
Collocation methods for second and higher order systems

Siro Moreno-Mart́ın∗, Llúıs Ros and Enric Celaya

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens Artigas 4-6, Barcelona, 08028, Catalonia, Spain.

*Corresponding author(s). E-mail(s): smorenom@iri.upc.edu;
Contributing authors: ros@iri.upc.edu; enric.celaya@gmail.com;

Abstract

It is often unnoticed that the predominant way to use collocation methods is fundamentally flawed
when applied to optimal control in robotics. Such methods assume that the system dynamics
is given by a first order ODE, whereas robots are often governed by a second or higher order
ODE involving configuration variables and their time derivatives. To apply a collocation method,
therefore, the usual practice is to resort to the well known procedure of casting an M th order
ODE into M first order ones. This manipulation, which in the continuous domain is perfectly
valid, leads to inconsistencies when the problem is discretized. Since the configuration variables
and their time derivatives are approximated with polynomials of the same degree, their differen-
tial dependencies cannot be fulfilled, and the actual dynamics is not satisfied, not even at the
collocation points. This paper draws attention to this problem, and develops improved versions
of the trapezoidal and Hermite-Simpson collocation methods that do not present these inconsis-
tencies. In many cases, the new methods reduce the dynamics transcription error in one order
of magnitude, or even more, without noticeably increasing the cost of computing the solutions.

Keywords: Collocation methods, trajectory optimization, optimal control, second and higher order systems.

1 Introduction

Direct collocation methods have proven to be pow-
erful tools for solving optimal control problems
in robotics (Posa et al., 2016; Pardo et al., 2016;
Kelly, 2017; Hereid et al., 2018; Tedrake, 2023).
Initially developed for aeronautics and astrody-
namics applications (Hargraves and Paris, 1987;
Conway and Paris, 2010), these methods have
become very popular and of widespread use in the
context of trajectory optimization and model pre-
dictive control, thanks to a few key advantages
over indirect approaches based on the Pontrya-
gin conditions of optimality: in general, they are
easier to implement and show larger regions of
convergence, and do not require estimations of
the costate variables, which may be difficult to
obtain accurately. Helpful tutorials and mono-
graphs like Kelly (2017) or Betts (2010), as well as

open-source packages for nonlinear optimization
(Wächter and Biegler, 2006), numerical optimal
control (Kelly, 2017; Becerra, 2010; Andersson
et al., 2019), or model-based design and verifi-
cation (The Drake Team, 2023), are also con-
tributing to their rapid dissemination among the
community.

Direct collocation methods involve the tran-
scription of the continuous-time optimal control
problem into a finite-dimensional nonlinear pro-
gramming (NLP) problem (Kelly, 2017). The
transcription is based on partitioning the time
history of the control and state variables into a
number of intervals delimited by knot points. The
system dynamics is then discretized in each inter-
val by imposing the differential constraints at a
set of collocation points, which may coincide, or
not, with the chosen knot points. The cost func-
tion is also approximated using the values taken

by the variables at such points, and the NLP prob-
lem is formulated using them. Once this problem
is solved, a continuous solution is built using inter-
polating polynomials that satisfy the dynamics
equations at the collocation points.

The general formulation of most collocation
methods assumes that the system dynamics is
governed by a first order ODE of the form

ẋ(t) = f(x(t),u(t), t), (1)

where x(t) and u(t) are the state trajectory and
the control function, respectively (Tedrake, 2023).
In robotics, however, as in mechanics in general,
the evolution of the system is often determined by
a second order ODE of the form

q̈(t) = g (q(t), q̇(t),u(t), t) , (2)

where q(t) is the configuration trajectory and q̇(t)
is its time derivative. To apply a general colloca-
tion method, therefore, the usual procedure is to
define v(t) = q̇(t) and write (2) as

{
q̇(t) = v(t),

v̇(t) = g(q(t),v(t),u(t), t).

(3a)

(3b)

which, if we define x(t) = (q(t),v(t)), corresponds
formally to (1). Yet, this raises a consistency issue.
Since the collocation method locally approximates
q(t) and v(t) by polynomials of the same degree,
imposing

v(t) = q̇(t) (4)

only at the collocation points does not grant
the satisfaction of (4) over the continuous time
domain. Even more striking, perhaps, is the fact
that, as we demonstrate in this paper, impos-
ing (3) at the collocation points does not imply
the satisfaction of (2), not even at these points,
which contributes to increase the dynamic tran-
scription error along the obtained trajectories.
This hinders the possibility to reach a correct
solution since, even if u(t) produces the expected
trajectory for v(t), its integration will rarely coin-
cide with the function obtained for q(t). In other
words, the state trajectory x(t) will be inconsis-
tent in general. Note also that, while second order
ODEs could be discretized using Nyström meth-
ods (Hairer et al., 1993), the main advantage of

these methods arises when the right-hand side of
(2) does not depend on q̇, which seldom occurs in
robotics.

In this paper we present modified versions
of the trapezoidal and Hermite-Simpson colloca-
tion methods specifically addressed to guarantee
that the collocation polynomials fulfill (4), while
satisfying (2) at the collocation points, thereby
increasing the accuracy of the obtained solutions.
The paper is an extended version of an earlier work
we presented in RSS’2022 (Moreno-Mart́ın et al.,
2022). In this new version, the original methods
for second order ODEs are further generalized to
deal with ODEs of arbitrary order M

q(M)(t) = g(q(t), q̇(t), ..., q(M−1)(t),u(t), t), (5)

which are less common but may arise in flexi-
ble, elastic, or soft robots for example (De Luca
and Book, 2016; Della Santina, 2020), or when
increased smoothness is sought in the computed
solutions (Section 7.4). In addition, we also study
the theoretical accuracy of all methods and offer
a more thorough comparison between them.

By means of illustrative benchmark problems,
the paper demonstrates that the new methods
reduce substantially the dynamics error (in one
order of magnitude or even more depending on
the number of knot points) without noticeably
increasing the computational time needed to solve
the transcribed NLP problems. As a result, the
state and control trajectories x(t) and u(t) will be
mutually more consistent, which facilitates their
tracking with a feedback controller.

The rest of the paper is structured as follows.
Section 2 formulates the optimal control problem
to be solved and delimits the specific transcription
problem that we face in this paper. To pre-
pare the ground for later developments, Section 3
reviews the conventional trapezoidal and Hermite-
Simpson methods and pinpoints their limitations
on transcribing 2nd order ODEs. Improved ver-
sions of these methods are then developed in
Section 4 for 2nd order systems, and forMth order
ones in Section 5. The methods are summarized
and compared in Section 6, where tools to assess
their accuracy are also provided. The performance
of all methods is analyzed in Section 6 with the
help of examples, and the paper conclusions are
finally given in Section 8.

2 Problem formulation

The optimal control problem that concerns us in
this paper consists of finding state and action tra-
jectories x(t) and u(t), and a final time tf , that

minimize

K(xf , tf) +

∫ tf

0

L(x(t),u(t)) dt (6a)

subject to

ẋ(t) = f(x(t),u(t), t), t ∈ [0, tf] (6b)

p(x(t),u(t)) ≤ 0, t ∈ [0, tf] (6c)

b(x0,xf , tf) = 0, (6d)

tf ≥ 0, (6e)

where x0 = x(0), and xf = x(tf), the terms
K(xf , tf) and L(x(t),u(t)) are terminal and run-
ning cost functions, respectively, (6b) is an ODE
modeling the system dynamics, and (6c) and (6d)
encompass the path and boundary constraints.

We note that, while Eq. (6b) has the appear-
ance of a first order ODE, in robotics it often takes
the form

ẋ1 = x2

ẋ2 = x3

...

ẋM−1 = xM

ẋM = g(x,u, t)

(7)

where

x = (x1, . . . ,xM) = (q, q̇, . . . , q(M−1)), (8)

so in such cases it actually encodes an Mth order
ODE like (5), or (2) if M = 2.

Solving Problem (6) via collocation involves
partitioning the time history of the control and
state variables into N intervals delimited by N+1
knot points tk, k = 0, . . . , N , then transcrib-
ing Eqs. (6a)-(6c) into appropriate discretizations
expressed in terms of the values xk = x(tk) and
uk = u(tk), and finally solving the constrained
optimization problem that results.

The transcriptions of (6a) and (6c) are rel-
atively straightforward and less relevant in the
context of this paper. They can be done, for exam-
ple, by approximating the integral in (6a) using

some quadrature rule, and enforcing (6c) for all
knot points tk. The transcription of (6b), in con-
trast, is substantially more involved, and will be
the main subject of the rest of this paper. In
particular, we seek to construct appropriate poly-
nomial approximations of the solutions x(t) of
(6b) for each interval [tk, tk+1]. These approxima-
tions will be defined as solutions of systems of
equations which, when considered together for all
intervals, will form a proper transcription of (6b)
over the whole time domain [0, tf].

In what follows, for each interval [tk, tk+1] we
shall use the shifted time variable τ = t− tk, and
the interval width h = tk+1 − tk.

3 Methods for first order
systems

Two of the most widely used transcriptions of
(6b) are those of the trapezoidal and Hermite-
Simpson methods, which assume no particular
form for (6b). To see where these transcriptions
incur in dynamical error, and ease the develop-
ment of the new methods, we briefly explain how
they approximate (6b) and obtain their approx-
imation polynomials for the state. Our results
match those by Betts (2010) and Kelly (2017),
but we follow a derivation process that is closer to
Hargraves and Paris (1987), which facilitates the
transition to our new methods in Sections 4 and 5.

3.1 Trapezoidal collocation

In trapezoidal collocation, the state trajectories
are approximated by quadratic polynomials. For
t ∈ [tk, tk+1], we can write the polynomial approx-
imation for a component x of the state, and its
temporal derivative, as

x(t) = a+ bτ + cτ2, (9a)

ẋ(t) = b+ 2cτ, (9b)

where a, b, and c are real coefficients. To facil-
itate the application of collocation constraints,
however, we will rewrite x(t) using the three
parameters

xk = x(tk), (10)

ẋk = ẋ(tk), (11)

ẋk+1 = ẋ(tk+1). (12)

Evaluating the right-hand sides of (10)-(12)
using (9) we obtain xk

ẋk

ẋk+1

 =

1 0 0
0 1 0
0 1 2h

ab
c

 , (13)

so solving for a, b, c and substituting the resulting
expressions in (9a), we have

x(t) = xk + ẋkτ +
τ2

2h
(ẋk+1 − ẋk). (14)

Equation (14) is known as the interpolation poly-
nomial, as it allows us to estimate the intermediate
states for t ∈ [tk, tk+1], once the NLP problem has
been solved.

Now, following Hairer et al. (2002, page 30), we
determine the three parameters of (14) by enforc-
ing the initial value constraint x(tk) = xk and two
collocation constraints of the form

ẋ(t) = f(x(t),u(t), t)

for two different time instants t ∈ [tk, tk+1]. From
(14) we see that x(tk) = xk by construction.
As for the collocation constraints, the trapezoidal
method imposes them at the knot points tk and
tk+1, so it must be

ẋk = fk, (15)

ẋk+1 = fk+1, (16)

where fk is a shorthand for f(xk,uk, tk). The
value xk+1, then, is obtained by evaluating (14)
for τ = h. This results in the constraint

xk+1 = xk +
h

2
(ẋk+1 + ẋk), (17)

which ensures the continuity of the trajectory
across intervals k and k + 1.

Note that equations (15)-(17) already form a
transcription of our ODE in the interval [tk, tk+1]
since, if xk, uk, and uk+1 were known, these
equations would suffice to determine the three
unknowns ẋk, ẋk+1, and xk+1. However, we can
also substitute (15) and (16) into (17) to obtain
the more compact expression

xk+1 = xk +
h

2
(fk+1 + fk), (18)

which we recognize as the common transcription
rule in trapezoidal collocation (Kelly, 2017; Betts,
2010). Observe that the continuity between the
polynomials of intervals k and k+1 is granted for
the first derivative as, by construction, they both
satisfy ẋk+1 = fk+1. However, second and higher
order continuity is not preserved in general.

3.2 Hermite-Simpson collocation

In Hermite-Simpson collocation, the state trajec-
tories in each interval are approximated by cubic
polynomials:

x(t) = a+ bτ + cτ2 + dτ3, (19a)

ẋ(t) = b+ 2cτ + 3dτ2. (19b)

By analogy with the trapezoidal method, we first
express the polynomial coefficients in terms of the
parameters

xk = x(tk),

ẋk = ẋ(tk),

ẋc = ẋ(tc),

ẋk+1 = ẋ(tk+1),

where tc = tk + h/2, and the extra parameter ẋc

is added because four parameters are needed to
determine a third degree polynomial. Evaluating
these identities using (19), solving for a, . . . , d, and
substituting the expressions in (19a), we obtain
the interpolation polynomial

x(t) = xk + ẋkτ − τ2

2h
(3ẋk − 4ẋc + ẋk+1)

+
τ3

3h2
(2ẋk − 4ẋc + 2ẋk+1).

(20)

In order to determine the four parameters of
(20), four conditions have to be imposed, and
the Hermite-Simpson method makes this by fix-
ing x(tk) = xk (which holds by construction) and
imposing the dynamics at the two bounding knot
points and the midpoint between them:

ẋk = fk, (21)

ẋk+1 = fk+1, (22)

ẋc = fc. (23)

In the latter equation, fc = f(xc,uc, tc), where
xc = x(tc), and uc = u(tc). Moreover, the values
xc that are needed in fc can be expressed in terms
of the above four parameters by evaluating (20)
for τ = h/2, which yields

xc = xk +
h

24
(5ẋk + 8ẋc − ẋk+1). (24)

Finally, the continuity constraint between inter-
vals k and k+1 is obtained by evaluating (20) for
τ = h:

xk+1 = xk +
h

6
(ẋk + 4ẋc + ẋk+1). (25)

Equations (21)-(25) already form a transcrip-
tion of our ODE in [tk, tk+1], but a transcription
involving less variables can be obtained by sub-
stituting (21)-(23) in (25) and (24), which gives

xk+1 = xk +
h

6
(fk + 4fc + fk+1), (26a)

xc = xk +
h

24
(5fk + 8fc − fk+1). (26b)

If preferred, we can also remove the depen-
dence on fc in (26b). This is achieved by isolating
fc from (26a) and substituting the result in (26b),
which yields the alternative transcription

xk+1 = xk +
h

6
(fk + 4fc + fk+1), (27a)

xc =
1

2
(xk + xk+1) +

h

8
(fk − fk+1). (27b)

Both transcriptions in (26) and (27) are called
separated forms of Hermite-Simpson collocation,
in the sense they both keep xc as a decision vari-
able of the problem. They are equivalent, but the
one in (27) allows us to eliminate xc by substi-
tuting (27b) in (27a), which results in a single
equation that is known as the compressed form of
Hermite-Simpson collocation (Kelly, 2017; Betts,
2010). While the use of a separated form tends to
be better when working with a small number of
intervals, the compressed form is preferable when
such a number is large (Kelly, 2017).

Note that, despite the polynomial approxima-
tion for each interval between consecutive knot
points is of third degree, continuity through knot

points is only granted for the state trajectory and
its first derivative.

3.3 Trajectory interpolation

After solving the NLP problem, values of the state
and control variables at all collocation points are
available. A continuous approximation to the opti-
mal trajectory for the state is then obtained by
substituting (15)-(16), or (21)-(23), in the corre-
sponding interpolating polynomials (14) and (20),
for the trapezoidal and Hermite-Simpson meth-
ods, respectively. The approximation of the con-
trol trajectory within each interval is obtained, in
the trapezoidal case, by linear interpolation of the
control values. In the Hermite-Simpson case, dif-
ferent options are possible. Some authors handle
the midpoint control as an independent variable
and use a quadratic interpolation of the three
control values available in each interval (Kelly,
2017), while others prefer a linear interpolation
and enforce the midpoint value to be the mean
of the two bounding values (Topputo and Zhang,
2014). In this paper we follow the former option.

3.4 Downsides of the methods

In a first order dynamical system, imposing (15)-
(16) or (21)-(23) grants that the system dynamics
is effectively satisfied at the collocation points.
The same is not true when a second order sys-
tem is cast into a first order one via (3). To
see why, note that the constraint q̇(t) = v(t) is
only imposed at the collocation points, but not in
between them, so that, even if the curves q̇(t) and
v(t) coincide at such points, their derivatives may
be different in them (Fig. 1). Therefore, q̈(t) ̸= v̇(t)
in general and, in particular, also at the colloca-
tion points. As a consequence, even if q̇k = vk and
v̇k = g(qk,vk,uk, tk), this does not imply that the
expected relation q̈k = g(qk, q̇k,uk, tk) is satis-
fied, what means that, with a transcription based
on (3), the system dynamics in (2) is not granted,
not even at the collocation points. This problem
is solved in the second order collocation methods
introduced in the next section.

A related problem of first order methods is
that, when the trajectories are approximated with
their interpolation polynomials q(t) and v(t), the
difference v(t) − q̇(t) ̸= 0 makes the state tra-
jectory inconsistent, so that, if we try to follow
it with a controller, since the configuration and

t

q̈k != v̇k

tk

q̇k = vk

tk+1

q̈k+1 != v̇k+1

Slope = vk+1Slope = vk

v(t)

q̇(t)

q̈(t)

!=
!=

q(t)

v̇(t)

q̇k+1 = vk+1

Fig. 1: Inconsistencies that arise when a collocation
method for first order systems is applied to a sec-
ond order ODE q̈ = g(q, q̇,u, t). The figure illustrates
the case of the trapezoidal method, whose quadratic
approximations q(t) and v(t) are depicted in blue. The
red and green curves correspond to first and second
derivatives of these trajectories, respectively.

velocity trajectories are incompatible, both can-
not be followed at the same time. An attempt to
solve this may consist in ignoring the configuration
trajectory and replacing it by the integral of the
velocity, but the resulting configuration trajectory
may violate the problem constraints, e.g., the final
configuration may be different from the expected
one. Alternatively, one can try to replace the
velocity trajectory by the derivative of q(t), but
in this case, since the dynamic constraint satis-
fied at collocation point k is v̇k = g(qk,vk,uk, tk),
and vk = q̇k but v̇k ̸= q̈k, the dynamic constraint
q̈k = g(qk, q̇k,uk, tk) will not be satisfied with the
computed uk.

4 Methods for second order
systems

To solve the inconsistency problems just
explained, we propose alternative formulations
for the trapezoidal and Hermite-Simpson colloca-
tion methods in which the dynamic constraints
are directly imposed on the second derivative of
the configuration variables, instead of on the first
derivative of the state variables. By doing so,
the velocity variables are not treated as indepen-
dent from the configuration ones, but explicitly
defined as v(t) ≡ q̇(t). In this way, the discrep-
ancy between q(t) and v(t) is fully removed, and
the second order dynamics is satisfied at each
collocation point.

4.1 Trapezoidal method for second
order systems

The essential feature characterizing trapezoidal
collocation is that the dynamics is imposed just
at the knot points or, otherwise said, that each
interval bound is a collocation point. When the
dynamics is governed by the second order ODE
in (2), using the same strategy as the trapezoidal
method consists in imposing (2) at each inter-
val bound. This means that, for each interval,
two constraints have to be imposed on the sec-
ond derivative of the polynomial approximating
each component q of the configuration. But, since
the second derivative of a quadratic polynomial is
constant, only one constraint could be imposed on
it. This implies that the interpolating polynomial
q(t) must be of degree three at least. So, we will
have, for a given interval [tk, tk+1],

q(t) = a+ bτ + cτ2 + dτ3, (28a)

q̇(t) = b+ 2cτ + 3dτ2, (28b)

q̈(t) = 2c+ 6dτ. (28c)

To determine the coefficients a, b, c, d, we need
to impose four conditions. While in the trape-
zoidal method three conditions were used (the
value xk at the initial bound and the derivatives ẋk

and ẋk+1 at the two bounds), here we will impose,
in addition to the initial value qk and the second
derivative at the interval bounds q̈k and q̈k+1, the
value q̇k of the first derivative at the initial bound.
Note that, for a cubic polynomial, no more than

two independent conditions can be fulfilled by its
second derivative, so imposing the dynamics at
the midpoint of the interval as in the Hermite-
Simpson method is not possible here. Thus we will
use as parameters:

qk = q(tk)

q̇k = q̇(tk)

q̈k = q̈(tk)

q̈k+1 = q̈(tk+1).

Evaluating these identities using (28) and solv-
ing for a, b, c, d, we can write the interpolation
polynomial q(t) as:

q(t) = qk + q̇kτ + q̈k
τ2

2
+

τ3

6h
(q̈k+1 − q̈k). (29)

The evaluation of this polynomial and its deriva-
tive q̇(t) for τ = h yields

qk+1 = qk + q̇kh+
h2

6
(q̈k+1 + 2q̈k), (30a)

q̇k+1 = q̇k +
h

2
(q̈k+1 + q̈k), (30b)

and imposing the collocation constraints

q̈k = gk, (31a)

q̈k+1 = gk+1, (31b)

where gk = g(qk, q̇k,uk, tk), we finally obtain the
trapezoidal method for second order systems:

qk+1 = qk + q̇kh+
h2

6
(gk+1 + 2gk), (32a)

q̇k+1 = q̇k +
h

2
(gk+1 + gk). (32b)

Note that, in this case, the trapezoidal rule only
applies for the velocity, but not for the configura-
tion itself, which is given by equation (32a).

As opposed to the trapezoidal method for first
order systems, the continuity between neighbor-
ing polynomials at the knot points is of second
order in this case, since the collocation con-
straints impose the coincidence of the second
derivative of q(t). Second order continuity for the
configuration trajectory implies smooth velocity
profiles and continuous accelerations, which are
desirable properties in many robotics applications
(Constantinescu and Croft, 2000; Macfarlane and
Croft, 2003; Berscheid and Kröger, 2021).

4.2 Hermite-Simpson method for
second order systems

Our purpose now is to impose the second order
dynamics on the two bounds and the midpoint of
each interval, in similarity with the conventional
Hermite-Simpson method. Clearly, if we want to
impose three conditions to the second derivative
of a polynomial q(t), such a derivative must be
quadratic at least, what implies that the polyno-
mial must have degree four at least. Thus, we pro-
pose to approximate the configuration trajectory,
and its derivatives, by

q(t) = a+ bτ + cτ2 + dτ3 + eτ4, (33)

q̇(t) = b+ 2cτ + 3dτ2 + 4eτ3, (34)

q̈(t) = 2c+ 6dτ + 12eτ2. (35)

Since five parameters are needed to determine the
five coefficients of q(t), we will use, in addition to
the three accelerations q̈k, q̈c, q̈k+1, the values of
the configuration coordinate qk and its derivative
q̇k at the initial point:

qk = q(tk)

q̇k = q̇(tk)

q̈k = q̈(tk)

q̈c = q̈(tc)

q̈k+1 = q̈(tk+1).

Solving for the coefficients a, . . . , e, we obtain the
following expression for the interpolating polyno-
mial:

q(t) = qk + q̇kτ +
τ2

2
q̈k

− τ3

6h
(3q̈k − 4q̈c + q̈k+1)

+
τ4

6h2
(q̈k − 2q̈c + q̈k+1).

(36)

Evaluating (36) and its derivative for the value
τ = h results in

qk+1 = qk + q̇kh+
h2

6
(q̈k + 2q̈c), (37a)

q̇k+1 = q̇k +
h

6
(q̈k + 4q̈c + q̈k+1), (37b)

and imposing the collocation constraints

q̈k = gk, (38a)

q̈c = gc, (38b)

q̈k+1 = gk+1, (38c)

yields

qk+1 = qk + q̇kh+
h2

6
(gk + 2gc), (39a)

q̇k+1 = q̇k +
h

6
(gk + 4gc + gk+1), (39b)

where we recognize that (39b) is the Simpson
quadrature for the velocity. The terms gc in
these equations involve the midpoint coordinate
qc = q(tc), and the velocity q̇c = q̇(tc), but these
can be obtained by evaluating (36) and its deriva-
tive for τ = h/2, and imposing (38), which yields

qc = qk +
h

2
q̇k +

h2

96
(7gk + 6gc − gk+1), (40a)

q̇c = q̇k +
h

24
(5gk + 8gc − gk+1). (40b)

Note however that, since qc and q̇c are to be used in
the evaluation of gc, we may prefer not to express
them in terms of gc itself. For this we simply iso-
late gc from (39b) and substitute the result in (40)
to obtain:

qc = qk +
h

32
(13q̇k + 3q̇k+1)

+
h2

192
(11gk − 5gk+1),

(41a)

q̇c =
1

2
(q̇k + q̇k+1) +

h

8
(gk − gk+1). (41b)

Equations (39) and (41) together constitute a sep-
arated form of the Hermite-Simpson method for
2nd order systems. Written in this way, (41) can
be replaced in the expression of gc in (39) to
transcribe the problem in compressed form, which
eliminates the need to treat qc and q̇c as decision
variables.

In this collocation scheme, the continuity
across knot points is also of second order due to
the coincidence of the second derivative imposed
by the collocation constraints, what gives rise to
smooth, continuous acceleration trajectories just
like in the second order trapezoidal method.

5 Extensions for higher order
systems

Second order systems are, by far, the most com-
mon in robotics, but sometimes it may be neces-
sary to deal with dynamical systems of a higher
order M , whose dynamics is described by an ODE
like (5), which we recall for convenience:

q(M)(t) = g
(
q(t), q̇(t), ..., q(M−1)(t),u(t), t

)
. (42)

We next see how the new methods can be extended
to transcribe (42).

5.1 The generalized trapezoidal
method

To derive the trapezoidal method for Mth order
systems we proceed as in Section 4.1. For each
time interval [tk, tk+1] we approximate each com-
ponent q of the solution of (42) by a polynomial
q(t) whose Mth time derivative q(M)(t) is lin-
ear, so its two coefficients may be determined
by imposing (42) at each interval bound. This
implies that q(t) must be of order M + 1. Using
a0, . . . , aM+1 as coefficients, this polynomial, and
its derivatives, may be written as

q(t) =
a0
0!

+
a1
1!
τ + . . .+

aM+1

(M + 1)!
τM+1 (43a)

q̇(t) =
a1
0!

+
a2
1!
τ + . . .+

aM+1

M !
τM (43b)

...

q(M)(t) = aM + aM+1τ, (43c)

or, more compactly as

q(j)(t) =

M+1∑
i=j

ai
(i− j)!

τ i−j , (44)

for j = 0, . . . ,M . We then can determine aM and
aM+1 by imposing the two collocation constraints

q(M)(tk) = gk, (45)

q(M)(tk+1) = gk+1, (46)

where gk = g(qk, q̇k, ..., q
(M−1)
k ,uk, tk). With sim-

ple calculations we find that

aM = gk, (47a)

aM+1 = 1
h (gk+1 − gk). (47b)

The remaining coefficients a0, . . . , aM−1 are deter-
mined by imposing the initial value constraints

q(j)(tk) = q
(j)
k (48)

for j = 0, . . . ,M − 1. Using (43) we see that the
left hand side of (48) is aj , so we readily obtain

aj = q
(j)
k (49)

for j = 0, . . . ,M − 1. Finally, by evaluating (44)
for τ = h we find that the generalized versions of
the Tz -2 formulas in (32) are given by

q
(j)
k+1 =

M+1∑
i=j

ai
(i− j)!

hi−j , (50)

for j = 0, . . . ,M − 1.
One can check that, by particularizing (50) for

M = 1 and M = 2, we obtain the equations of
the trapezoidal method for first and second order
systems given in (17) and (32), respectively.

5.2 The generalized
Hermite-Simpson method

An analogous route can be followed to obtain a
Hermite-Simpson method for Mth order systems.
In this case, q(M)(t) must be quadratic in order to
determine its coefficients by imposing the colloca-
tion constraints at tk, tk+1, and tc = tk+h/2. This
means that q(t) must be of degree M + 2 now, so
q(t), and its derivatives, will take the form

q(j)(t) =

M+2∑
i=j

ai
(i− j)!

τ i−j (51)

for j = 0, . . . ,M . The last equation in (51) is

q(M)(t) = aM + aM+1τ +
aM+2

2
τ2, (52)

and its coefficients aM , aM+1, and aM+2 can be
determined by imposing

q(M)(tk) = gk, (53)

q(M)(tc) = gc, (54)

q(M)(tk+1) = gk+1, (55)

where

gc = g(qc, q̇c, ..., q
(M−1)
c ,uc, tc), (56a)

q(j)
c = q(j)(tc), j = 0, . . . ,M − 1. (56b)

After simple calculations we find that

aM = gk, (57a)

aM+1 = − 1
h (3gk − 4gc + gk+1) , (57b)

aM+2 = 4
h2 (gk − 2gc + gk+1). (57c)

As in the trapezoidal method, the remaining
coefficients are determined by the initial value
constraints, and we have

aj = q
(j)
k , (58)

for j = 0, . . . ,M − 1. The generalized versions of
Eqs. (39) can then be obtained by evaluating the
expressions up to order M − 1 in (51) for τ = h,

and using q(j)(tk+1) = q
(j)
k+1. This yields

q
(j)
k+1 =

M+2∑
i=j

ai
(i− j)!

hi−j (59)

for j = 0, . . . ,M − 1.
As it happens in the Hermite-Simpson method

for 2nd order systems, gc in (57) requires the

midpoint values qc, q̇c, . . . , q
(M−1)
c , but these are

easily obtained by evaluating (51) for τ = h/2,
which results in

q(j)c =

M+2∑
i=j

ai
(i− j)!

(
h

2

)i−j

(60)

for j = 0, . . . ,M − 1.
The terms aM+1 and aM+2 in (60) involve

gc and thus the midpoint coordinate qc and its
derivatives. However, we can remove the depen-

dence of q
(j)
c on gc by using the last equation in

Method Collocation equations

Tz -1 xk+1 = xk + h
2 (fk+1 + fk)

Tz -2
q̇k+1 = q̇k + h

2 (gk+1 + gk)

qk+1 = qk + q̇kh+ h2

6 (gk+1 + 2gk)

Tz -M

q
(M−1)
k+1 = q

(M−1)
k + h

2 (gk+1 + gk)

q
(M−2)
k+1 = q

(M−2)
k + q

(M−1)
k h+ h2

6 (gk+1 + 2gk)

...

q
(M−l)
k+1 =

(
l−1∑
i=0

hi

i! q
(i+M−l)
k

)
+ hl

(l+1)!
(l gk + gk+1)

HS -1

xk+1 = xk + h
6 (fk + 4fc + fk+1)

xc = 1
2 (xk + xk+1) +

h
8 (fk − fk+1)

HS -2

q̇k+1 = q̇k + h
6 (gk + 4gc + gk+1)

q̇c = 1
2 (q̇k + q̇k+1) +

h
8 (gk − gk+1)

qk+1 = qk + q̇kh+ h2

6 (gk + 2gc)

qc = qk + h
32 (13q̇k + 3q̇k+1) +

h2

192 (11gk − 5gk+1)

HS -M

q
(M−1)
k+1 = q

(M−1)
k + h

6 (gk + 4gc + gk+1)

q
(M−1)
c = 1

2

(
q
(M−1)
k + q

(M−1)
k+1

)
+ h

8 (gk − gk+1)

q
(M−2)
k+1 = q

(M−2)
k + q

(M−1)
k h+ h2

6 (gk + 2gc)

q
(M−2)
c = q

(M−2)
k + h

32

(
13q

(M−1)
k + 3q

(M−1)
k+1

)
+ h2

192 (11gk − 5gk+1)

...

q
(M−l)
k+1 =

(
l−1∑
i=0

hi

i! q
(i+M−l)
k

)
+

hl(l2gk+4lgc+(2−l)gk+1)
(l+2)!

q
(M−l)
c =

(
l−2∑
i=0

hi

2i i!
q
(i+M−l)
k

)
+

hl−1
(
3q

(M−1)
k+1 +(2l2+4l−3)q

(M−1)
k

)
2l l! (l+2)

+
hl((2l2+2l−1)gk−(2l+1)gk+1)

2l+1 (l+2)!

Table 1: Collocation equations for all methods of the trapezoidal and Hermite-Simpson families. For the Tz -M
and HS -M methods, we provide the general equation of q

(M−l)
k+1 (where l is meant to run up to M) but also the

particular instances of this equation for l = 1, 2. The equation of q
(M−l)
c , and its instances for l = 1, 2, are also

provided in the HS -M method (where, again, l = 1, . . . ,M). This arrangement allows us to realize that, within
each family, the equations for the same l coincide for all orders.

Family nv ne nDOF

Trapezoidal (N + 1) (nx + nu) nx N − nb nx + (N + 1)nu − nb

Hermite-Simpson (2N + 1) (nx + nu) 2nx N − nb nx + (2N + 1)nu − nb

Table 2: Number of variables (nv), equations (ne), and degrees of freedom (nDOF) in the two families of methods.

(59), which is

q
(M−1)
k+1 = q

(M−1)
k +

h

6
(gk + 4gc + gk+1). (61)

By isolating gc from this equation we have

gc =
gk+1 − gk

4
+

3q
(M−1)
k+1 − 3q

(M−1)
k

2h
, (62)

which we can substitute in the expressions of
aM+1 and aM+2 involved in (60). With these
substitutions applied, (59) and (60) form a sep-
arated form of the Hermite-Simpson method for
Mth order systems. The condensed form is finally
achieved by substituting the new version of (60)
in the expressions of aM+1 and aM+2 in (59).

Again, one can verify that, for M = 1 and
M = 2, Eqs. (59) and (60) yield the Hermite-
Simpson formulas for first and second order sys-
tems given in (26), and in (39) and (41), respec-
tively.

6 Comparison of the methods

Table 1 summarizes the equations for all methods
of the trapezoidal and Hermite-Simpson families.
For short, we refer to the methods in each fam-
ily by Tz - and HS -, followed by a number that
indicates the order assumed for the system dynam-
ics. For the general Tz -M and HS -M methods,
the table provides the equations for q

(M−l)
k+1 , as well

as q
(M−l)
k+1 and q

(M−l)
c , respectively, where l runs

from 1 to M in all cases. We also specialize these
equations for l = 1, 2, so the reader can realize
that, within each family, the equations for a same
value of l coincide for all orders.

In the table, the equations for the Hermite-
Simpson methods are given in their separated
form, and in the HS -M method we show those
that result from applying the manipulations
described in Section 5.2.

6.1 Problem size

It is not difficult to see that, for all methods
in a same family, the number of variables (nv),
equations (ne), and degrees of freedom (nDOF) is
the same in the resulting transcriptions of Prob-
lem (6). If nx and nu are the dimensions of x and
u, and nb is the number of boundary constraints
in Eq. (6d), we obtain the values in Table 2. Note
that for an M -th order ODE, the state x includes
the configuration vector q and its derivatives, so
that nx = Mnq, where nq is the dimension of
q. The improved formulas, as compared to those
of the Tz -1 and HS -1 methods, neither increase
the problem size, nor reduce the freedom to find
the optimal solution. Moreover, since the dynamic
function must be evaluated at each collocation
point, the number of evaluations is the same in
all methods of a same family, so the new meth-
ods should not increase the cost of each iteration
when solving the transcribed NLP problem. This
point is also supported by the computational
experiments that we present in Section 7.

6.2 Accuracy of the approximations

While the new methods introduced in this paper
are explicitly designed to preserve the consis-
tency between the configuration trajectory and its
derivatives, a further question is how the applica-
tion of these methods may affect the accuracy of
the solution approximations and its rate of con-
vergence as h → 0. To answer this question, we
draw upon the concept of order of accuracy (Betts,
2010), or simply order (Hairer et al., 2002) of a
collocation method, which, in turn, relies on the
definition of local error of an approximation.

The local error ϵk of a collocation method
at interval k is defined as the difference between
the computed value qk+1 and the value for t =
tk+1 of the exact solution of the ODE, q̂(t), that
passes through the computed point qk. If a col-
location method approximates the solution with

polynomials of degree d, we have for interval k:

q(t) = qk + a1τ +
a2
2
τ2 + · · ·+ ad

d!
τd,

and the computed value qk+1 is obtained by
setting t = tk + h, which means setting τ = h:

qk+1 = qk + a1h+
a2
2
h2 + · · ·+ ad

d!
hd. (63)

On the other hand, the Taylor expansion of the
exact solution q̂(t) that passes through the com-
puted point qk is

q̂(tk + t) = qk + ˙̂q(tk) τ +
¨̂q(tk)

2
τ2 + . . .

+
q̂(d)(tk)

d!
τd +O(τd+1),

and evaluating for τ = h we have:

q̂(tk + h) = qk + ˙̂q(tk) h+
¨̂q(tk)

2
h2 + . . .

+
q̂(d)(tk)

d!
hd +O(hd+1),

(64)

thus, the local error ϵk is given by the difference
of the two Taylor expansions (63) and (64):

ϵk =
(
a1 − ˙̂q(tk)

)
h+

a2 − ¨̂q(tk)

2
h2 + . . .

+
ad − q̂(d)(tk)

d!
hd +O(hd+1).

(65)

A collocation method is said to have order of
accuracy p if the sum of the first p terms of (65)
is zero. Note that this does not imply that each
term vanishes by itself: when h takes a specific
numerical value, different non-null terms of the
sum may add to zero. In the hypothetical case
that the exact solution q̂(tk + t) was a polynomial
of degree p, a method of order p would have no
local error. For this reason, the order of accuracy is
also called the degree of exactness (Dahlquist and
Björck, 2008), and an equivalent definition for it
is that a collocation method has order of accuracy
p if it is exact for all polynomials of degree ≤ p.

In the limit, when h → 0, the error of the
approximation will converge to zero. The rate of
this convergence is an important property of a
method, and is directly given by its order. If a

method has order p, the lower power of h appear-
ing in ϵk is p + 1, so that, when h → 0, the local
error decreases as hp+1:

ϵk = O(hp+1).

In all collocation methods discussed here, the
interpolating polynomial used in each interval has
degree d = M + s − 1, where M is the order of
the ODE and s is the number of collocation points
of each interval. This value d ensures the unique
determination of the d+1 polynomial coefficients
given the s collocation constrains and the M ini-
tial conditions. In the event that the exact solution
happens to be a polynomial q̂(t) of degree d, it
must necessarily coincide with the interpolating
polynomial, and qk+1 will coincide with the exact
value q̂(tk+h). This shows that the order of accu-
racy of any method is at least p = d = M + s− 1,
so the orders of Tz -1 and HS -1 are at least 2 and
3, respectively, while the orders of Tz -2 and HS -2
are at least 3 and 4. However, these lower bounds
can be surpassed in some cases. For example, the
HS -1 method is known to have order 4 (Hairer
et al., 2002), while its corresponding lower bound
is 3. This is because it takes advantage of a spe-
cial property of a family of polynomials of fourth
degree. It can be proved that any fourth degree
polynomial satisfying

q̂(tk) = qk, (66a)

˙̂q(tk) = q̇k, (66b)

˙̂q(tk + h/2) = q̇c, (66c)

˙̂q(tk + h) = q̇k+1 (66d)

takes always the same value q̂(tk + h) = qk+1.
Since the only third degree polynomial satisfying
these same conditions is a particular case of this
family, it satisfies q(tk + h) = qk+1, so its order of
accuracy is 4.

Even if the HS -2 method does not benefit from
a similar property, it is granted that its order is at
least as large as that of HS -1, i.e., 4.

So, we can say that the order of accuracy of
the presented methods for second order systems
is equal or higher than that of the corresponding
methods for first order systems. In general, for the
same number of collocation points, a method for
Mth order systems has this lower bound M − 1
units higher than the corresponding method for
first order systems.

6.3 Consistency errors

The order of accuracy of a method is useful, but
it only provides hints on how the local errors ϵk
converge to zero in terms of h. For a particular
problem, obtaining the local errors of the com-
puted splines q(t) and u(t) is seldom possible, as
this requires knowing the actual solutions q̂(t) and
û(t), which are rarely available. For this reason, to
see the extent to which q(t) and u(t) are consis-
tent with the system dynamics, we will compute
the residual of Eq. (5),

ε(t) = q(M)(t)− g(t), (67)

where g(t) = g
(
q(t), q̇(t), . . . , q(M−1)(t),u(t), t

)
.

Some authors, like Kelly (2017) or Betts (2010),
refer to ε(t) as the “error in the differential
equations”, though they restrict their attention to
the case M = 1.

In those situations in which Eq. (5) has been
discretized via Tz -1 and HS -1, we can define addi-
tional residuals to assess whether the obtained
trajectories for the velocity, acceleration, and
remaining components of the state, match those of
the corresponding derivatives of the configuration.
To define these residuals, recall from (7) that when
a 1st order ODE encodes an Mth order one, the
computed trajectory for the state takes the form

x(t) = (x1(t),x2(t), . . . ,xM (t)) , (68)

where x1(t),x2(t), . . . ,xM (t) approximate the
configuration trajectory and its first and higher
order derivatives, respectively. For the trajecto-
ries xi(t) to be compatible among themselves,
therefore, they should verify

ẋ1(t) = x2(t),

ẍ1(t) = x3(t),

...

x
(M−1)
1 (t) = xM (t),

(69)

which leads us to computing

ε[r](t) = x
(r)
1 (t)− xr+1(t), (70)

for r = 1, . . . ,M − 1 to verify their consistency.

In what follows, we will refer to ε(t) and ε[r](t)
as the dynamics error and the rth order compat-
ibility error, respectively, and we will use them
to compare the presented methods in illustrative
situations.

When reporting our results, we will sometimes

use εqi(t) and ε
[r]
qi (t) to refer to the dynamics error

and rth order compatibility error for the qi com-
ponent of q. However, when all components of q
have the same units, we will provide the values of
the joint errors

ε(t) = |εq1(t)|+ . . .+ |εqnq
(t)|, (71)

ε[r](t) = |ε[r]q1 (t)|+ . . .+ |ε[r]qnq
(t)|. (72)

Finally, when an error function needs to be
summarized in just one number, we will com-
pute the integral of its absolute value over [0, tf].
Such a quantity will be denoted by prepending a
small integral symbol to the error in consideration.
Thus, for example, “∫ εqi” will be a shorthand for

∫ tf

0

|εqi(t)| dt. (73)

7 Test cases

The performance of all methods is next evaluated
and compared using three trajectory optimization
problems shown in Fig. 2. We refer to them as
the cart-pole, bipedal walking, and ball throwing
problems, respectively. The first two problems are
solved and documented in detail by Kelly (2017),
and thus serve to compare our results with those
in the literature. The third problem is proposed by
the authors to illustrate the methods on a widely-
used robot with a complex dynamics. The cart-
pole problem is also used to exemplify a situation
in which a third-order ODE arises, which calls for
the application of Tz -3 or HS -3.

To compare the methods, we have imple-
mented them in Python, using CasADi to solve
the constrained optimization problems that result
(Andersson et al., 2019). CasADi provides the
necessary means to formulate such problems and
to compute the gradients and Hessians of the
transcribed equations using automatic differentia-
tion. These are necessary to solve the optimization

q1

q2

l

mp

mc

Actuated

slider

u

Toe

off

Ankle joint

Heel

strike

D D

Step in

 secondstf

Swing

leg

Stance
leg

10 m/s

Fig. 2: Benchmark problems. Left: A cart-pole system that has to perform a swing-up motion. Center: a walking
biped whose periodic gait must be optimized (the three snapshots illustrate the motion that occurs between the
toe off and heel strike events defining a period of the gait). Right: A 7R Panda robot that has to pick a ball at
the shown configuration, and throw it from the same configuration at 10m/s horizontally.

problems, a task for which we rely on the interior-
point solver IPOPT (Wächter and Biegler, 2006)
in conjunction with the linear solver MUMPS
(Amestoy et al., 2001). The whole implementa-
tion can be downloaded from https://github.com/
AunSiro/optibot, but the reader can also repro-
duce the results for the cart-pole and bipedal walk-
ing problems through interactive Jupyter note-
books online (Moreno-Mart́ın, 2023a,b,c). The
execution times we report have been obtained
with a single-thread implementation running on
an iMac computer with an Intel i7, 8-core 10th
generation processor at 3.8 GHz. In all cases we
have set the “desired” and “acceptable” tolerances
of IPOPT to 10−16 and 10−6, respectively (The
IPOPT Team, 2023).

7.1 The cart-pole swing-up problem

The cart-pole system comprises a cart that trav-
els along a horizontal track and a pendulum that
hangs freely from the cart. A motor drives the cart
forward and backward along the track. Starting
with the pendulum hanging below the cart at rest
at a given position, the goal is to reach a final con-
figuration in a given time tf , with the pendulum
stabilized at a point of inverted balance and the
cart staying at rest at a distance d from the initial

position. The cost to be minimized is∫ tf

0

u2(t)dt, (74)

where u is the force applied to the cart, and we
adopt the same dynamics equations and problem
parameters as in Kelly (2017). An animation of
the solution obtained with HS -2 and N = 25 can
be seen in https://youtu.be/M0ivg 8s-I8.

Figure 3 compares the compatibility and
dynamics errors obtained by the methods for the
variables q1 and q2 shown in Fig. 2. The number
N of intervals used in the comparison is 50 for
the trapezoidal scheme, and 25 for the Hermite-
Simpson one. This yields a fair comparison, as
then the number of collocation points, variables,
and degrees of freedom are the same in all NLP
problems (cf. Table 2). The plots of the compat-

ibility errors ε
[1]
qi (t), in the first and third rows of

Fig. 3, confirm that Tz -1 and HS -1 present a non-
negligible value for these errors, while in Tz -2 and
HS -2 these errors are exactly zero as expected.

The plots in the second and fourth rows of
Fig. 3 clearly show a discontinuity at the knot
points of the dynamics error εqi(t) for Tz -1 and
HS -1, reflecting the discontinuity of q̈(t) at these
points. In contrast, for Tz -2 and HS -2, the error

https://github.com/AunSiro/optibot
https://github.com/AunSiro/optibot
https://youtu.be/M0ivg_8s-I8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−0.01

0.00

0.01

0.02

0.03

E
rr

o
r

(m
/s

)

Cartpole: compatibility error ε[1]
q1

(t), N = 50

TZ-1

TZ-2

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−0.08

−0.06

−0.04

−0.02

0.00

0.02

E
rr

o
r

(r
a
d
/s

)

Cartpole: compatibility error ε[1]
q2

(t), N = 50

TZ-1

TZ-2

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−3

−2

−1

0

1

2

3

E
rr

o
r

(m
/s

2
)

Cartpole: dynamics error εq1
(t), N = 50

TZ-1

TZ-2

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

E
rr

o
r

(r
a
d
/s

2
)

Cartpole: dynamics error εq2
(t), N = 50

TZ-1

TZ-2

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

E
rr

o
r

(m
/s

)

Cartpole: compatibility error ε[1]
q1

(t), N = 25

HS-2

HS-1

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−0.02

−0.01

0.00

0.01

0.02

E
rr

o
r

(r
a
d
/s

)

Cartpole: compatibility error ε[1]
q2

(t), N = 25

HS-2

HS-1

knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

E
rr

o
r

(m
/s

2
)

Cartpole: dynamics error εq1
(t), N = 25

HS-2

HS-1

knot & collocation points

collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−2

−1

0

1

2

3

E
rr

o
r

(r
a
d
/s

2
)

Cartpole: dynamics error εq2
(t), N = 25

HS-2

HS-1

knot & collocation points

collocation points

Fig. 3: Cart-pole problem: Plots of the compatibility errors ε
[1]
qi (t) and the dynamics errors εqi(t) for the coordi-

nates q1 (left column) and q2 (right column), using the trapezoidal and Hermite-Simpson methods. To compare

the results with those of Kelly (2017), note that this author actually provides the plots of −ε
[1]
qi (t) for HS -1.

N Tc ∫ ε[1]q1 ∫ ε[1]q2 ∫ εq1 ∫ εq2
(s) (m) (rad) (m/s) (rad/s)

Tz -1 50 0.038 0.0066 0.0167 0.504 1.281
Tz -2 50 0.038 0 0 0.052 0.170
HS -1 25 0.045 0.0014 0.0043 0.113 0.338
HS -2 25 0.044 0 0 0.016 0.052

Table 3: Performance data for the cart-pole problem.

functions are continuous and vanish at the collo-
cation points, evidencing that, as anticipated in
Section 3.4, the system dynamics is exactly satis-
fied at all collocation points for the new methods,
but not for the conventional ones.

The figure also shows the dramatic reductions
of εqi(t) for the new methods when compared
with the corresponding Tz -1 and HS -1 ones. The
numerical evaluation of the results appears in
Table 3, which provides the computation times

Tc and the integral errors ∫ ε[1]qi and ∫ εqi for this
problem. It can be seen that the values of ∫ εqi are
about one order of magnitude lower for Tz -2 and
HS -2 than for their counterparts Tz -1 and HS -1,
despite using a very similar computation time. It
is interesting to see that the errors ∫ εqi achieved
by Tz -2 are about a half of those of HS -1 for the
same number of collocation points. The compari-
son is relevant since both methods use polynomials
of the same degree to approximate qi(t).

7.2 The bipedal walking problem

We next apply the methods to optimize a periodic
gait for the planar biped robot shown in Fig. 2.
The robot involves five links pairwise connected
with revolute joints, forming two legs and a torso.
All joints are powered by torque motors, with
the exception of the ankle joint, which is passive.
Like the cart pole system, this robot is underac-
tuated, but it is substantially more complex. The
system is commonly used as a testbed when study-
ing bipedal walking (Westervelt et al., 2003; Yang
et al., 2009; Park et al., 2012; Saglam and Byl,
2014).

For this example we use the dynamic model
given by Kelly (2017), which matches the one in
Westervelt et al. (2003) with parameters corre-
sponding to the RABBIT prototype (Chevallereau
et al., 2003). We assume the robot is left-right
symmetric, so we can search for a periodic gait

using a single step, as opposed to a stride, which
involves two steps. This means that the state
and torque trajectories will be the same on each
successive step.

As in Kelly (2017), we define q as the vector
that contains the absolute angles of all links rel-
ative to ground, while u encompasses all motor
torques. Also as in Kelly (2017), and similarly to
the cart-pole problem, our goal is to find state and
action trajectories x(t) and u(t) that define an
optimal gait under the cost∫ tf

0

u(t)Tu(t) dt. (75)

Several constraints are added to ensure a fea-
sible gait. First of all, we require the gait to be
periodic, so

x0 = fH(xf), (76)

where x0 and xf are the initial and final states
of the robot, and fH is the heel-strike map. The
states x0 and xf are unknown a priori, but con-
strained by (76), which is the particular form of
the boundary constraint (6d) in this case. To con-
struct fH it is assumed that, at heel strike, an
impulsive collision occurs that changes the joint
velocities but not their angles, and that, as soon as
the leading foot impacts the ground, the trailing
foot loses contact with it. The collision conserves
angular momentum but introduces an instanta-
neous drop of kinetic energy in the system (Kelly,
2017). Next, we require the robot to march at a
certain speed, which is achieved by setting the
final time of the period to tf = 0.7s, and the length
D in Fig. 2 to 0.5m. We also constrain the vertical
velocity component of the trailing foot to be pos-
itive at t = 0, and negative when it touches the
ground for t = tf . Finally, we require the swing
foot to be above the ground at all times. An ani-
mation of the solution we obtain can be seen in
https://youtu.be/dtS-WbESiW0.

Figure 4 shows the dynamics errors ε(t) for the
different collocation methods. As before, the num-
ber of intervals used in the trapezoidal cases is
twice that used in the Hermite-Simpson ones so as
to have an identical number of collocation points
and achieve balanced comparisons. The results
are qualitatively similar to those of the cart-pole,
though here the error diminution obtained by the
new methods is even more accentuated. As we

https://youtu.be/dtS-WbESiW0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

2
)

Bipedal walking: dynamics error ε(t), N = 50

TZ-1

TZ-2

knot & collocation points

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time(s)

0.00

0.05

0.10

0.15

0.20

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

2
)

Bipedal walking: dynamics error ε(t), N = 25

HS-2

HS-1

knot & collocation points

collocation points

Fig. 4: Dynamics errors ε(t) for the bipedal walking problem.

Method N Tc ∫ ε[1] ∫ ε
(s) (rad) (rad/s)

Tz -1 50 0.117 0.0025 0.5328
Tz -2 50 0.111 0 0.0081
HS -1 25 0.110 8.2×10−5 0.0182
HS -2 25 0.113 0 0.0011

Table 4: Performance data for the bipedal walking
problem (∫ ε is the integral of ε(t) in Fig. 4).

can see in Table 4, the integral dynamics error
∫ ε of HS -2 improves in more than one order of
magnitude that of HS -1, and still using a sim-
ilar computation time. In the case of Tz -2, its
improvement over Tz -1 is still higher, reaching a
reduction factor near 66, and using a slightly lower
computation time.

7.3 A ball throwing problem

As a third example, we apply the methods to com-
pute an object-throwing trajectory for a 7R Panda
manipulator. The robot is initially at rest, grasp-
ing a ball with its gripper, and its task is to throw
the ball from the same configuration after 1 sec-
ond, with an horizontal velocity of 10m/s. Since
the dynamic model is complex in this case, we
rely on the advanced dynamics engine Pinocchio
(Carpentier et al., 2019) to compute the fk and
gk values in the collocation formulas. This engine
implements the forward dynamics algorithms by
Featherstone (2008) in C++, which speeds up
the computations considerably. As for the cost
function, we use∫ tf

0

[
u(t)Tu(t) +Kaq̈(t)

Tq̈(t)
]
dt, (77)

where Ka is a small value that we fixed to 0.1.
While the first term in the integrand penalizes
large control torques, the second helps to achieve
smoother trajectories for the state.

To compare the methods on an equal footing,
in all runs we feed the NLP solver with an initial
guess that allows the convergence to a similar solu-
tion. This guess is obtained using the Tz -1 method
with N = 25, initialized with uk = 0 for all k, and
using xk values that interpolate the initial state,
a guessed state for t = 0.5s, and the final state.
The trajectory obtained via Tz -1 is then used to
warm start all methods in the comparisons. As
a reference, Fig. 5 shows the trajectory obtained
using HS -2 and N = 100. Note how the robot per-
forms a circular motion, exploiting gravity to gain
momentum so as to get back to the launch point
with the required speed.

Figure 6 compares the dynamics error ε(t)
for the trapezoidal and Hermite-Simpson meth-
ods (left and right plots, respectively). As in the
previous problems, the new methods notably out-
perform the conventional ones in terms of this
error. The integral errors ∫ ε corresponding to
these figures can be seen in Table 5, together with
those of ∫ ε[1] and Tc, confirming similar trends as
in the earlier problems.

7.4 A third order example

As an example of a higher order system, we take
again the problem of the cart-pole of Section
7.1 and impose the additional requirement of
the control function u(t) to be smooth, i.e., not
only continuous as in the standard approach, but
with continuous derivative. A smooth trajectory
u(t) will give rise to smooth accelerations and

Fig. 5: Trajectory obtained for the ball throwing task. The robot, initially at rest, progressively gains momentum
assisted by gravity so as to get back to the initial configuration to throw the ball at the required speed. An
animation of the trajectory can be seen in https://youtu.be/NsEv6JrSN8c.

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

0

10

20

30

40

50

60

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

2
)

Ball throwing: dynamics error ε(t), N = 100

TZ-1

TZ-2

knot & collocation points

0.0 0.2 0.4 0.6 0.8 1.0

Time(s)

0

5

10

15

20

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

2
)

Ball throwing: dynamics error ε(t), N = 50

HS-2

HS-1

knot & collocation points

collocation points

Fig. 6: Dynamics errors ε(t) for the ball throwing problem.

N Tc ∫ ε[1] ∫ ε
(s) (rad) (rad/s)

Tz -1 100 6.362 0.0189 6.1229
Tz -2 100 6.064 0 1.0644
HS -1 50 6.269 0.0034 1.2388
HS -2 50 6.268 0 0.4275

Table 5: Performance data for the ball throwing
problem (∫ ε is the integral of ε(t) in Fig. 6).

continuous jerks for the configuration variables,
all of which are desirable properties in many
robotics applications. To achieve these properties,
we include the applied force u as a state variable

and define a new control variable w as the tempo-
ral derivative of u by imposing w(t) = u̇(t). Thus,
the continuity of w(t) will grant the smoothness
of u(t). By differentiating the dynamics equations
with respect to time, we obtain the differential
equations involving the new control variable w in
the form:

...
q (t) = g(q(t), q̇(t), q̈(t), u(t), w(t), t). (78)

The resulting system is a 3rd order ODE which
will provide the same solution as the original 2nd
order one except for an arbitrary choice of the
initial state. By imposing the condition that the
initial state satisfies the original 2nd order ODE,
both systems become completely equivalent.

https://youtu.be/NsEv6JrSN8c

N Tc ∫ ε[1]q1 ∫ ε[1]q2 ∫ εq1 ∫ εq1
(s) (m) (rad) (m/s2) (rad/s2)

Tz -1 50 0.07 0.0060 0.0169 45.926 127.614
Tz -3 50 0.06 0 0 1.075 3.174
HS -1 25 0.06 0.0011 0.0033 8.614 26.451
HS -3 25 0.06 0 0 0.497 1.616

Table 6: Performance data for the cart-pole problem
with 3rd order dynamics.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time(s)

−50

−25

0

25

50

75

100

125

Je
rk

 o
f
q

1
(m

/s
3
)

Trajectories ⃛q1(t) obtained with Hermite-Simpson schemes

HS-1

HS-3

knot & collocation points

collocation points

Fig. 7: Comparison of the jerk trajectories
...
q 1(t)

obtained by HS -1 and HS -3 in the cart-pole problem
with 3rd order dynamics.

Note that the use of (78) now allows us to
apply Tz -3 and HS -3, both of which ensure the
continuity of the obtained trajectory for

...
q (t), and

thus the smoothness of q̈(t) as desired. In other
words, whereas the splines q(t) computed with
Tz -1 and HS -1 will be just once differentiable,
those obtained with Tz -3 and HS -3 will be three
times differentiable. To avoid high rates of change
in the applied force, moreover, in this example we
minimize ∫ tf

0

w(t)2 dt.

Table 6 shows the computation times Tc and
the errors we obtain for Tz -1 and HS -1, compared
with those for Tz -3 and HS -3. As we see, when
Tz -3 and HS -3 are used, the dynamics errors are
reduced in more than one order of magnitude with
respect to those of Tz -1 and HS -1, respectively,
while the values of Tc remain similar.

To assess the difference in the continuity of
the trajectories, Fig. 7 shows the curves obtained
for the third derivative of the position,

...
q 1(t),

both for HS -1 and HS -3. As expected, while HS -1
gives piece-wise constant and discontinuous values
for

...
q 1(t), HS -3 provides a high-quality trajectory

with continuous jerk.

7.5 Performance scaling with N

To evaluate the performance of the methods when
the number N of intervals increases, a series of
experiments have been conducted by progressively
risingN from 20 to 200. Each experiment has been
launched several times and the average of the inte-
gral dynamics errors and computation times are
shown in Fig. 8 as a function of N . For the bipedal
walking and ball throwing problems we plot ∫ ε.
For the cart-pole problem we do not use ∫ ε as the
coordinates q1 and q2 have different units. Instead
we provide only the plot of ∫ εq1 , as the one of
∫ εq2 is very similar.

In all test problems, the best results for the
dynamics error (shown on the left column of Fig. 8
using logarithmic scale on both axes) are those of
HS -2 and HS -3, which, in many cases, improve
the results of HS -1 in about one order of mag-
nitude, or even more, and the improvement rate
tends to increase with the number N of intervals.
The same behavior is observed for Tz -2 and Tz -3
with respect to Tz -1. Interestingly, in all cases the
performance of Tz -2 produces, for the same num-
ber of intervals N , only about twice the error of
HS -1, and this rate is kept rather constant with
N . However, a more balanced comparison would
be to look at experiments with equal number of
collocation points, what means to compare each N
value of HS -1 with the 2N value of Tz -2. A close
look at the plots will convince the reader that this
comparison gives equal or better results for Tz -2
in all cases. Noticeably, as evidenced in the last
row of Fig. 8, the results for Tz -3 outperform those
for HS -1 even for the same number of intervals.

The plots on the right hand side of Fig. 8
show the growth of the computation times with
the number N of intervals. The plots consistently
show that the difference in computation time
between a method for first order systems and the
corresponding method for second or third order
systems is not relevant. In all cases, the growth
is nearly linear in N , but the increase rate is
higher for the HS - methods than for the Tz - ones.
Despite the different complexity of the four prob-
lems analyzed, reflected in the different time scales
involved, in all cases the increase rate of the HS -
methods is nearly twice that of the Tz - methods.
In other words, the increasing rate is very similar
for all methods when comparing the computation
times for the same number of collocation points.

20 25 30 40 50 60 80 100 120 160 200

Number of intervals (log scale)

10−4

10−3

10−2

10−1

100

D
y
n
a
m

ic
s
 e

rr
o
r

(m
/s

)

Cart-pole: integral dynamics error ∫εq1

TZ-1

TZ-2

HS-1

HS-2

25 50 75 100 125 150 175 200

Number of intervals

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
im

e
 (

s
)

Cart-pole: optimization time

TZ-1

TZ-2

HS-1

HS-2

20 25 30 40 50 60 80 100 120 160 200

Number of intervals (log scale)

10−6

10−5

10−4

10−3

10−2

10−1

100

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

)

Bipedal walking: integral dynamics error ∫ε

TZ-1

TZ-2

HS-1

HS-2

25 50 75 100 125 150 175 200

Number of intervals

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 (

s
)

Bipedal walking: optimization time

TZ-1

TZ-2

HS-1

HS-2

20 25 30 40 50 60 80 100 120 160 200

Number of intervals (log scale)

10−2

10−1

100

101

D
y
n
a
m

ic
s
 e

rr
o
r

(r
a
d
/s

)

Ball throwing: integral dynamics error ∫ε

TZ-1

TZ-2

HS-1

HS-2

25 50 75 100 125 150 175 200

Number of intervals

0

5

10

15

20

25

T
im

e
 (

s
)

Ball throwing: optimization time

TZ-1

TZ-2

HS-1

HS-2

20 25 30 40 50 60 80 100 120 160 200

Number of intervals (log scale)

10−3

10−2

10−1

100

101

D
y
n
a
m

ic
s
 e

rr
o
r

(m
/s

2
)

3rd order cart-pole: integral dynamics error ∫εq1

TZ-1

TZ-3

HS-1

HS-3

25 50 75 100 125 150 175 200

Number of intervals

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

3rd order cart-pole: optimization time

TZ-1

TZ-3

HS-1

HS-3

Fig. 8: Dynamics error (left) and optimization time (right) for the four test problems, as N is increased.

8 Conclusions

Trapezoidal and Hermite-Simpson collocation
methods are very popular in the robotics commu-
nity. However, they are conceived for dynamical
systems of first order, while the dynamics of the
systems found in robotics are often Mth order,
with M > 1. The transcription of an Mth order
ODE as a first order one has the unexpected
effect that the dynamic equations are not actu-
ally imposed at the collocation points. Properly
imposing the Mth order constraints at the same
such points as in the original algorithms requires
increasing the degree of the polynomials approx-
imating the configuration trajectory, while keep-
ing the implied degrees for its time derivatives.
This is achieved with the methods we propose,
which grant the functional consistency between
the trajectories of all the state coordinates, not
only at the collocation points, but also along
the whole time horizon. Using benchmark prob-
lems of increasing complexity, we have also shown
that the new methods provide trajectories with a
much smaller dynamic error than those of conven-
tional methods, despite they require a comparable
amount of computation time. This implies that
the obtained trajectories will be more compliant
with the system dynamics, so they should be eas-
ier to track with a feedback controller. Moreover,
the trajectories of the new methods are M times
differentiable, so in addition to enjoying smooth
velocities, their accelerations will be continuous,
or even smooth if M ≥ 3, which are very desirable
properties from a control perspective.

Points that deserve further attention are the
extension of these ideas to pseudospectral collo-
cation methods, which we initially explored for
M = 2 in Moreno-Mart́ın et al. (2022), or gen-
eralizations to deal with constrained multibody
systems (Posa et al., 2016; Bordalba et al., 2023),
or systems involving SO(3) (Manara et al., 2017).

Declarations

Funding. This work has been partially funded
by Agencia Estatal de Investigación under project
Kinodyn+, with reference PID2020-117509GB-I00
/ AEI / 10.13039/50110001103, and by a Ph.D.
contract supporting the first author, with refer-
ence PRE2018-085582.

References

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and
Koster, J. (2001). A Fully Asynchronous Multi-
frontal Solver Using Distributed Dynamic Schedul-
ing. SIAM Journal on Matrix Analysis and Appli-
cations, 23(1):15–41.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings,
J. B., and Diehl, M. (2019). CasADi – A software
framework for nonlinear optimization and optimal
control. Mathematical Programming Computation,
11(1):1–36.

Becerra, V. M. (2010). Solving complex optimal con-
trol problems at no cost with PSOPT. In 2010
IEEE International Symposium on Computer-Aided
Control System Design, pages 1391–1396.

Berscheid, L. and Kröger, T. (2021). Jerk-limited
Real-time Trajectory Generation with Arbitrary
Target States. In Robotics: Science and Systems.

Betts, J. T. (2010). Practical Methods for Optimal
Control and Estimation Using Nonlinear Program-
ming. SIAM.

Bordalba, R., Schoels, T., Ros, L., Porta, J. M.,
and Diehl, M. (2023). Direct Collocation Meth-
ods for Trajectory Optimization in Constrained
Robotic Systems. IEEE Transactions on Robotics,
39(1):183–202.

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J.,
Lamiraux, F., Stasse, O., and Mansard, N. (2019).
The Pinocchio C++ library – A fast and flexible
implementation of rigid body dynamics algorithms
and their analytical derivatives. In IEEE Interna-
tional Symposium on System Integrations (SII).

Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F.,
Westervelt, E. R., De Wit, C. C., and Grizzle, J.
(2003). RABBIT: a testbed for advanced control
theory. IEEE Control Systems Magazine, 23(5):57–
79.

Constantinescu, D. and Croft, E. A. (2000). Smooth
and time-optimal trajectory planning for industrial
manipulators along specified paths. Journal of
Robotic Systems, 17(5):233–249.

Conway, B. A. and Paris, S. W. (2010). Spacecraft
Trajectory Optimization Using Direct Transcrip-
tion and Nonlinear Programming. In Conway, B.,
editor, Spacecraft Trajectory Optimization, pages
37–78. Cambridge University Press.

Dahlquist, G. and Björck, A. (2008). Numerical Meth-
ods in Scientific Computing, Volume I. Society for
Industrial and Applied Mathematics.

De Luca, A. and Book, W. J. (2016). Robots with
flexible elements. In Springer Handbook of Robotics,
pages 243–282. Springer.

Della Santina, C. (2020). Flexible Manipulators. In
Encyclopedia of Robotics. Springer.

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/CACSD.2010.5612676
https://doi.org/10.1109/CACSD.2010.5612676
https://doi.org/10.15607/RSS.2021.XVII.015
https://doi.org/10.15607/RSS.2021.XVII.015
https://doi.org/10.15607/RSS.2021.XVII.015
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1109/TRO.2022.3193776
https://doi.org/10.1109/TRO.2022.3193776
https://doi.org/10.1109/TRO.2022.3193776
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/MCS.2003.1234651
https://doi.org/10.1109/MCS.2003.1234651
https://doi.org/10.1115/IMECE1999-0065
https://doi.org/10.1115/IMECE1999-0065
https://doi.org/10.1115/IMECE1999-0065
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1007/978-3-319-32552-1_11
https://doi.org/10.1007/978-3-319-32552-1_11
https://doi.org/10.1007/978-3-642-41610-1_182-1

Featherstone, R. (2008). Rigid body dynamics algo-
rithms. Springer.

Hairer, E., Wanner, G., and Lubich, C. (2002). Geo-
metric Numerical Integration. Springer Berlin
Heidelberg.

Hairer, E., Wanner, G., and Nørsett, S. P. (1993).
Solving Ordinary Differential Equations I. Springer.

Hargraves, C. R. and Paris, S. W. (1987). Direct tra-
jectory optimization using nonlinear programming
and collocation. Journal of guidance, control, and
dynamics, 10(4):338–342.

Hereid, A., Hubicki, C. M., Cousineau, E. A., and
Ames, A. D. (2018). Dynamic humanoid locomo-
tion: A scalable formulation for HZD gait optimiza-
tion. IEEE Transactions on Robotics, 34(2):370–
387.

Kelly, M. (2017). An Introduction to Trajectory Opti-
mization: How to Do Your Own Direct Collocation.
SIAM Review, 59(4):849–904.

Macfarlane, S. and Croft, E. A. (2003). Jerk-bounded
manipulator trajectory planning: design for real-
time applications. IEEE Transactions on Robotics
and Automation, 19(1):42–52.

Manara, S., Gabiccini, M., Artoni, A., and Diehl, M.
(2017). On the integration of singularity-free repre-
sentations of so (3) so (3) for direct optimal control.
Nonlinear Dynamics, 90:1223–1241.

Moreno-Mart́ın, S. (2023a). Online Jupyter notebook
for the cart-pole problem (with 3rd order ODE).

Moreno-Mart́ın, S. (2023b). Online Jupyter notebook
for the cart-pole problem (standard version).

Moreno-Mart́ın, S. (2023c). Online Jupyter notebook
for the bipedal walking problem.

Moreno-Mart́ın, S., Ros, L., and Celaya, E. (2022).
Collocation Methods for Second Order Systems. In
Robotics: Science and Systems, New York.

Moreno-Mart́ın, S., Ros, L., and Celaya, E. (2022).
A Legendre-Gauss Pseudospectral Collocation
Method for Trajectory Optimization in Second
Order Systems. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 13335–13340.

Pardo, D., Möller, L., Neunert, M., Winkler, A. W.,
and Buchli, J. (2016). Evaluating direct transcrip-
tion and nonlinear optimization methods for robot

motion planning. IEEE Robotics and Automation
Letters, 1(2):946–953.

Park, H.-W., Sreenath, K., Ramezani, A., and Grizzle,
J. W. (2012). Switching control design for accom-
modating large step-down disturbances in bipedal
robot walking. In 2012 IEEE International Con-
ference on Robotics and Automation, pages 45–50.
IEEE.

Posa, M., Kuindersma, S., and Tedrake, R. (2016).
Optimization and stabilization of trajectories for
constrained dynamical systems. In IEEE Inter-
national Conference on Robotics and Automation,
pages 1366–1373.

Saglam, C. O. and Byl, K. (2014). Robust Policies via
Meshing for Metastable Rough Terrain Walking. In
Robotics: Science and Systems.

Tedrake, R. (2023). Underactuated Robotics: Algo-
rithms for Walking, Running, Swimming, Fly-
ing, and Manipulation (Course Notes for MIT
6.832). MIT. Accessed on 16 June 2023 from
http://underactuated.mit.edu/.

The Drake Team (2023). Drake: Model-based design
and verification for robotics.

The IPOPT Team (2023). IPOPT Documenta-
tion. Accessed on 16 June 2023 from https://coin-
or.github.io/Ipopt/OPTIONS.html.

Topputo, F. and Zhang, C. (2014). Survey of
Direct Transcription for Low-Thrust Space Trajec-
tory Optimization with Applications. Abstract and
Applied Analysis, 2014:1–15.

Wächter, A. and Biegler, L. T. (2006). On the
implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming.
Mathematical programming, 106(1):25–57.

Westervelt, E. R., Grizzle, J. W., and Koditschek,
D. E. (2003). Hybrid zero dynamics of planar biped
walkers. IEEE Transactions on Automatic Control,
48(1):42–56.

Yang, T., Westervelt, E. R., Serrani, A., and
Schmiedeler, J. P. (2009). A framework for the con-
trol of stable aperiodic walking in underactuated
planar bipeds. Autonomous Robots, 27(3):277–290.

https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-3-662-05018-7
https://doi.org/10.1007/978-3-662-05018-7
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.2514/3.20223
https://doi.org/10.2514/3.20223
https://doi.org/10.2514/3.20223
https://doi.org/10.1109/TRO.2017.2783371
https://doi.org/10.1109/TRO.2017.2783371
https://doi.org/10.1109/TRO.2017.2783371
https://doi.org/10.1137/16M1062569
https://doi.org/10.1137/16M1062569
https://doi.org/10.1109/TRA.2002.807548
https://doi.org/10.1109/TRA.2002.807548
https://doi.org/10.1109/TRA.2002.807548
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-order-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-3rd-order-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
http://www.roboticsproceedings.org/rss18/p038.html
https://doi.org/10.1109/IROS47612.2022.9981255
https://doi.org/10.1109/IROS47612.2022.9981255
https://doi.org/10.1109/IROS47612.2022.9981255
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/ICRA.2012.6225056
https://doi.org/10.1109/ICRA.2012.6225056
https://doi.org/10.1109/ICRA.2012.6225056
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.15607/RSS.2014.X.049
https://doi.org/10.15607/RSS.2014.X.049
https://underactuated.mit.edu/
https://underactuated.mit.edu/
https://underactuated.mit.edu/
https://underactuated.mit.edu/
https://drake.mit.edu/
https://drake.mit.edu/
https://coin-or.github.io/Ipopt/OPTIONS.html
https://coin-or.github.io/Ipopt/OPTIONS.html
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1109/TAC.2002.806653
https://doi.org/10.1007/s10514-009-9126-y
https://doi.org/10.1007/s10514-009-9126-y
https://doi.org/10.1007/s10514-009-9126-y

	Introduction
	Problem formulation
	Methods for first order systems
	Trapezoidal collocation
	Hermite-Simpson collocation
	Trajectory interpolation
	Downsides of the methods

	Methods for second order systems
	Trapezoidal method for second order systems
	Hermite-Simpson method for second order systems

	Extensions for higher order systems
	The generalized trapezoidal method
	The generalized Hermite-Simpson method

	Comparison of the methods
	Problem size
	Accuracy of the approximations
	Consistency errors

	Test cases
	The cart-pole swing-up problem
	The bipedal walking problem
	A ball throwing problem
	A third order example
	Performance scaling with N

	Conclusions
	Funding

