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A B S T R A C T

This paper presents a nonlinear observer to estimate the active species concentrations in vanadium flow
batteries. To conduct the estimation, the observer relies only on current, flow rate and two half-cell
voltage measurements. In contrast to previous works in the field, the proposed observer is capable to deal
simultaneously with two significant and challenging conditions: (1) a not necessarily high flow rate, which
results in different concentrations for tanks and cells, and (2) presence of crossover and oxidation side reactions,
that result in imbalance between the electrolytes on the positive and negative sides of the system. The stability
and convergence of the observer are formally demonstrated using a Lyapunov analysis and subsequently
validated through comprehensive computer simulations. Finally, utilising the information provided by the
observer, a strategy to independently regulate the flow rate of each electrolyte based on their individual state
of charge is developed.
1. Introduction

Redox Flow Batteries (RFB) are emerging as one of the most
promising energy storage systems for large-scale stationary applications
(Kebede et al., 2022). Unlike conventional battery technologies, in RFB
the fluid reactants are stored in tanks separated from the electrochem-
ical reactor, resulting in a decoupling of energy and power (Guarnieri
et al., 2018). The high degree of versatility and scalability associated
to their unique architecture is combined with a respectable efficiency
(75%–85%), low maintenance requirements and a minimal self dis-
charge rate when inactive. In particular, the All-Vanadium Flow Battery
(VFB) is the most mature flow battery technology, with important
industrial-scale facilities in service worldwide (Zhang et al., 2021).
By utilising vanadium as the only active element, they do not suffer
from the cross-contamination problems that affect other types of RFB,
resulting in a potentially very long cycle life (≈ 16000 cycles). In
addition, they do not pose significant safety concerns because of the
utilisation of an aqueous solution at room temperature and atmospheric
pressure.

In spite of VFB remarkable advantages, their particular structure
is also accompanied with some important challenges. One of them is
their susceptibility to various undesired phenomena, such as vanadium
crossover, as well as gassing and oxidation side reactions, that produce
a discrepancy of active species concentrations in both sides of the sys-
tem (Huang and Mu, 2021; Nolte et al., 2021). This condition, known
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as electrolyte imbalance, results in capacity loss and, when unnoticed,
can lead to even more severe consequences such as electrodes corrosion
or membrane damage (Puleston et al., 2022; Jirabovornwisut and
Arpornwichanop, 2019). On the other hand, another major challenge is
the lack of a systematic method to measure online the concentrations
of vanadium active species (Clemente and Costa-Castelló, 2020; Wang
et al., 2023). The knowledge of these concentrations is crucial for the
optimal operation of VFB systems, enabling:

1. To determine the system State of Charge (SoC) and State of
Health (SoH) (Nolte et al., 2021; Puleston et al., 2024; Clemente
et al., 2023). In turn, these indexes are essential for the inte-
gration of the battery into energy management systems, and
planning its operation (Choi et al., 2016; Schubert et al., 2023).

2. To promptly detect faults and deviations in the system be-
haviour, and identify its possible causes. For instance, a fast
crossover of vanadium towards one side of the system could be
associated to a degraded membrane (Puleston et al., 2023; Tem-
pelman et al., 2020). In contrast, a rapid change in the average
oxidation state of the electrolytes could be an indicator of an
incorrect sealing of the negative tank, or electrode degradation
that leads to gassing side reactions (Nourani et al., 2019).
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3. To identify the optimal strategy to recover imbalanced elec-
trolytes, as well as to conduct these strategies effectively (Poli
et al., 2021; Pichugov et al., 2023; Puleston et al., 2024).

4. To implement enhanced control strategies oriented to maximise
the energy efficiency (e.g., flow rate regulation (König et al.,
2016; Jirabovornwisut et al., 2020; Guarnieri et al., 2020)), and
minimise the degradation of the VFB components (e.g., avoiding
overcharging and side reactions (Wang et al., 2023; Akter et al.,
2019)).

5. To estimate the parameters that govern the kinetics of the elec-
trochemical reactions (Choi et al., 2016; He et al., 2022). In
turn, these are needed to calculate the electrodes overpotential
and the relative contribution of the different losses, providing
valuable insights for optimising battery performance.

Several experimental methods have been explored in the literature
o determine the composition of the electrolytes. The simplest one
s to include an auxiliary open circuit voltage cell, and compute the
oncentrations by solving the Nernst equation (Bogdanov et al., 2023).
owever, that approach proves effective only when the electrolytes in
oth sides of the system are perfectly balanced and the total vanadium
oncentration is known in advance (Nolte et al., 2021). In laboratory-
cale setups, potentiometric titration is a viable candidate to determine
he exact concentration of each species in an electrolyte sample (Geiser
t al., 2019). However, it is time consuming and results impractical
or online monitoring in industrial-scale applications. Spectroscopic
ethods, such as UV/Vis, appear also as an appealing option, given

he difference in colour presented by each type of vanadium ion.
onetheless, to obtain an accurate measurement, costly equipment is

equired and, furthermore, they can only work in a limited range of
lectrolyte concentrations (Loktionov et al., 2022; Rybalchenko et al.,
022). Several groups are currently working on the development of
lternative experimental methods, such as those based on ultrasonic
easurements (Yan et al., 2023; Zang et al., 2019), novel micro-

lectrodes for amperometric analysis (Neyhouse et al., 2021; Zub et al.,
022) or coulometric sensors that make use of auxiliary cells (Loktionov
t al., 2023).

To eliminate the need of costly and complex sensing equipment,
he development of model-based algorithms that estimate the variables
f interest only from easily measurable signals is gaining increasing
ttention (Puleston et al., 2022; Clemente and Costa-Castelló, 2020).
ost of the estimation works available in VFB literature rely on Equiva-

ent Circuit Models (ECM), that utilise electric elements to characterise
he electrical dynamic behaviour of the battery (Zhang et al., 2015;
iong et al., 2019). Some authors (Wei et al., 2016; Zhao et al., 2022;
haki and Das, 2021) resorted to algorithms based on Extended Kalman
ilters (EKF) to estimate the electric parameters of an ECM together
ith the battery’s SoC, only from current and voltage measurements.
o consider possible degradation in the battery condition, an empirical
apacity loss factor was introduced and combined with a Sliding Mode
bserver (SMO) (Xiong et al., 2017) and an EKF (Wei et al., 2018) to
onduct a co-estimation of capacity and SoC. Finally, Fornaro et al.
2022, 2023) developed a methodology based on the combination of
liding mode differentiators and a recursive least squares algorithm to
stimate the model parameters, the SoC, and the SoH in the context
f wind-power based applications. The main limitation of the ECM
pproach is that most of their parameters lack of a clear physical
nterpretation and, furthermore, they do not take into account some of
he key phenomena that influence VFBs behaviour, such as varying flow
ates or electrolyte imbalance. Hence, they do not allow to obtain the
ndividual electrolyte concentrations nor do they consider the effects of
he various side reactions that typically affect VFB systems.

Another viable estimation approach involves the use of computa-
ional-efficient electrochemical models, where dynamic equations are
rounded in conservation balances, providing each term with a pre-
2

ise physical meaning. This approach was followed by some authors
Clemente et al. (2021, 2023), who utilised a SMO and a nonlinear
observer to estimate the battery’s SoC from current, flow rate and
voltage measurements. Although they succeed in capturing the effects
of the electrolyte flow rates, they still preserve some classic hypoth-
esis regarding the electrolyte imbalance: side reactions that produce
oxidation/reduction of the electrolyte are neglected, and the mass
in both sides of the system is assumed to be constant and known.
Indeed, Jienkulsawad et al. (2020) showed that, from the estimation
point of view, it is impossible to reconstruct the complete concentration
map utilising a single voltage measurement. This problem is partially
solved through a model-based observer capable to deal with the dif-
ferent types of electrolyte imbalance that affect VFB systems (Puleston
et al., 2023). However, the proposal requires of some prior knowledge
regarding the overall average oxidation state of the system and, further-
more, it is imposed a ‘‘high flow rate’’ hypothesis that equalises tanks
and cells concentrations, while presenting high sensitivity to sensor
noise.

To overcome the existing limitations regarding concentration es-
timation, this paper presents a novel nonlinear observer that utilises
half-cell voltage measurements against reference electrodes to estimate
in real-time the concentrations of the four vanadium species present in
a VFB system. The proposal does not require prior knowledge regarding
the electrolyte imbalance status, and can be applied to systems where
the high flow rate hypothesis is not satisfied, hence being able to
distinguish between tanks and cells concentrations. Additionally, the
observer presents a minimal set of parameters which can be easily
tuned to obtain a good trade-off between convergence rate and noise
sensitivity. Moreover, the observer includes an additional feedback
term that constraints the estimates to realistic values, even in the
convergence period. To the best of the authors knowledge, this is the
first observer in the context of VFB that satisfies these characteristics.
Finally, relying on the remarkable performance of the proposed ob-
server, this paper proposes a regulation strategy of the flow rate of each
electrolyte based on the estimation of the individual state of charge.

2. Dynamic model

This section introduces the model that describes the VFB dynamics,
including realistic assumptions made to obtain a simplified representa-
tion that will be used in the remainder of this work.

2.1. System description

In a VFB two reservoirs store solutions containing vanadium active
species dissolved in sulfuric acid, namely, the electrolytes. The negative
side’s electrolyte contains 𝑉 2+ and 𝑉 3+, while the positive side contains
𝑉 𝑂2+ and 𝑉 𝑂+

2 . The latter can be respectively abbreviated as 𝑉 4+ and
𝑉 5+, owing to the oxidation state of vanadium in those ions. During
battery operation, both electrolytes are pumped from the reservoirs to
an electrochemical cell (or stack of cells), where the redox reactions
occur. An ion-exchange membrane within the cell separates the two
electrolytes, allowing the electric circuit to close while preventing their
direct interaction. The outlets of each half-cell are connected to their
respective reservoirs, completing the hydraulic circuit. Fig. 1 provides a
schematic representation of a standard VFB system. Note that the figure
also includes two auxiliary cells for half-cell voltage monitoring, whose
function will be discussed in detail in Section 3.

The primary electrochemical reactions occurring at the surface of
the electrodes are as follows:

At the negative electrode: 𝑉 2+ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⇌

𝑐ℎ𝑎𝑟𝑔𝑒
𝑉 3+ + 𝑒−

At the positive electrode: 𝑉 𝑂+
2 + 2𝐻+ + 𝑒−

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⇌

𝑐ℎ𝑎𝑟𝑔𝑒
𝑉 𝑂2+ +𝐻2𝑂

In addition to these reactions, a VFB system may experience other

side reactions occurring at a significantly lower rate. These reactions
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Fig. 1. Schematic of a single-cell vanadium flow battery system, including two auxiliary flow cells for half-cell voltage monitoring. R.E. and W.E. stand for Reference and Working
Electrode, respectively.
contribute to self-discharge and, more significantly, lead to an elec-
trolyte imbalance, thereby diminishing the battery’s charge capac-
ity (Puleston et al., 2024; Nolte et al., 2021). The most common
side reactions stem from the undesired crossover of vanadium species
through the membrane. Typically, the molar flux of vanadium in one
direction surpasses that in the other, creating an asymmetric crossover.
This imbalance results in accumulation on one side and depletion on
the other, causing what is termed as ‘‘concentration imbalance’’ (Cre-
moncini et al., 2023). While this condition reduces battery capacity, it
can be rectified in a relatively simple manner, remixing the electrolytes
and evenly splitting the resulting solution.

On the contrary, side reactions that cause a net oxidation (or reduc-
tion) of the electrolyte, modifying the ideal overall average oxidation
state of +3.5, give rise to a condition known as ‘‘faradaic imbalance’’
(Nourani et al., 2019). This type of imbalance results in a capacity loss
that requires more intricate chemical or electrochemical methods for
restoration (Poli et al., 2021; Cremoncini et al., 2023). Examples of
such reactions include the hydrogen evolution reaction at the negative
electrode during charge operation and the air oxidation suffered by 𝑉 2+

when the negative tank is not perfectly sealed (Jirabovornwisut and
Arpornwichanop, 2019).

2.2. Complete model

Many models are available in the literature for describing the dy-
namics of vanadium species concentrations in VFBs systems. For control
and estimation purposes, the most popular are lumped parameter mod-
els derived from Tang and Skyllas-Kazacos formulations (Tang et al.,
2011), and its subsequent improvements (Li et al., 2021; Puleston et al.,
2022). In particular, considering that the VFB is composed of two tanks
and a stack of 𝑚 cells that behave exactly the same, the following
experimentally validated eigth-order model (Bogdanov et al., 2023) can
be formulated:

For 𝑉 2+

⎧

⎪

⎪

⎨

⎪

⎪

𝑣𝑐,𝑛
𝑑𝑐𝑐2
𝑑𝑡

=
𝑞𝑛
𝑚
(𝑐𝑡2 − 𝑐𝑐2) − 𝑆(𝑁2 +𝑁4 + 2𝑁5) +

𝐼
𝐹

(1a)

𝑣𝑡,𝑛
𝑑𝑐𝑡2 = 𝑞𝑛(𝑐𝑐2 − 𝑐𝑡2) − 𝑘𝑜𝑥𝑐

𝑡
2 (1b)
3

⎩

𝑑𝑡
For 𝑉 3+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑐,𝑛
𝑑𝑐𝑐3
𝑑𝑡

=
𝑞𝑛
𝑚
(𝑐𝑡3 − 𝑐𝑐3) − 𝑆(𝑁3 − 2𝑁4 − 3𝑁5) −

𝐼
𝐹

(2a)

𝑣𝑡,𝑛
𝑑𝑐𝑡3
𝑑𝑡

= 𝑞𝑛(𝑐𝑐3 − 𝑐𝑡3) + 𝑘𝑜𝑥𝑐
𝑡
2 (2b)

For 𝑉 4+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑐,𝑝
𝑑𝑐𝑐4
𝑑𝑡

=
𝑞𝑝
𝑚
(𝑐𝑡4 − 𝑐𝑐4) − 𝑆(𝑁4 − 3𝑁2 − 2𝑁3) −

𝐼
𝐹

(3a)

𝑣𝑡,𝑝
𝑑𝑐𝑡4
𝑑𝑡

= 𝑞𝑝(𝑐𝑐4 − 𝑐𝑡4) (3b)

For 𝑉 5+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑐,𝑝
𝑑𝑐𝑐5
𝑑𝑡

=
𝑞𝑝
𝑚
(𝑐𝑡5 − 𝑐𝑐5) − 𝑆(𝑁5 + 2𝑁2 +𝑁3) +

𝐼
𝐹

(4a)

𝑣𝑡,𝑝
𝑑𝑐𝑡5
𝑑𝑡

= 𝑞𝑝(𝑐𝑐5 − 𝑐𝑡5) (4b)

where 𝑐𝑖 are the vanadium species concentrations (𝑖 indicates the
vanadium oxidation state), 𝑣 is the tank/half-cell volumes, 𝑞 is the
flow rate, 𝑚 is the number of cells in the stack 𝐼 is the stack current
(considered positive in charge operation), 𝐹 is the Faraday constant,
𝑆 is the membrane area, 𝑁𝑖 is the molar flux of species 𝑖 through the
membrane, and 𝑘𝑜𝑥 is a factor used to represent possible 𝑉 2+ oxidation
in the negative electrolyte tank. The subscripts and superscripts 𝑐 and 𝑡
stand for cells and tanks, while 𝑛 and 𝑝 refer to the negative and positive
side of the system, respectively.

The ideal cell voltage, also referred to as Open Circuit Voltage
(OCV), depends on the active species concentrations through the Nernst
equation (Puleston et al., 2022; Zhang et al., 2015):

𝐸𝑜𝑐
𝑐𝑒𝑙𝑙 = 𝐸𝜃 + 𝑅𝑇

𝐹
ln

(

𝑐𝑐2𝑐
𝑐
5

𝑐𝑐3𝑐
𝑐
4

)

, (5)

where 𝑅 is the ideal gas constant, and 𝐸𝜃 is the formal potential, that
lumps the standard cell potential and other constant terms, such as
activity coefficients and proton concentrations.
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𝐀𝟏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑚 𝑣𝑐 )−1 0 0 0 (𝑚 𝑣𝑐 )−1 0 0 0
0 −(𝑚 𝑣𝑐 )−1 0 0 0 (𝑚 𝑣𝑐 )−1 0 0
0 0 −(𝑚 𝑣𝑐 )−1 0 0 0 (𝑚 𝑣𝑐 )−1 0
0 0 0 −(𝑚 𝑣𝑐 )−1 0 0 0 (𝑚 𝑣𝑐 )−1

𝑣−1𝑡 0 0 0 −𝑣−1𝑡 0 0 0
0 𝑣−1𝑡 0 0 0 −𝑣−1𝑡 0 0
0 0 𝑣−1𝑡 0 0 0 −𝑣−1𝑡 0
0 0 0 𝑣−1𝑡 0 0 0 −𝑣−1𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐀𝟐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑘2 0 −𝑘4 −2𝑘5 0 0 0 0
0 −𝑘3 2𝑘4 3𝑘5 0 0 0 0
3𝑘2 2𝑘3 −𝑘4 0 0 0 0 0
−2𝑘2 −𝑘3 0 −𝑘5 0 0 0 0
0 0 0 0 −𝑘𝑜𝑥

𝑑
𝑆

𝑣𝑡
𝑣𝑐

0 0 0

0 0 0 0 𝑘𝑜𝑥
𝑑
𝑆

𝑣𝑡
𝑣𝑐

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Naturally, when an external current is applied, the voltage will devi-
te from the ideal 𝐸𝑜𝑐

𝑐𝑒𝑙𝑙 as a result of a series of overpotentials. However,
n VFBs, it is a common practice to place an auxiliary open circuit
ell that allows to obtain a direct measure of 𝐸𝑜𝑐

𝑐𝑒𝑙𝑙 (Nolte et al., 2021).
Alternatively, if the overpotential parameters are well characterised, it
is possible to estimate 𝐸𝑜𝑐

𝑐𝑒𝑙𝑙 from the terminal voltage (Fornaro et al.,
022). As a result, the remainder of this paper will assume that 𝐸𝑜𝑐

𝑐𝑒𝑙𝑙
an be directly measured.

.3. State-space model

The electrochemical model presented in the previous subsections
an be expressed more concisely in a state-space representation, which
ill facilitate the observer design process. Without loss of generality
nd to avoid unnecessarily lengthy expressions, it will be assumed that
he flow rates as well as the tanks and half-cell volumes are the same in
oth sides of the system. If that is not the case, independent values for
hese variables can be defined in the model. In addition, it is assumed a
inear diffusion law to represent vanadium crossover, which in general
hows a good agreement with the experimental data (Bogdanov et al.,
023). The resulting model is as follows:

𝐱̇ ∶= 𝑓 (𝐱) = 𝑞𝐀𝟏𝐱 +
𝑆

𝑑 𝑣𝑐
𝐀𝟐𝐱 +

1
𝐹𝑣𝑐

𝐛𝐼 (6a)

𝑦 ∶= ℎ(𝐱) = 𝐸𝜃 + 𝑅𝑇
𝐹

ln
(

𝑥1 𝑥4
𝑥2 𝑥3

)

, (6b)

where 𝐱 is the concentrations vector 𝐱 ∶= [𝐱𝐜; 𝐱𝐭 ] ∶= [𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑡2 𝑐
𝑡
3 𝑐

𝑡
4

𝑡
5]

⊤; 𝐀𝟏 describes the transport of vanadium between tanks and cells;
𝟐 represents the side reaction dynamics, i.e., crossover and vanadium
xidation; 𝐛 = [1 1 1 1 0 0 0 0]⊤ represents the effect of the

electric current, i.e., the main electrochemical reactions; and 𝑆 and 𝑑
are the membrane area and thickness, respectively. The expressions for
𝐀𝟏 and 𝐀𝟐 are given in Box I, where 𝑘𝑖 is the membrane permeability
coefficient of the species 𝑉 𝑖+.

In this work, given that the side reactions proceed at a much
slower time-scale than the main electrochemical processes, we make
the assumption 𝐀𝟐 = 𝟎 for the observer design in Section 4. The
orrection term of the observer will allow to compensate this slight
iscrepancy in the model, allowing to track their effects, particularly
he electrolyte imbalance. The complete model considering crossover
nd side reactions will be utilised as ground truth for simulating the
4

eal plant in Section 5. s
3. Problem formulation

This section formally states the specific objectives that the observer
must achieve. Subsequently, the feasibility of designing such observer
is discussed by means of an observability analysis. Finally, it is demon-
strated that the utilisation of two half-cell voltage measurements is
sufficient to attain full observability of the system.

3.1. Observer objectives

The primary objective is to design an observer capable of estimating,
in real time, the concentrations of the four vanadium species present in
a VFB system, relying only on voltage and current measurements. That
is,

lim
𝑡→∞

|𝐱(𝑡) − 𝐱̂(𝑡)| = 𝟎, (7)

where 𝐱 is the concentrations vector and 𝐱̂ is the estimation gener-
ted by the observer. Naturally, in the presence of sensor noise and
odel uncertainty, achieving the objective outlined in (7) becomes
nattainable. Instead, we can ensure practical convergence, denoted as
im𝑡→∞ |𝐱̂(𝑡) − 𝐱(𝑡)| ≤ 𝜀, where 𝜀 is a positive constant. Coherently, the
bserver must minimise the constant 𝜀, that is, the impact of sensor
oise and parametric uncertainty on the quality of the estimation.

Specifically, this work addresses two significant challenges. Firstly,
he observer should adequately operate under electrolyte imbalance
onditions. Since VFB tend to suffer from both concentration and
aradaic imbalances after extended operation, the removal of the ‘‘bal-
nced electrolytes’’ hypothesis common from the VFB estimation lit-
rature results of utmost importance for almost every VFB system.
econdly, the observer needs to differentiate between the concentra-
ions of tanks and cells, without imposing the usual hypothesis of a
‘very high flow rate’’ that equalises these concentrations. This distinc-
ion becomes particularly relevant in those applications where the flow
ate is being regulated, either to optimise the energy efficiency, or to
itigate the degradation of certain battery components.

Moreover, the observer needs to estimate the system concentrations
ven when no prior information regarding the system state is available.
hat is, the observer initial conditions may be arbitrarily far from
he real ones without affecting the stability and convergence of the
lgorithm. In addition, there is no side information regarding the VFB
evel of imbalance, e.g., the overall average oxidation state of the

ystem is unknown.
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3.2. Observability study: additional sensors justification

Prior to any observer design, it is crucial to analyse if the estimation
problem formulated in Section 3.1 is actually solvable. More precisely,
we need to study if the measured signal, 𝑦, contains enough information
to infer the values of the unmeasured concentrations. In the control
community, this process is known as an observability analysis.

Previous results have proven that just using the open-circuit voltage
results insufficient to achieve full observability (Jienkulsawad et al.,
2020; Yu et al., 2014). More precisely, in Puleston et al. (2023), it has
been shown that this is because every trajectory in the output voltage
could correspond to four different (non-converging) trajectories in the
concentrations space, thus making the system non-observable.

In this work, we propose to overcome this limitation with the inclu-
sion of two reference electrodes that allow to have independent voltage
measurements for each side of the system. Consequently, the traditional
OCV measurement is replaced by two half-cell voltage measurements,
each responsive to a single vanadium couple (Haisch et al., 2020; Nolte
et al., 2021). Specifically, the voltage measurement corresponding to
the negative side of the system will be sensitive only to the concentra-
tions of 𝑉 2+ and 𝑉 3+ while the one of the positive side will be sensitive
to the concentrations of 𝑉 4+ and 𝑉 5+. To obtain these measurements,
an auxiliary cell is connected to the outlet of each electrolyte tank. Each
auxiliary cell is equipped with two electrodes: a reference electrode
(such as Ag/AgCl or Hg/HgSO4) with a constant potential; and a glassy
carbon rod that is exposed to the vanadium electrolyte, as working
electrode. The potential difference between the working and reference
electrode constitutes the so-called half cell voltage. Note that, since
reference electrodes may suffer from some potential drift after extended
operation, it is recommended to periodically recalibrate them to main-
tain accurate potential values (Ressel et al., 2018). As anticipated in
Section 2, a schematic representation of the proposed setup, based on
the configuration described in Haisch et al. (2020), is shown in Fig. 1.

Accordingly, the measured voltages between the reference and
working electrodes will be (Nolte et al., 2021; Haisch et al., 2020):

Negative side: 𝐸𝑛𝑒𝑔 =𝐸0
𝑛𝑒𝑔 +

𝑅𝑇
𝐹

ln
( 𝑐𝑡3
𝑐𝑡2

𝛾3
𝛾2

)

(8a)

Positive side: 𝐸𝑝𝑜𝑠 =𝐸0
𝑝𝑜𝑠 +

𝑅𝑇
𝐹

ln
( 𝑐𝑡5𝑐

2
𝐻

𝑐𝑡4

𝛾5𝛾2𝐻
𝛾4

)

, (8b)

where 𝐸0
𝑛𝑒𝑔 and 𝐸0

𝑝𝑜𝑠 are the standard potentials of the working elec-
trode against the reference electrodes in the positive and negative side
of the system, respectively, and 𝛾𝑖 are the activity coefficient of species
𝑖. Combining the activity coefficients with the standard potentials, the
formal potentials 𝐸𝜃

𝑛𝑒𝑔 and 𝐸𝜃
𝑝𝑜𝑠 are obtained (Li et al., 2021; Haisch

et al., 2020). Then, subtracting from (8) all the constant terms and
rearranging, the following auxiliary outputs can be derived:

Negative side: 𝑦̄1 = − 𝐹
𝑅𝑇

(𝐸𝑛𝑒𝑔 − 𝐸𝜃
𝑛𝑒𝑔) = ln

( 𝑐𝑡2
𝑐𝑡3

)

(9a)

ositive side: 𝑦̄2 =
𝐹
𝑅𝑇

(𝐸𝑝𝑜𝑠 − 𝐸𝜃
𝑝𝑜𝑠) = ln

( 𝑐𝑡5
𝑐𝑡4

)

. (9b)

ote that for obtaining (9b), the 𝐻+ concentration is assumed to be
pproximately constant and hence lumped with the formal potential
𝜃
𝑝𝑜𝑠. This is a typical assumption in the literature, given the initially
igh acid concentration in the electrolyte (Clemente et al., 2023; Zhang
t al., 2015; Yu et al., 2014).

In the following, we will show that by using half-cell measurements
e recover the observability of the system. We remark that observabil-

ty analysis of a high-order system is very complex in nonlinear systems
iven the lack of a systematic procedure for doing so. In this case,
he observability can be studied for a simplified version of the model,
ssuming that the flow rate is sufficiently large to equalise the tanks and
ells concentrations and that the side reaction dynamics are negligible
5

n short time periods (𝐀𝟐 = 𝟎). We can make such an assumption since
ven in those cases when the ‘‘very high flow rate condition’’ is not
atisfied, the tanks-cells dynamics are stable. This is, the observability
f the simplified model (10) implies, at least, the detectability of the
omplete model (6). More details on this stability of the tank-cells
ynamics can be found in Section 4.1. More precisely, under high flow
ates assumption, the VFB model reduces to:

̇̄𝐱 ∶= 𝑓 (𝐱̄) = 𝐛𝐼 (10a)

𝑦̄1 ∶= ℎ1(𝐱̄) = ln
(

𝑥̄1
𝑥̄2

)

(10b)

𝑦̄2 ∶= ℎ2(𝐱̄) = ln
(

𝑥̄4
𝑥̄3

)

, (10c)

where 𝐱̄ = [𝑥̄1 𝑥̄2 𝑥̄3 𝑥̄4]⊤ = [𝑐2 𝑐3 𝑐4 𝑐5]⊤, 𝐛 = [𝑘 − 𝑘 − 𝑘 𝑘]⊤,
with 𝑘 = 𝑚

𝐹 (𝑣𝑡+𝑚𝑣𝑐 )
. By looking at (10), it can be appreciated that

the ratio between the vanadium species in each side of the system
can be obtained directly by computing the exponential of the outputs
𝑦̄1 and 𝑦̄2. Nevertheless, because of crossover and other undesired
phenomena, the total concentration of vanadium may change after
extended operation. Therefore, determining the absolute concentration
of individual vanadium species based solely on a single instance of
these measurements is unfeasible (Neyhouse et al., 2021; Jienkulsawad
et al., 2020). On the contrary, designing an observer that utilises the
full trajectory of the signals 𝑦̄1 and 𝑦̄2 ends up being a much more robust
solution.

The observability of the system (10) can be evaluated by means of
the observability map, i.e., the vector of successive time derivatives of
the outputs, up to the order 𝜎 (Hermann and Krener, 1977). Since we
have two outputs and four states, it is sufficient to compute only the
first order derivative for each of the outputs (𝜎 = 1), as follows:

𝑂(𝐱̄) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦̄1
̇̄𝑦1
𝑦̄2
̇̄𝑦2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ln(𝑥̄1) − ln(𝑥̄2)
𝑘𝐼
𝑥̄1

+ 𝑘𝐼
𝑥̄2

ln(𝑥̄4) − ln(𝑥̄3)
𝑘𝐼
𝑥̄4

+ 𝑘𝐼
𝑥̄3

⎤

⎥

⎥

⎥

⎥

⎦

. (11)

If the observability map (11) is injective, then, the system (10) will be
observable (Hermann and Krener, 1977). Indeed, the Jacobian matrix
for 𝑂(𝐱̄) is:

𝐽 (𝐱̄) ∶= 𝜕𝑂(𝐱̄)
𝜕𝐱̄

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑥̄1

− 1
𝑥̄2

0 0

− 𝑘𝐼
𝑥̄21

− 𝑘𝐼
𝑥̄22

0 0

0 0 − 1
𝑥̄3

1
𝑥̄4

0 0 − 𝑘𝐼
𝑥̄23

− 𝑘𝐼
𝑥̄24

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

Then, if the Jacobian matrix 𝐽 (𝐱̄) is full rank, the observability map
11) is injective. Specifically, the determinant of (12) is

et(𝐽 (𝐱̄)) = −(𝑘𝐼)2
𝑥̄1𝑥̄3 + 𝑥̄1𝑥̄4 + 𝑥̄2𝑥̄3 + 𝑥̄2𝑥̄4

𝑥̄21 𝑥̄
2
2 𝑥̄

2
3 𝑥̄

2
4

. (13)

Since the concentrations must be positive (𝐱̄ > 0), it will hold that
Det(𝐽 (𝐱̄)) ≠ 0 as long as 𝐼 ≠ 0. Therefore, the observability map (11)
is injective and the system (10) will be observable as long as 𝐼 ≠ 0.
Conversely, it will become non-observable when 𝐼 = 0.

In summary, by means of the half-cell measurements and from
the theoretical point of view, it will be possible to reconstruct the
concentrations state as long as the current is non-zero. On the contrary,
by just using the open-circuit voltage as the measured signal it is not
possible to uniquely reconstruct the concentrations state.

4. Methodology

This section presents the methodology for designing the proposed
observer to meet the objectives established in Section 3. The measured
outputs that drive the estimation process are the half-cell voltage
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𝜇

𝜇

Fig. 2. Schematic flowchart of the designed observer. The algorithm utilises the current, flow rates and half-cell voltages as inputs, and provides estimates of the concentrations
in tanks and cells of the four vanadium species.
𝜇

𝜇

𝜇

𝜇

measurements 𝑦̄1 and 𝑦̄2, as expressed in (9). To facilitate the com-
prehension of this section, an schematic diagram of the proposal is
presented in Fig. 2. We remark that some of the variables and equations
that appear in the figure will be introduced and formulated later over
the course of this section.

4.1. Model rearrangement: cell dynamics separation

The objective of this subsection is to rewrite system (6) in a way that
it decouples tanks and cells dynamics, aiming to obtain a reduced order
model that is more convenient for observer design purposes. To avoid
unnecessary repetition, the detailed procedure followed to make this
separation is explained only for the negative side of the VFB system,
being the procedure for the positive side completely equivalent.

Accordingly, the dynamics for the negative side of the system are:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇1 =
𝑞𝑛
𝑚𝑣𝑐

(𝑥5 − 𝑥1) +
𝐼

𝐹𝑣𝑐
(14a)

𝑥̇2 =
𝑞𝑛
𝑚𝑣𝑐

(𝑥6 − 𝑥2) −
𝐼

𝐹𝑣𝑐
(14b)

𝑥̇5 =
𝑞𝑛
𝑣𝑡
(𝑥1 − 𝑥5) (14c)

𝑥̇6 =
𝑞𝑛
𝑣𝑡
(𝑥6 − 𝑥2) (14d)

To separate the cell and tank dynamics we make the observation
that the dynamics of the difference between cell and tank concentra-
tion is stable. Therefore, we can trivially design an observer for this
difference. We define 𝜇1 ∶= 𝑥1 − 𝑥5, i.e., the difference between 𝑉 2+

concentration in the cells and the tank. Its dynamics are the following:

̇ 1 = 𝑥̇1 − 𝑥̇5 = −𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇1 +
𝐼

𝐹𝑣𝑐
. (15)

Let us consider a trivial observer for 𝜇1 that consists of a copy of its
dynamics, i.e.,:

̇̂
1 = ̇̂𝑥1 − ̇̂𝑥5 = −𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̂1 +
𝐼

𝐹𝑣𝑐
. (16)

Defining the estimation error as 𝜇̃1 ∶= 𝜇1 − 𝜇̂1, the resulting error
dynamics are:

̇̃𝜇1 = 𝜇̇1 − ̇̂𝜇1 =
[

−𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇1 +
𝐼

𝐹𝑣𝑐

]

−
[

−𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̂1 +
𝐼

𝐹𝑣𝑐

]

=

= − 𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̃1. (17)

Since 𝑞𝑛, 𝑣𝑐 , 𝑣𝑡 > 0, Eq. (17) corresponds to a stable dynamic,1 which
implies that the error in the estimation of 𝜇1 will converge to zero

1 In the case of a varying 𝑞𝑛(𝑡), (17) results in a LTV system, whose stability
condition is lim ∫ 𝑡 𝑞 (𝑠)𝑑𝑠 = ∞. Since, the flow rate must be kept high
6

𝑡→∞ 0 𝑛
regardless of the initial guess for 𝜇̂1, i.e., lim𝑡→∞ |𝜇1(𝑡) − 𝜇̂1(𝑡)| = 0. In
addition, it can be noted that the electrolyte residence time in the stack
(𝑚𝑣𝑐∕𝑞𝑛) constitutes an upper bound for the time-constant that defines
the convergence rate of (17). Then, since the residence time in the cells
is typically very short (Bogdanov et al., 2023), the convergence time of
(16) will be very fast.

Similarly, we define 𝜇2 ∶= 𝑥2 − 𝑥6, whose dynamics are given by:

𝜇̇2 = 𝑥̇2 − 𝑥̇6 = −𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇2 −
𝐼

𝐹𝑣𝑐
. (18)

Considering for 𝜇2 a trivial observer analogous to (16), and defining
𝜇̃2 ∶= 𝜇2 − 𝜇̂2, the resulting error dynamics are:

̇̃𝜇2 = 𝜇̇2 − ̇̂𝜇2 = −𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̃2. (19)

Again, Eq. (19) implies that the error in the estimation of 𝜇2 will
also converge to zero regardless of the initial guess for 𝜇̂2, i.e., lim𝑡→∞
|𝜇2(𝑡) − 𝜇̂2(𝑡)| = 0. Additionally, it holds that if 𝜇̂2(0) = −𝜇̂1(0), then
̂2(𝑡) = −𝜇̂1(𝑡) for all time 𝑡 ≥ 0 (see the proof in Appendix A).
Therefore, imposing 𝜇̂2(0) = −𝜇̂1(0), a single variable can be defined
̂𝑛 ∶= 𝜇̂1 = −𝜇̂2. That is, we can design an observer for 𝜇1 and 𝜇2 as

̇̂
𝑛 = −𝑞𝑛

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̂𝑛 +
𝐼

𝐹𝑣𝑐
, 𝜇̂1 = 𝜇̂𝑛, 𝜇̂2 = −𝜇̂𝑛. (20)

As anticipated, the existing symmetry in the VFB model allows to
follow the same procedure for the positive side of the system, resulting
in an equivalent set of equations. The observer for 𝜇𝑝 results:

̇̂
𝑝 = −𝑞𝑝

(

1
𝑚𝑣𝑐

+ 1
𝑣𝑡

)

𝜇̂𝑝 +
𝐼

𝐹𝑣𝑐
, 𝜇̂3 = −𝜇̂𝑝, 𝜇̂4 = 𝜇̂𝑝. (21)

Consequently, the tanks concentration dynamics can be expressed
in terms of 𝜇𝑛 and 𝜇𝑝 as follows:

𝐱̇𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̇5
𝑥̇6
𝑥̇7
𝑥̇8

⎤

⎥

⎥

⎥

⎥

⎦

= 1
𝑣𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑞𝑛 𝜇1
𝑞𝑛 𝜇2
𝑞𝑝 𝜇3
𝑞𝑝 𝜇4

⎤

⎥

⎥

⎥

⎥

⎦

= 1
𝑣𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑞𝑛 𝜇𝑛
−𝑞𝑛 𝜇𝑛
−𝑞𝑝 𝜇𝑝
𝑞𝑝 𝜇𝑝

⎤

⎥

⎥

⎥

⎥

⎦

. (22)

In summary, the procedure followed in this subsection has allowed
to transform the tanks dynamics into a function of the variables 𝜇𝑛 and
𝜇𝑝 which are, initially unknown, but can be accurately estimated by
means of (20) and (21). Therefore, it is possible to consider 𝜇𝑛 and 𝜇𝑝
as known inputs and, accordingly, design an observer only for the tanks
concentrations, as will be done in the following subsections. As for the
cell concentrations, once the estimates for the tanks concentrations are

enough and positive to provide the stack of enough reactants to sustain the
electrochemical reaction, this condition will be satisfied in every practical
application.
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available, they can be directly obtained from:

𝐱̂𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̂1
𝑥̂2
𝑥̂3
𝑥̂4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥̂5 + 𝜇̂𝑛
𝑥̂6 − 𝜇̂𝑛
𝑥̂7 − 𝜇̂𝑝
𝑥̂8 + 𝜇̂𝑝

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

4.2. Model rearrangement: coordinates change

The procedure followed in the previous subsection has substantially
improved the structure of the observation problem by eliminating the
explicit dependence of the tanks dynamics on the cell concentrations, as
appreciated in (22). In this section, we propose a coordinate change to
bring the system (22) into a more convenient form for observer design.
The objective of this transformation is twofold. Firstly, it resolves
the numerical and stability issues that may occur when the original
states approach zero. Effectively, when the reactant concentrations
tend to zero, the fractional terms of (12) tend to infinity, resulting
in a nearly singular Jacobian matrix. Secondly, it brings the system
dynamics into a triangular form which is well-suited for the design of
an observer (Bernard et al., 2022).

For simplicity, we rewrite (22) by defining 𝐮 ∶= [𝑢𝑛 , 𝑢𝑝]⊤ ∶=
[ 𝑞𝑛𝑣𝑡

𝜇𝑛 ,
𝑞𝑝
𝑣𝑡
𝜇𝑝]⊤, and we eliminate the logarithms from the outputs by

mposing [𝑦1 𝑦2] ∶= [𝑒𝑦1 𝑒𝑦2 ]. Then, the resulting tanks dynamics are:

𝐱̇𝐭 = [𝑢𝑛 − 𝑢𝑛 − 𝑢𝑝 𝑢𝑝]⊤ (24a)

𝑦1 =
𝑥5
𝑥6

(24b)

𝑦2 =
𝑥8
𝑥7

(24c)

Taking the concentration ratios and the inverse of the total vana-
ium concentration in each side of the system as new states, the
ollowing transformation is defined:

∶= 𝛷(𝐱𝐭 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥5
𝑥6
1

𝑥5+𝑥6𝑥8
𝑥7
1

𝑥7+𝑥8

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

The inverse transformation results:

𝐱𝐭 ∶= 𝛷−1(𝐳) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1
𝑧2(1+𝑧1)

1
𝑧2(1+𝑧1)

1
𝑧4(1+𝑧3)𝑧3
𝑧4(1+𝑧3)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

The dynamics of the transformed system are:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐳̇ ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3
𝑧4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐟 (𝐳,𝐮) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑛𝑧2(1 + 𝑧1)2

0
𝑢𝑝𝑧4(1 + 𝑧3)2

0

⎤

⎥

⎥

⎥

⎥

⎦

(27a)

𝑦1 = 𝑧1 (27b)

𝑦2 = 𝑧3 (27c)

Working on the new 𝐳 coordinates in (27) presents a set of ad-
vantages relative to the original coordinates in (22). First, it is made
explicit there is a time-scale separation between the total vanadium
concentration in each side of the VFB and the concentration ratio,
since 𝑧̇2 = 𝑧̇4 = 0. Second, in the new coordinates, the measured
output is linear. This fact is crucial to simplify the observer design
process (Bernard et al., 2022). Finally, the state estimation problem be-
comes well-posed in the new coordinates. More precisely, the Jacobian
7

of the observability map in these new coordinates is:

𝐽 (𝐳) =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
2𝑢𝑛(1 + 𝑧1)𝑧2 𝑢𝑛(1 + 𝑧1)2 0 0

0 0 1 0
0 0 2𝑢𝑝(1 + 𝑧3)𝑧4 𝑢𝑝(1 + 𝑧3)2

⎤

⎥

⎥

⎥

⎥

⎦

, (28)

which no longer loses rank when 𝑧𝑖 → 0. Therefore, since 𝑧𝑖 > 0 we
ow have a well-posed estimation problem for any value of the VFB
tate and observer state.

We highlight that we can still lose rank when 𝐼 = 0. Indeed,
hanging the coordinates cannot modify the fact that the system is
ot observable when 𝐼 = 0, nonetheless, it can make the estimation
roblem well-posed from a numerical point of view.

.3. Observer dynamics

The following observer is proposed for the system (27):

̇̂ = 𝐟 (𝐳̂,𝐮) + 𝑔(𝐳̂, 𝐲,𝐮) +𝐌(𝐳̂), (29)

here 𝐟 (𝐳̂,𝐮) is a copy of the system dynamics presented in (27a),
(𝐳̂, 𝐲,𝐮) is the correction term, and 𝐌(𝐳̂) is a factor that modifies the
bserver dynamics to preserve the estimates in a predefined set (Astolfi
t al., 2022). The detailed proof of the observer global stability is
vailable in Appendix B.

The expression for the correction term is the following:

(𝐳̂, 𝐲,𝐮) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑙𝜆1,𝑛[𝑦1 − 𝑧̂1]
𝑙𝜆2,𝑛(𝑢𝑛)[𝑦1 − 𝑧̂1]
𝑙𝜆1,𝑝[𝑦2 − 𝑧̂3]

𝑙𝜆2,𝑝𝜆2,𝑛(𝑢𝑝)[𝑦2 − 𝑧̂3]

⎤

⎥

⎥

⎥

⎥

⎦

, (30)

where 𝑙 is a large enough positive constant (𝑙 ≥ 1); 𝜆1,𝑗 > 3𝑢̄(1 + 𝑧̄1)2,
where 𝑢̄𝑗 is an upper bound for the input amplitude, 𝑧̄𝑗 is an upper
ound for the concentration ratios, and 𝜆2,𝑗 (𝑢𝑗 ) = 𝜆1,𝑗 sgn(𝑢𝑗 ), with

𝑗 ∈ {𝑛, 𝑝}.
The expression for the factor 𝐌(𝐳̂) is:

(𝐳̂) = −𝛾𝐏−1(𝐮) 𝜕 𝐫(𝐳̂)
𝜕 𝐳̂

𝐫(𝐳̂), (31)

here 𝛾 is a large enough positive constant; 𝐫(𝐳̂) = [𝑟1 𝑟2 𝑟3 𝑟4]⊤, being
𝑟𝑖 = (max{𝑧𝑖 − 𝑧̂𝑖 ; 0})2 + (max{𝑧̂𝑖 − 𝑧𝑖 ; 0})2, with 𝑧𝑖 and 𝑧𝑖 predefined
lower and upper bounds for 𝑧𝑖, based on physics constraints; and 𝐏(𝐮)
is the matrix:

𝐏(𝐮) =

⎡

⎢

⎢

⎢

⎢

⎣

8 −sgn(𝑢𝑛) 0 0
−sgn(𝑢𝑛) 1 0 0

0 0 8 −sgn(𝑢𝑝)
0 0 −sgn(𝑢𝑝) 1

⎤

⎥

⎥

⎥

⎥

⎦

. (32)

In the proposed observer, the correction term (30) guarantees the
convergence of the estimated states, 𝐳̂, to the real ones, 𝐳, regardless
of the observer initial condition. Since the observer operates in the 𝐳-
coordinates, the vanadium species concentrations are reconstructed by
means of the inverse transformation (26), 𝐱̂𝐭 = 𝛷−1(𝐳̂). On the other
hand, the factor 𝐌(𝐳̂), allows to apply the physical knowledge of the
system. By imposing realistic constraints to the concentration’s ratio
and the total concentration, the transient behaviour of the algorithm is
significantly enhanced. Specifically, the convergence of the algorithm is
accelerated, and the possibility of obtaining estimates lacking physical
sense, such as a negative concentration, is eliminated. It is important
to highlight that, unlike just saturating the states of the observer, the
factor 𝐌(𝐳̂) is integrated within the dynamics of the observer and,
consequently, does not negatively affect the convergence, stability and
robustness of the algorithm (Astolfi et al., 2022).

Furthermore, it is possible to show that when the system is in a
non-observable region (i.e., for 𝐮 = 0), the observer estimation will not

̂
diverge. To see this fact, notice that by taking 𝐮 = 0 and 𝐌(𝐳) = 𝟎, the
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dynamics for the system (27) are given by 𝐳̇ = [0 0 0 0]⊤. Coherently,
(29) becomes

̇̂𝐳 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆1,𝑛(𝑧1 − 𝑧̂1)
0

𝜆1,𝑝(𝑧3 − 𝑧̂3)
0

⎤

⎥

⎥

⎥

⎥

⎦

. (33)

he estimation error (𝐳̃ ∶= 𝐳 − 𝐳̂) dynamics result:

̇̃ = 𝐳̇ − ̇̂𝐳 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝜆1,𝑛𝑧̃1
0

−𝜆1,𝑝𝑧̃3
0

⎤

⎥

⎥

⎥

⎥

⎦

, (34)

hich implies that for 𝐮 = 0, the estimation error for 𝑧1 and 𝑧3 will
ecrease, while the error for 𝑧2 and 𝑧4 will remain constant, without
iverging or causing stability issues for the observer. Eventually, when
ceases to be equal to zero, the convergence of the algorithm will

esume.

.4. Proposal summary

The steps involved in reconstructing the eight concentrations of the
FB system are outlined as follows (see Fig. 2):

1. The difference between tanks and cells concentrations, 𝜇𝑛 and
𝜇𝑝, is estimated from current and flow rate measurements, by
means of Eqs. (20) and (21).

2. The vanadium species concentration ratio and the inverse of
the total concentration in each side of the system is estimated
with the observer (29). To generate the estimates 𝐳̂, the observer
utilises 𝜇̂𝑛, 𝜇̂𝑝, 𝑞𝑛, 𝑞𝑝, 𝐼 , and the measured half-cell voltages as
inputs.

3. The tanks concentrations are reconstructed by computing the
inverse transformation (26): 𝐱̂𝐭 = 𝛷−1(𝐳̂).

4. The cell concentrations 𝐱̂𝐜 are reconstructed from 𝜇̂𝑛, 𝜇̂𝑝 and the
tanks concentrations using (23).

The tuning of the observer is simple and intuitive, since it requires
reduced number of parameters with a clear physical interpretation.

hese parameters are:

• 𝑙 > 1 and 𝛾 > 1, sufficiently large positive constants.
• 𝑢̄, an upper bound for the input amplitude (𝑢̄ > |𝑢|). It can

be interpreted as the maximum rate of variation for the tanks
concentrations, and can be approximated in terms of an upper
bound for the current: 𝑢̄ > 𝑚|𝐼|

𝐹 (𝑣𝑡+𝑚𝑣𝑐 )
.

• 𝜆1,𝑗 and 𝜆2,𝑗 , correction term gains defined as 𝜆1,𝑗 > 3𝑢̄(1 + 𝑧̄1)2,
𝜆2,𝑗 (𝑢𝑗 ) = 𝜆1,𝑗 sgn(𝑢𝑗 ), with 𝑢 = 𝑞𝑗

𝑣𝑡
𝜇𝑗 and 𝑗 ∈ {𝑛, 𝑝}.

• The factors 𝑧𝑖 and 𝑧𝑖 from (31), predefined lower and upper
bounds for 𝑧𝑖, based on physics constraints. For instance, for
the concentrations ratios 𝑧1 and 𝑧3 a minimum and maximum
limits of 0.05 and 20, respectively, could be set. On the other
hand, for the total vanadium concentration, it can be assumed
that the crossover can produce, at most, a change of a 50% with
respect to the original vanadium concentration 𝑐𝑣0 , resulting in
𝑧2 = 𝑧4 =

1
1.5𝑐𝑣0

and 𝑧2 = 𝑧4 =
1

0.5𝑐𝑣0
.

5. Results and discussion

This section presents a series of comprehensive simulations to il-
lustrate the functioning of the proposed observer and assess its per-
formance. The first set of simulations is intended to demonstrate the
steps followed by the observer to reconstruct the complete concen-
trations state 𝐱, in a typical charge–discharge cycling operation. In
the following set, some particular cases are considered to highlight
the observer capabilities dealing with challenging conditions, which
8

Table 1
VFB parameters. Coefficients 𝑘𝑖 are taken from Cecchetti et al. (2023).

Parameter Meaning Value Units

𝑐𝑣0 Original vanadium concentration 1.6 mol l−1

𝑑 Membrane thickness 4 ⋅ 10−4 m
𝐹 Faraday constant 96 500 A s mol−1

𝑘2 Permeability of 𝑉 2+ 1.30 ⋅ 10−11 m2s−1

𝑘3 Permeability of 𝑉 3+ 1.25 ⋅ 10−11 m2s−1

𝑘4 Permeability of 𝑉 4+ 3.81 ⋅ 10−12 m2s−1

𝑘5 Permeability of 𝑉 5+ 3.10 ⋅ 10−12 m2s−1

𝑘𝑜𝑥 Oxidation rate of 𝑉 2+ 3.1 ⋅ 10−7 m3s−1

𝑚 Number of cells 6 –
𝑆 Membrane area 2.5 ⋅ 10−2 m2

𝑇 Temperature 298 K
𝑣𝑡 Tank volume 4.8 l
𝑣𝑐 Half-cell volume 0.0026 l

Table 2
Observer parameters.

Parameter Meaning Value Units

𝑙 Correction term parameter 5 –
𝛾 Flow redesign parameter 30 –
𝑢̄ Upper bound for |𝑢| 5 ⋅ 10−4 mol l−1s−1

𝑧1 (𝑧3) Lower bound for 𝑧1 and 𝑧3 0.05 –
𝑧1 (𝑧3) Upper bound for 𝑧1 and 𝑧3 20 –
𝑧2 (𝑧4) Lower bound for 𝑧2 and 𝑧4 0.41 l mol−1

𝑧2 (𝑧4) Upper bound for 𝑧2 and 𝑧4 1.25 l mol−1

include a varying flow rate and intervals of zero current. Finally, the
importance of counting with reliable online concentrations estimates
is exemplified with its use for determining the system’s SoC and level
of imbalance, and subsequently for the development of a flow rate
modulation strategy.

To conduct the tests, the complete model presented in Eq. (6), which
incorporates crossover and oxidation side reactions, is used as ground
truth for simulating the real plant. Moreover, to assess the algorithm
under realistic conditions, additive white noise with a peak-to-peak
amplitude of a 1% of each signal is included in both voltages and
current measures.

The sizing and physicochemical parameters of the VFB under study
are presented in Table 1.

5.1. Concentrations state reconstruction

The first test comprises three successive charge–discharge cycles,
with a State of Charge ranging from 15 to 85%. To assess the robustness
of the observer under different current levels, its amplitude is set at 12
A (48 mA/cm2) in the first cycle, 24 A (96 mA/cm2) in the second cycle,
and 50 A (200 mA/cm2) in the third cycle, as representatives of a low,
intermediate and high current density, respectively. The flow rate is set
at 7.2 ml/s, 14.4 ml/s, and 30 ml/s, respectively. The initial concentra-
tions of the system are 𝐱0 = [0.4 0.7 0.55 1.25 0.7 0.7 0.55 1.25]⊤, which
represents a highly imbalanced condition, where the total vanadium
concentration is 1.4 mol/l and 1.8 mol/l in the negative and positive
side, respectively. To test the ability of the observer to converge with-
out using previous information, its states are initialised very far from
the real concentrations, with 𝐱̂0 = [1.2 1.2 1.2 1.2 0.4 0.4 0.4 0.4]⊤.
The observer is tuned following the steps summarised in Section 4.4,
resulting in the parameters values presented in Table 2.

Fig. 3 depicts the complete procedure followed to reconstruct all
the concentrations in the system. Firstly, Fig. 3a shows the estimation
of the difference between tanks and cells concentrations, 𝜇, which is
obtained by means of (20) (step 1 of Section 4.4).2 Note that, after

2 Since the flow rate in both sides of the system is the same, the estimates
𝜇̂ and 𝜇̂ will be equal and, consequently, are represented as a single 𝜇̂.
𝑛 𝑝
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Fig. 3. Comparison between real and estimated states, in the different steps that compose the observer. (a) Tanks-Cells concentration difference (𝜇), together with the current
profile. (b) States of the metric-based observer (𝐳). (c) Tank and cell concentrations in the negative side of the system (𝑐2 and 𝑐3). (d) Tank and cell concentrations in the positive
side of the system (𝑐4 and 𝑐5).
a very short convergence time, the estimated 𝜇̂ converges to the real
𝜇, and accurately tracks it throughout the complete simulation period.
During charge operation (𝐼 > 0), 𝜇 has a positive steady value,
indicating that, as a consequence of the electrochemical reactions, the
concentrations of 𝑉 2+ and 𝑉 5+ in the cells are higher than in the tanks,
while the concentrations of 𝑉 3+ and 𝑉 4+ are lower. Consistently, the
opposite behaviour is observed during the discharge operation (𝐼 < 0).
Fig. 3b shows the outputs generated by the main observer (29), which
employs the estimated 𝜇̂ together with the current, voltages and flow
rate measurements, to provide estimates of the transformed states, 𝐳
(step 2 of Section 4.4). The estimated states take approximately 1200 s
to converge to the real states, and accurately track them throughout
the remainder of the test. This result is highly satisfactory, since no
information regarding the initial imbalance of the system was available
to the observer at the beginning of the simulation.

Finally, Figs. 3c and 3d show the reconstruction of the concen-
trations of the vanadium species present in the positive and negative
side of the system, respectively. These are obtained by computing the
inverse transformation from the 𝐳̂ states (steps 3 and 4 of Section 4.4).
As expected, the convergence of 𝐱̂ is attained at the same time as 𝐳̂,
given the direct relation between these two coordinates. After that
transient, the estimated concentrations very accurately track the real
ones, with a mean relative error below 1%. It should be highlighted
9

that, even in the initial transient, the estimated concentrations remain
within a realistic range. This is because of the inclusion of the flow
redesign factor 𝐌 in the observer, which prevents the states from reach-
ing unrealistic values, such as negative concentrations or extremely
high concentrations. This modification allows to preserve the numerical
stability of the observer independently from the initial condition.

As outlined in Section 4, a notable advantage of the developed
observer is that it does not require prior information regarding the
system state. i.e., that the estimated initial conditions 𝐱̂0 can be far from
the real ones without compromising its stability and convergence. This
property proves particularly significant for the studied system, where
obtaining accurate initial conditions information is often impractical
or impossible. The importance of this property is further analysed in
Fig. 4. In that figure, the performance of the developed observer is
compared with a classic EKF (Bernard et al., 2021). The structure of
the EKF algorithm used in this demonstration is:

̇̂𝐱 = 𝐟 (𝐱̂, 𝐼, 𝑞) + 𝐏 𝜕𝐡
𝜕𝐱

(𝐱̂)⊤𝐑−1(𝑦 − 𝐡(𝐱̂)) (35a)

𝐏̇ = −𝛽𝐏 + 𝜕𝐟
𝜕𝐱

(𝐱̂, 𝐼, 𝑞)𝐏 + 𝐏 𝜕𝐟
𝜕𝐱

(𝐱̂, 𝐼, 𝑞)⊤ − 𝐏 𝜕𝐡
𝜕𝐱

(𝐱̂)⊤𝐑−𝟏 𝜕𝐡
𝜕𝐱

(𝐱̂)𝐏, (35b)

with 𝛽 = 0.003, 𝐑−𝟏 = 0.5 ⋅ 𝐈𝟐 and 𝐏𝟎 = 1.2 ⋅ 𝐈𝟖
Fig. 4a displays the estimated concentrations in the negative side of

the system when the initial estimation states are placed close to the real
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Fig. 4. Comparison between the performance of the observer designed in this paper and a classical EKF (estimates provided by the EKF are indicated with the superscript ‘‘∗’’)(a)
Close initial conditions (b) Far initial conditions (c) Relative estimation error of 𝑐𝑐2 , in cases (a) and (b).
states: 𝐱̂0 = [0.46 0.75 0.6 1.2 0.75 0.75 0.6 1.2]⊤. It can be appreciated
that both observers are able to converge to the real concentrations after
a certain transient period, although this convergence is slower in the
case of the estimates provided by the EKF (indicated in the figure with
the superscript ‘‘∗’’). On the other hand, in Fig. 4b it is shown the
estimation when the initial estimates are placed far from the real states:
𝐱̂0 = [1 1 1 1 1 1 1 1]⊤, which corresponds to a situation in which no
prior information is available. In the case of the observer developed
in this paper, the only effect of this far initialisation is to extend the
initial transient, without affecting its stability and performance. In
contrast, the same initial conditions lead to a complete failure of the
EKF algorithm, which is unable to converge to the real concentrations.
Finally, the comparison between the relative estimation error for 𝑐𝑐2 in
these two situations is displayed in Fig. 4c.

It should be remarked that there may exist a different set of pa-
rameters for the EKF that result in a better performance. However,
there is not a systematic procedure to obtain those parameters and,
furthermore, the stability issues when the initialisation is far from the
real state cannot be eliminated through any parameter tuning.

5.2. Varying conditions test

The second set of simulations is designed to test the capacity of
the observer to deal with more challenging conditions, which include
intervals of zero current, a fluctuating flow rate, and a varying load
profile. To this end, the simulation has been divided into three parts,
to cover all these possible situations. To facilitate the comprehension
of this section and avoid the need of excessively lengthy discussion, the
analysis will be focused on the estimation of 𝑐𝑡2 and 𝑐𝑐2 .

The first part of the test covers the initial 2800 s of the simulation
and consists of a charge/discharge operation with an intermittent
current (see Fig. 5a). This is, in principle, a delicate condition from
10
the theoretical point of view, given the non-observability of the system
when the current approaches zero. However, as anticipated in Sec-
tion 4.3, the algorithm is able to converge, since the error reduces when
the current is different from zero, and the estimation error is constant
while 𝐼 is equal to 0. In Fig. 5b, it can be appreciated that the tanks
and cells concentrations tend to equalise when the current is equal to
0, and separate again when the battery is being charged or discharged.
In both situations, the concentrations are successfully estimated by the
observer, with a relative error remaining below 1.9% after the initial
transient (see Fig. 5c).

In the second part of the simulation, the battery is operated with
a constant current and a fluctuating flow rate, which ranges from 12
ml/s to 36 ml/s (see Fig. 5a). In Fig. 5b it can be noted that, when the
flow rate is high (e.g., at 𝑡 = 3000 s), the reactant supply largely exceeds
the consumption of the electrochemical reactions, hence there is little
difference between tank and cell concentrations. On the contrary, when
the flow rate is low (e.g., at 𝑡 = 3500 s), the difference between tank
and cell concentrations becomes much more important. In any case,
the observer is able to successfully deal with this varying flow rate,
and maintain the estimation error below 1% during this part of the
simulation.

Finally, a continuously varying current profile is considered. This
case has a particular practical significance, given that this type of varia-
tions can be found in a wide range of applications, such as in microgrids
based on renewable energy sources. In spite of these demanding con-
ditions, the performance of the observer is highly satisfactory, showing
no loss of accuracy when compared to the constant current case.

5.3. Flow rate optimisation strategy

As previously discussed, estimating the vanadium species concen-
trations is not only essential to monitor the VFB status and planning
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Fig. 5. Results under highly varying operating conditions. (a) Current and flow rate profiles. (b) Estimation of the evolution of 𝑐𝑐2 and 𝑐𝑡2. (c) Relative estimation error.
its operation, but also to develop improved control and optimisation
strategies to enhance the battery’s performance. In this subsection, we
illustrate the importance of this latter aspect by proposing a flow rate
regulation strategy that considers the electrolyte imbalance.

In general, flow rate modulation strategies aim to minimise the
total energy losses by adapting 𝑞 to the power demand and the SoC
(Guarnieri et al., 2020; König et al., 2016). In a balanced VFB, the
SoC is defined as the fraction of vanadium ‘‘charged species’’(𝑉 2+ and
𝑉 5+), with respect to the total concentration, as follows (Puleston et al.,
2022):

SoC =
𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2

𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2 + 𝑣𝑡 𝑐𝑡3 + 𝑚𝑣𝑐𝑐𝑐3
=

𝑣𝑡 𝑐𝑡5 + 𝑚𝑣𝑐𝑐𝑐5
𝑣𝑡 𝑐𝑡4 + 𝑚𝑣𝑐𝑐𝑐4 + 𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2

(36)

However, when the VFB suffers from electrolyte imbalance, Eq. (36)
is no longer valid, and it becomes necessary to define a individual SoC
for each side of the system:

At the negative side: SoCn =
𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2

𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2 + 𝑣𝑡 𝑐𝑡3 + 𝑚𝑣𝑐𝑐𝑐3
(37)

At the positive side: SoCp =
𝑣𝑡 𝑐𝑡5 + 𝑚𝑣𝑐𝑐𝑐5

𝑣𝑡 𝑐𝑡4 + 𝑚𝑣𝑐𝑐𝑐4 + 𝑣𝑡 𝑐𝑡2 + 𝑚𝑣𝑐𝑐𝑐2
(38)

The theoretical minimum flow of electrolyte (𝑞𝑚𝑖𝑛) is such that it
provides the cells with a reactant supply that is exactly the same as the
consumption of the electrochemical reactions:

𝑞𝑚𝑖𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝐼
𝐹 (1 − SoC)𝑐𝑣0

for charging (39a)

𝑚|𝐼|
𝐹 SoC 𝑐𝑣0

for discharging (39b)

In practice, however, a higher supply is required to guarantee
that enough reactant will reach the electrodes active sites, as well as
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to reduce concentration overpotentials and minimise the risk of side
reactions such as hydrogen evolution. Therefore, a ‘‘flow factor’’ 𝛼𝐹
that links the real flow rate (𝑞) with 𝑞𝑚𝑖𝑛 can be defined as follows:
𝛼𝐹 = 𝑞∕𝑞𝑚𝑖𝑛.

If the system is imbalanced, Eq. (39) is still valid, but there will
be a different 𝑞𝑚𝑖𝑛 for each electrolyte. Thus, based on the information
provided by the observer, we propose to regulate independently both
flow rates to adapt it to the existing electrolyte imbalance of the
battery. It should be mentioned that in a real application this strategy
will be combined with a safety layer that, taking into account the
mechanical properties of the cell, will be responsible for preventing
unacceptable pressure differences. For the purposes of this paper, it is
assumed that the system is operating within the safe zone. Succinctly,
the steps of the proposed strategy are:

1. To determine the system concentrations using the observer de-
veloped in Section 4.

2. To compute SoCn and SoCp using the estimated concentrations.
3. To determine the minimum flow rate for each electrolyte by

applying (39). Note that, instead of 𝑐𝑣0 , the actual concentration
of the imbalanced electrolyte must be used.

4. To independently set the flow rate for each electrolyte, applying
the corresponding 𝛼𝐹 . In this paper, a typical value of 𝛼𝐹 =
5 is considered to illustrate the proposal. The development of
enhanced approaches for determining the optimal 𝛼𝐹 is a topic
of interest for future investigation.

Fig. 6 presents the results of applying the proposed flow rate reg-
ulation strategy. Starting from an imbalanced initial condition, the
observer is able to provide reliable estimates of the individual state of
charge of each electrolyte (see Fig. 6a). Fig. 6b shows the resulting flow
rates, determined by applying a flow factor of 5 to the minimum flow
rates calculated with the estimated SoC and SoC . Note that 𝑞 and
n p 𝑛
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Fig. 6. Demonstration of the observer-based flow rate optimisation strategy. (a) Estimation of the individual State of Charge of the positive and negative electrolytes. (b) Flow
rate profiles of the negative (𝑞𝑛) and positive (𝑞𝑝) electrolytes. (c) Comparison between actual and estimated 𝑉 2+ and 𝑉 5+ concentrations in tanks and cells.
𝑞𝑝 can be significantly different, which is due to the fact that, when
imbalanced, the reactant concentration in one electrolyte is in excess
with respect to the one in the other. This difference is more pronounced
by the end of the charge/discharge operations, when a larger flow
rate is needed to compensate the low reactant concentrations. By
adapting 𝑞𝑛 and 𝑞𝑝 to the electrolyte imbalance, the flow rate in the
side with a reactant excess can be set at a lower value without affecting
the electrochemical performance of the battery, hence resulting in a
reduction of the pumping power demand.

Finally, Fig. 6c displays the evolution of the real and estimated 𝑉 2+

and 𝑉 5+ concentrations, both in tanks and cells. It can be appreciated
that when the flow rate is higher, i.e., by the end of the charge and dis-
charge operations, the difference between tanks and cell concentration
becomes lower. Consequently, this strategy based on varying flow rates
allows to operate the battery within a wider SoC window, extending the
actual capacity of the VFB. For instance, if a constant flow rate of 12
ml/s was utilised, 𝑐𝑐2 would have reached a concentration close to 0 at
time 4000 s, thus impeding to continue with the discharge operation.

6. Conclusions

A novel nonlinear observer has been developed for the online esti-
mation of the four active species concentrations present in vanadium
flow batteries. The observer relies only on current, flow rates and half-
cell cell voltage measurements. The proposal distinguishes itself from
previous works in the field by effectively addressing two challenging
and significant conditions simultaneously. On the one hand, it is able
to properly deal with the electrolyte imbalance that typically affect VFB
systems, without requiring previous information regarding the mass
imbalance or the average oxidation state. On the other hand, it allows
to differentiate between tanks and cells concentrations, which becomes
12

particularly relevant when the flow rate cannot be considered ‘‘very
high’’, such as when the flow rate is being controlled to optimise the
battery performance.

Through comprehensive computer simulation, it has been demon-
strated that the observer presents a remarkable robustness to model
uncertainties and measurement noise. Specifically, once the initial tran-
sient has elapsed, it has been able to keep the estimation relative error
below 1.9% even under highly varying operating conditions. Further-
more, it has been theoretically demonstrated and practically validated
that, unlike observer based on model linearisation, the stability and
convergence of the algorithm is not affected by its initial conditions,
which constitutes a key advantage when no prior information regarding
the system state is available. In addition, the algorithm allows the
utilisation of physical constraints, to accelerate the convergence and
keep the estimates within a realistic range, even during the transients.
Lastly, the importance of knowing the individual vanadium species
concentrations has been illustrated with the development of an strategy
to independently regulate the flow rate in each side of the system based
on the estimated state of charge of each electrolyte.

In conclusion, the above mentioned features, together with a simple
parameter tuning and low-cost equipment requirements, results in a
new estimation solution very auspicious for implementation in indus-
trial applications. As future research, the authors are considering to
combine the proposed observer with setups for online estimation of the
side-reaction parameters and overpotential parameters. In addition, an
estimation algorithm for tracking possible variations of the reference
electrodes potentials is being undertaken, in order to circumvent their
recalibration. Further development of interest in the field are, on the
one hand, an in-depth study on the effects of possible non-uniform
composition of the electrolyte’s tanks. On the other, the development of
enhanced control strategies that, based on the information provided by
the observer, would allow not only to optimise the battery efficiency,

but also to minimise its degradation.
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Appendix A. 𝝁 Dynamics symmetry proof

The objective is to prove that 𝜇2(𝑡) asymptotically converges to
−𝜇1(𝑡) regardless of the initial conditions. Furthermore, if 𝜇2(0) =
−𝜇1(0), then 𝜇2(𝑡) = −𝜇1(𝑡) for all 𝑡 ≥ 0.

Taking 𝛼1 ∶= 𝑞𝑛(
1

𝑚𝑣𝑐
+ 1

𝑣𝑡
) and 𝛼2 ∶= 𝐼

𝐹𝑣𝑐
, the dynamics for 𝜇

stimates can be expressed as:
𝜇̇1 = −𝛼1𝜇1 + 𝛼2 (A.1a)

𝜇̇2 = −𝛼1𝜇2 − 𝛼2 (A.1b)

Then, we have that:

̇ 1 + 𝜇̇2 = −𝛼1(𝜇1 + 𝜇2). (A.2)

Separating variables and integrating, we obtain:

𝜇1(𝑡) + 𝜇2(𝑡) = (𝜇1(0) + 𝜇2(0))𝑒−𝛼1𝑡. (A.3)

It is possible to see that, the exponential term of (A.3) will make 𝜇1(𝑡)
and 𝜇2(𝑡) to asymptotically converge to each other, regardless of the
initial conditions 𝜇1(0) and 𝜇2(0). Additionally, if 𝜇2(0) = −𝜇1(0), then
the right-hand side of (A.3) will be equal to zero, which implies that
𝜇2(𝑡) = −𝜇1(𝑡) for all 𝑡 ≥ 0, so that the left hand side is also zero.

Appendix B. Nonlinear observer convergence proof

In this section, we prove the convergence of the observer (29). As a
first remark of the proof, we will show that the observer is stable with
a quadratic Lyapunov function for the case 𝐌(𝐳̂) = 0. The stability for
the case of 𝐌(𝐳̂) being defined as in (31), follows from the fact that the
observer is stable with a quadratic Lyapunov function with the constant
metric 𝐏(𝐮) defined in (32) and the theory presented in Astolfi et al.
(2022).

As a second remark, we will assume 𝑢𝑛 ≠ 0. In Section 4.3, we
already show that, in the case 𝑢 = 0, the estimation error does not
13

𝑛

converge to zero, but remains constant. In this section, we focus in
showing that the estimation error converges to zero if 𝑢𝑛 ≠ 0.

As a final remark, we will focus in only one side of the VFB. Since
the model and the observer are symmetric, the proof for one side is
equivalent to the proof of the other side.

We recall that the model of one side of the VFB is

𝑧̇ =
[

𝑢𝑛𝑧2(1 + 𝑧1)2

0

]

=
[

𝑎(𝑡)𝑧2
0

]

,

where 𝑎(𝑡) ∶= 𝑢𝑛(𝑡)(1+𝑧1(𝑡))2. Notice that here we take 𝑢𝑛(𝑡) and 𝑧1(𝑡) as
time-varying and measurable signals. Since we assumed that 𝑢𝑛 ≠ 0 and,
from the physical constraints of the system, 𝑧1 ≥ 0, we have 𝑎(𝑡) ≠ 0 for
all 𝑡 ≥ 0.

The proposed observer (with 𝐌(𝐳̂) = 0) for this side is

̇̂𝐳 =
[

𝑎(𝑡)𝑧̂2
0

]

+
[

𝑙𝜆1,𝑛[𝑦1 − 𝑧̂1]
𝑙𝜆2,𝑛(𝑢𝑛)[𝑦1 − 𝑧̂1]

]

,

where 𝑙 is a large enough positive constant (𝑙 ≥ 1), 𝜆1,𝑗 > 3|𝑢𝑛(𝑡)(1 +
𝑧1(𝑡))2|, with 𝑗 ∈ {𝑛, 𝑝} and 𝜆2,𝑗 (𝑢𝑗 ) = 𝜆1,𝑗 sgn(𝑢𝑗 ).

Now, define the error variable 𝐳̃ ∶= 𝐳 − 𝐳̂ and notice that the error
dynamics are depicted by

̇̃𝐳 =
[

−𝑙𝜆1,𝑛 𝑎(𝑡)
−𝑙𝜆2,𝑛(𝑢𝑛) 0

]

𝐳̃ ∶= 𝐀(𝑡)𝐳̃. (B.1)

We define the following symmetric positive definite matrix

𝐏(𝐮) ∶=
[

8 −sgn(𝑢𝑛)
−sgn(𝑢𝑛) 1

]

,

where sgn(⋅) is the sign function with sgn(0) = 0. We highlight that
𝐏(𝐮) is positive definite for any value of 𝐮. Moreover, even if this
matrix depends on 𝐮, we have 𝐏̇ = 0 since the sign function is a
piecewise-constant function and we focus in the scenario 𝑢𝑛 ≠ 0.

Consider the Lyapunov function candidate

𝑉 = 𝐳̃⊤𝐏(𝐮)𝐳̃. (B.2)

Then, the derivative of (B.2) along the error dynamics (B.1) satisfies

𝑉̇ = 𝐳̃⊤(𝐀(𝑡)⊤𝐏(𝐮) + 𝐏(𝐮)𝐀(𝑡))𝐳̃⊤ < 0. (B.3)

Therefore, following standard Lyapunov arguments, we can conclude
that the error dynamics (B.1) are globally asymptotically stable, which
proves the convergence of the observer. To see the inequality (B.3),
notice the following:

𝐀(𝑡)⊤𝐏(𝐮) + 𝐏(𝐮)𝐀(𝑡)

=
[

2(−8𝑙𝜆1,𝑛 + 𝑙𝜆2,𝑛(𝑢𝑛)sgn(𝑢𝑛)) sgn(𝑢𝑛)𝑙𝜆1,𝑛 − 𝑙𝜆2,𝑛(𝑢𝑛) + 8𝑎(𝑡)
sgn(𝑢𝑛)𝑙𝜆1,𝑛 − 𝑙𝜆2,𝑛(𝑢𝑛) + 8𝑎(𝑡) −2sgn(𝑢𝑛)𝑎(𝑡)

]

Notice that we have 𝜆2,𝑗 (𝑢𝑗 ) = 𝜆1,𝑗 sgn(𝑢𝑗 ) by definition. Moreover,
since 𝑧1, 𝑧2 ≥ 0, we have that sgn(𝑢𝑛) = sgn(𝑎(𝑡)). Therefore, we get
the following equality,

𝐀(𝑡)⊤𝐏(𝐮) + 𝐏(𝐮)𝐀(𝑡) =
[

−14𝑙𝜆1,𝑛 8𝑎(𝑡)
8𝑎(𝑡) −2|𝑎(𝑡)|

]

. (B.4)

The matrix in the right-hand side of (B.4) will be negative definite if
its trace is negative and the determinant is positive. Since 𝜆1,𝑛, 𝑙 > 0 the
trace is negative. On the other hand, the determinant is

28𝑙𝜆1,𝑛|𝑎(𝑡)| − 64𝑎(𝑡)2,

which will be positive if 𝑙 ≥ 1 and 𝜆1,𝑗 > 3|𝑎(𝑡)| = 3|(𝑢𝑛(𝑡)(1 + 𝑧1(𝑡))2)|.
Finally, the negativity of the determinant, shows that the inequality
(B.4) is negative and, thus, (B.3) is satisfied, which ends the proof.
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