by Wi |k , then
Wi bounding Wi |k is a tube of temporal sets

Wi = W0|k ×W1|k × . . . ×Wi |k (23)
Wi |k = {wi |k : wi |k ≤ wi |k ≤ wi |k} ⊆ Rnw . (24)

The cost of T-MPC is typically formulated as the minimization
of the nominal cost [25]. The cost is defined as the minimiza-
tion using the nominal system x̃i+1|k = f(x̃i |k, ui |k, w̃i |k)

J = min
UHp−1|k

l(X̃Hp |k, UHp−1|k, W̃Hp−1|k). (25)

In contrast, the constraints in T-MPC are given by maxi-
mization for the worst case scenario

max
Wi |k∈Wi

gi (xi |k, ui |k, wi |k) ≤ gi , i = 0, . . . , Hp − 1 (26)

maximized over Wi |k with xi |k given by (19). The maximiza-
tion of each constraint gi, j and cost are done independently,
as different realizations can be the worst case in each one of
them.

In this brief, the T-MPC is formulated using zonotopes [40].
Zonotopes of Wi |k describe the disturbances by a nominal
center W̃i |k and a symmetric 0-centered uncertainty 1Wi |k

Wi |k = W̃i |k + 1Wi |k, 1Wi |k ∈ [−1Wi |k, 1Wi |k] (27)

W̃i |k =
1
2
(Wi |k + Wi |k), 1Wi |k =

1
2
(Wi |k − Wi |k) (28)

with the zonotope form of 1Wi |k given by

1Wi |k ∈ 0 ⊕ Hw,i zd,i , zd,i ∈ [−1, 1]
(i+1)×nw (29)

Hw,i = diag(1w0|k, . . . ,1wi |k) (30)

where ⊕ denotes the Minkowski sum, the 0-vector is the center
of the 1Wi |kzonotope, and Hw,i zd,i is the set of boundaries.

Using zonotopes, it is easier to propagate uncertainty in the
dynamics. In the linear case of the j th constraint, (20), the
propagated uncertainty can be described by the zonotope 1i, j

1i, j = 2̃i, j1Wi |k ∈ 0 ⊕ 2̃i, j Hw,i zd,i . (31)

For the T-MPC’s maximization of the constraints, the linear
case using zonotopes becomes simple to compute; by obtain-
ing the largest value using the 1-norm to compute the interval
hull of the zonotopes [6]

1i, j = ∥2̃i, j Hw,i∥1 i ≥ 0. (32)

The robust tightening of the constraint then gives

9i, j Ai x0|k + 0̃i, j Ui |k + 2̃i, j W̃i |k ≤ φi, j − 1i, j . (33)

B. Chance-Constraint

Stochastic methods are based on the assumption that distur-
bances follow some known distribution F

Wi |k ∼ Fb
a (θ), a ≤ b (34)

defined by the parameters θ , in the intervals between a and b,
potentially an open interval (−∞ ≤ a j ≤ b j ≤ ∞).

In CC-MPC, the optimum focuses on the expected cost

J = min
UHp−1|k

E{l(XHp |k, UHp−1|k, WHp−1|k)} (35)

using the knowledge of the distribution to account for the
most likely case [5], [25]. The constraints are formulated as
probabilistic constraints with a confidence level γ

Pr{gi (Xi |k, Ui |k, Wi |k) ≤ ḡi } ≥ γi , i = 0, . . . , Hp − 1 (36)

⇐⇒ 8−1
gi (Xi |k ,Ui |k ,Wi |k )

{γi } ≤ ḡi , 0 ≤ γi ≤ 1 (37)

where γi defines how robust the constraint is, as the likelihood
of (14) being true. Typically, the constraints are given in terms
of their quantile function 8−1

gi
{γi } as shown in (37), if it



exists. In this brief, we will focus on the scalar probabilistic
constraints formulation. In the vector constraint case, the joint
probability confidence level can be ensured by conservative
element-wise risk allocation, as described in [5].

For the linear case, the constraint in (14) can be written as

9i, j Ai−1x0|k + 0̃i, j Ui |k ≤ φi, j − 8−1
2̃i, j Wi |k

{γi, j } (38)

making the propagated disturbance term a probabilistic tight-
ening on the constraint [41]. Even in the linear case, computing
the propagated distribution of 2̃i, j Wi |k and its quantile is only
simple for special cases, such as Gaussian distributions.

C. Relation of Constraint Tightening

As the T-MPC’s worst case approach considers all possibil-
ities equally important or likely, this is equivalent to assuming
Wi |k to be uniformly distributed [42] within an interval (a, b)

Wi |k ∼ U(a, b)

(a, b) = (W̃i |k − 1Wi |k, W̃i |k + 1Wi |k). (39)

This stochastic form of the worst case leads to the relationship
between the constraint tightenings, given in Theorem 1.

Theorem 1: If 2̃i, j Wi |k is upper bounded, and we consider
the centered part 2̃i, j W̃i |k of the zonotope part of the con-
straint tightening for the T-MPC, then the constraint tightening
of T-MPC and CC-MPC is related by

8−1
2̃i, j Wi |k

{γi, j } ≤ 2̃i, j W̃i |k + ∥2̃i, j Hw,i∥1 ∀γi, j ∈ [0, 1]

with the two methods being identical at γi, j = 1.
Proof: For any upper-bounded stochastic variable X of

some distribution Fb
a and confidence levels γ1 ≤ γ2; the

quantile of γ1 is smaller than the quantile of γ2. It naturally
follows that a γ = 1 corresponds to the upper bound

X ∼ Fb
a (θθθ), a ≤ X ≤ b, 0 ≤ γ1 ≤ γ2 ≤ 1 (40)

8−1
X {γ1} ≤ 8−1

X {γ2} ≤ 8−1
X {1} = b. (41)

Since the constraint on the right-hand side of (40) corresponds
to the upper bound of constraints uncertainty, the right-hand
side is, therefore, equal or larger than the quantile function of
any distribution for the given variable.

IV. APPLICATION TO UDS

A. UDS Case Study System

The Astlingen UDS is a well-known case study [3], [43]
including both combined and separated sewer systems as seen
in Fig. 2. The system includes six storage tanks (where tanks
1 and 5 are not controlled) with a total storage volume of
5900 m3. It also contains weir structures where CSOs may
occur (CSO 1–6), located in water detentions (tanks 1–6),
and diversion structures (CSO 7–10). The system includes
two receiving bodies for CSO, a creek and a river, where
the latter is the preferred receiver. It is also driven by the
unknown rain inflow as disturbances. We will use the vali-
dated simulation setup of [3], where the MPC controller is
implemented in MATLAB, a Hi-Fi simulator of the system
is given in SWMM1 with a connection to MATLAB through
pySWMM Python package.

1U.S. EPA’s Storm Water Management Model.

Fig. 2. Astlingen UDS [43] with interconnections between tanks, CSO pipes,
WWTP, and pipe delays x ′ in minutes. The creek receives CSOs come from
the green section and the river receives CSO from the blue section.

B. MPC Designs

The linear model of Astlingen is used to design MPC [18],
where CSO flows are determined by penalty costs [2], [44],
and the only uncertainties considered are in the inflow.

Since the MPC objective function formulation presented
in this brief does not follow the standard formulation based
on tracking a reference, the standard stability results in the
literature based on terminal ingredients do not apply [9]. So,
stability conditions have not been explicitly considered in the
MPC designs. Formal proof of stability is considered for future
research since it would require a completely new stability
development. In addition, UDS’ are intrinsically stable and
feasible systems, as excessive water becomes CSO.

Given the different flow times between each tank, delay
states are needed. Using a 5-min sampling time, the model of
the UDS is discretized. The following state xi |k , manipulation
ui |k , and disturbance wi |k are considered

xi |k = [V T 1
i |k , V T 2

i |k , V T 3
i |k , V T 4

i |k , V T 5
i |k , V T 6

i |k

η1:5
i |k , η1:10

i |k , η1:15
i |k , η3:5

i |k , η3:10
i |k , η3:15

i |k ]
T (42)

ui |k = [qu
2,i |k, qu

3,i |k, qu
4,i |k, qu

6,i |k, qCSO
1,i |k

qCSO
2,i |k , qCSO

3,i |k , qCSO
4,i |k , qCSO

5,i |k , qCSO
6,i |k ]

T (43)

wi |k = [wT 1
i |k , wT 2

i |k , wT 3
i |k , wT 4

i |k , wT 5
i |k , wT 6

i |k ]
T (44)

where xi |k is tank volume V T and the delayed flows between
tanks ηa:b with a as destination and b the remaining travel
time. ui |k consists of the controlled tank outflows as well as
the CSOs, while wi |k only consists of the external tank inflows.

The uncertainty was chosen to be normally distributed.
Therefore, quantile functions of constraints can be written as

8−1
g j (u,w){γ } = E{g j (xi |k, ui |k, wi |k)}

+ σ {g j (xi |k, ui |k, wi |k)}8
−1

{γ } (45)

where 8−1
{γ } is a quantile of the standard normal distribution.



C. Constraint Reformulation

As the constraint tightening of T-MPC is similar to
CC-MPC’s, as shown in Section III-C. The presence of uncer-
tainty in UDS gives T-MPC the same issue with feasibility and
CSO definition, as CC-MPC [17]. For CC-MPC, the issues can
be addressed through a revision [17], [18], splitting overflow
definition from the uncertainty handling. Using a similar
approach, we can remove the issues for the T-MPC, through
a reformulation of the constraints. Consider the constraints of
a tank with controlled output

Vi+1|k = Vi |k + 1T (q in
i |k − qu

i |k − qCSO
i |k ) (46)

0 ≤ Vi |k + 1T (q in
i |k − qu

i |k − qCSO
i |k ) ≤ V (47)

the upper constraint defines CSO qCSO
i |k at the i th prediction.

If we consider volume Vi |k and inflow q in
i |k to be uncertain

and bounded, the controlled outflow qu
i |k and CSO flow qCSO

i |k
as optimization variables, the robust constraints become

max(−Vi |k − 1T q in
i |k) ≤ −1T (qu

i |k + qCSO
i |k ) (48)

max(Vi |k + 1T q in
i |k) − 1T (qu

i |k + qCSO
i |k ) ≤ V (49)

for the direct application of T-MPC. For the revised T-MPC,
(49) is divided into a nominal and worst case constraint

Ṽi |k + 1T q̃ in
i |k − 1T (qu

i |k + qCSO
i |k ) ≤ V (50)

max(Vi |k + 1T q in
i |k) − 1T qu

i |k − ci |k ≤ V . (51)

The CSO qCSO
i |k is now defined by the constraint (50) based on

the nominal constraint, while (51) formulates the robustness
of avoiding CSO. The unbound slack variable c is introduced
into (51) to guarantee feasibility when CSO cannot be avoided
(qCSO

i |k > 0). For the lower constraint in (48), the revised
version can be obtained by introducing a bounded slack
variable s for the feasibility issue

max(−Vi |k − 1T q in
i |k) − si |k ≤ −1T (qu

i |k + qCSO
i |k ) (52)

si |k ≤ ∥1Vi |k + 1T 1q in
i |kk∥1 (53)

0 ≤ si |k, ci |k (54)

the upper bound on the slack variable s is set as equal to the
constriction as discussed in (32). The expected value in (50)
is defined as the mean of the bounds of the uncertainty.

D. Cost Formulation

The cost in the MPC design is the quadratic-linear cost
in (55). It contains a weighted sum of quadratic cost on the
change of control flow, and linear costs on the accumulated
CSO volume VCSO

k , and the objectives zk ; maximum flow
to WWTP and minimum CSO flow. The outflow term in T-
MPC and CC-MPC is formulated as the maximum and the
expectation, respectively,

J = min
qu ,qCSO

6N
j=0∥1qu

j |k∥
2
R + QT z j |k + WT VCSO

j |k (55)

z j |k = [qout,T 1
j |k , 66

i=1qCSO
i, j |k] (56)

VCSO
j |k = 6

j
i=01T qCSO

i |k . (57)

Fig. 3. Volume of T-MPC and CC-MPC with uncertainty bounds 25%–75%.

For the T-MPC and CC-MPC the slack cost term WT
c c +

WT
s s is added. The weights of the terms are −1 for the WWTP

outflow, 2 for CSO flow, and 0.01 for the control change flow,
while weights of the CSO volume are differentiated across
tanks, tank 1 is 1000, tanks 2–5 is 5000, and tank 6 is 10 000,
given importance to avoid CSO to the creek over the river.
The weights for the added slack terms are 10.

V. PERFORMANCE COMPARISON AND RESULTS
DISCUSSION

Simulations were performed using a dataset of rainfall for
one year. A prediction horizon of 100 min was chosen with
a sampling time of 5 min. The horizon was chosen based on
the forecast horizons used by utility companies, also covering
input–output period of the system dynamics, ∼60 min, see
Fig. 2. In the simulations, CC-MPC is used with a confidence
level γ of 90% for all probabilistic constraints, for a fair
comparison. MPC with no uncertainty consideration is used
as a baseline.

In each simulation, a single parameter was changed to
compare the sensitivity between controllers toward the given
parameter. The parameters considered are bounds on the uncer-
tainty, scaling bias, and offset bias of the expected disturbance.
For each parameter, a base value was chosen (50% for bound
uncertainty, 0% for scaling bias, and 0 for offset bias).

A. Uncertainty Bound

The uncertainty in the inflow disturbance q is defined by
(58), where the disturbance is assumed to be non-negative and
below three standard deviations σ above the expected inflow

bound = [0, E{q} + 3σ ]. (58)

In the simulations, the standard deviation was varied so that
the upper bound would correspond to 25%, 50%, and 75%
above the expected value. The results for each of the controller
types with three sizes of uncertainty bounds can be observed
in Table I for CSO and treated wastewater volume.

From these comparisons, it can be observed that CC-MPC
performs slightly better than T-MPC in total CSO volume.
Moreover, we can conclude that T-MPC performs worse as the
uncertainty bound increases, while CC-MPC works better with
an increase in uncertainty bounds. Fig. 3 also supports this
conclusion (for a clear view, only around day 10 are shown).

The difference in how the MPC approaches are affected by
the increase in the uncertainty bound is consistent and can be



TABLE I
OVERFLOW AND TREATED WASTEWATER RESULTS OF SWMM SIMULATIONS WITH MPC, CC-MPC, AND

T-MPC WITH UNCERTAINTY BOUND OF 25%–75%

Fig. 4. Volume in tanks of T-MPC and CC-MPC with different scales.

explained by their formulation; while both become more strict
or conservative, the T-MPC expects more inflow (higher bound
mean), resulting in a bottleneck with increased upstream local
volumes (creek), and an increased CSO in the entire system.
For the treated wastewater, we can see that both controllers are
in general indifferent to the change of the uncertainty bound.

B. Scaled Bias

The scaling bias a is defined in (59), with negative scal-
ing indicating underestimation of the actual disturbance, and
positive for overestimation of the actual disturbance

E{q} = (1 + a)qactual. (59)

The results of CSO and amount of treated wastewater can
be seen in Table II, for different scaling biases: 0%, ±10%,
and ±20%. It is clear that for both T-MPC and CC-MPC,
CSO performance is deteriorating as the scaling bias increases,
though T-MPC is less sensitive. It can also be seen that T-MPC
performs slightly worse than both the MPC (no uncertainty)
and CC-MPC. For T-MPC, we again observe a deterioration
of the CSO distribution, which is not seen for CC-MPC.

Fig. 4 illustrates the total tank volume evolution of the MPC
approaches. We observe that MPCs with a 20% bias have
larger tank volume peaks, which indicates more CSO may
occur. There is a slight trend showing that the increase of
scaled bias slightly increases the tank volumes.

When considering treated wastewater, improvements and
deteriorations become close to negligible for both controllers.
With the caveat that both MPC approaches perform worse as
the bias increases toward positive.

C. Offset Bias

Offset b [as in (60)] shifts expected disturbance away from
actual disturbance. The following offsets were used: 0, 0.25,
1, and 5 times the average inflow disturbance

E{q} = qactual
+ b. (60)

Fig. 5. Tank volumes of T-MPC and CC-MPC with different offsets.

In Table III, we can observe the results. For treated wastewater,
the T-MPC is less sensitive to increases in offset biases than
CC-MPC. It can also be observed that for lower offsets, the
deviation from the results of the perfect MPC is negligible,
but that of the CC-MPC has less deviation.

For the results of CSO volume, we observe that the sensitiv-
ity to an offset increase is significantly lower for T-MPC than
for CC-MPC. While the performance of T-MPC is slightly
worse at lower offsets, the CC-MPC significantly deteriorates
at higher offsets, where T-MPC is less affected. For both cases,
the distribution of CSO improves as the offset increases, but
with deteriorating performances as a result. For the T-MPC, the
CSO distribution through the system is in general performing
significantly worse than for the CC-MPC.

In Fig. 5, the performance of T-MPC and CC-MPC under
different offsets is shown. As higher volumes indicate a larger
chance of future CSOs, we can conclude that the CC-MPC
with 0.1 offsets performs worse than the other CC-MPCs,
as the tank volume is higher; as observed in Table III.

D. Computational Time

By considering the maximum and mean computation time
for a single optimization, the perfect MPC has a mean compu-
tation of approximately 0.061 s, with a maximal time of around
0.247 s. The mean time for T-MPC and CC-MPC are compa-
rable, with only slight differences; generally around 0.11 and
0.10 s, respectively. Both are around twice as slow on average
as the perfect MPC. Both MPCs are generally consistent in
their mean computation time, regardless of the scenario. The
general maximum time for T-MPC and CC-MPC, 0.30 and
0.28 s, is comparable, consistent across scenarios, and only
slightly higher than the perfect MPC.

VI. DISCUSSION—PROS AND CONS

Despite the shown similarities between the two methods,
the approach to uncertainty gives different pros and cons.



TABLE II
OVERFLOW AND TREATED WASTEWATER RESULTS WITH MPC, CC-MPC, AND T-MPC WITH SCALED UNCERTAINTY BIAS FROM −20% TO 20%

TABLE III
OVERFLOW AND TREATED WASTEWATER RESULTS WITH MPC, CC-MPC, AND T-MPC WITH OFFSET UNCERTAINTY BIAS

TABLE IV
REQUIREMENTS, PROS, AND CONS OF T-MPC AND CC-MPC METHODS

CC-MPC handles unbounded uncertainties, and has a tunable
degree γ of conservatism, but has to know the exact distribu-
tion, while T-MPC is nontunable (γ = 1), with constraints
assumed uniform. T-MPC is more conservative than CC-
MPC in handling uncertainty, with stricter tightenings of
constraints, and higher costs. CC-MPC is, in general, more
computationally heavy than T-MPC, given the complexity
of propagating distributions over bounds, and computing the
constraint quantiles.

Based on the simulations, we conclude that T-MPC works
better for achieving a performance that is insensitive to bias
uncertainties, while the CC-MPC is more insensitive to the
size of the uncertainty bound. If the preference is given to
the performance (CSO/treated wastewater), then, in general,
the CC-MPC works better except for a few cases of extreme
uncertainty. The difference in performance between CC-MPC
and T-MPC is usually around 1000 m3, corresponding to
∼ 0.3% difference with respect to the perfect MPC for CSO
performance. The pros and cons are summarized in Table IV.

VII. CONCLUSION

In this brief, a reformulated T-MPC using zonotopes has
been presented and successfully applied to address the CSO
problem in UDS. The similarities and differences of T-MPC
and CC-MPC were compared and discussed; including how
the different assumptions on uncertainty affect the constriction
of constraints, and the drawbacks of each method. Perfor-
mance of the revised T-MPC is evaluated on a benchmark
UDS, the Astlingen benchmark network, simulated on a Hi-Fi
SWMM platform.

The conclusions of the analysis and results are summarized
as follows.

1) T-MPC is computationally simpler than CC-MPC,
given the complexity of quantile functions, although
under certain assumptions CC-MPC can be simpler,
e.g., Gaussian.

2) T-MPC is worst case conservative and requires bounded
disturbances, while CC-MPC has tunable conservatism
and is applicable for unbounded disturbances.

3) CC-MPC assumes distribution is known, while T-MPC
assumes bounds to be known. In stochastic terms,
T-MPC is equivalent to the assumption of uniform
distribution.

4) Constraint constriction of T-MPC and CC-MPC have
an inequality relation, where the T-MPC constriction is
always stricter than that of CC-MPC.

5) Performance-wise, the simulation results show that CC-
MPC in general provides better performance in CSO
than T-MPC; CC-MPC is less sensitive to uncertainty
size, while T-MPC is less sensitive to bias variations.

6) The performance in treated wastewater of both T-MPC
and CC-MPC is generally insensitive to uncertainty.

Considering the MPCs’ strengths and weaknesses in han-
dling CSO in UDS, future research directions can be proposed.

1) The performance/formulation of zonotope-based T-MPC
with more information, e.g., expectation.

2) Analysis of the CSO-problem with the inclusion of
complex distributions, or the scenario-based MPC [35].

3) Defining conditions for standardization tricks for simple
computations, as (45) is a fair representation or efficient
estimation of propagated distributions for CC-MPC.
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