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Abstract— It is well known that the singularities of a Gough-
Stewart platform arise when the determinant of the Plücker
coordinates of the robot leg lines vanish. The direct expansion
of this determinant in terms of the configuration of the moving
platform leads to an intimidating algebraic expression which
is difficult to organize in a manner that facilitates extracting
geometric conditions for singularities to occur. The use of
Grassmann-Cayley algebra has permitted expressing this de-
terminant as a bracket polynomial which is easier to manipulate
symbolically. Each monomial in this polynomial is the product
of three brackets, 4×4 determinants involving the homogeneous
coordinates of four leg attachments. In this paper, we show how
to derive, using elementary linear algebra arguments, bracket
polynomials where all brackets can be interpreted as reciprocal
products between lines. Contrarily to what one might expect,
these new bracket polynomials are simpler in general than those
previously obtained using Grassmann-Cayley algebra.

I. INTRODUCTION

A Gough-Stewart parallel robot incorporates six prismatic
actuators, orlegs, all of them connected simultaneously
to a fixed base and a moving platformthrough spherical
joints, or attachments(Fig. 1). It triggered the research on
parallel manipulators and continues to be the center of many
researches because, despite its simple geometry, its analysis
translates into challenging mathematical problems. One of
these problems is to characterize the configurations in which
the moving platform becomes uncontrollable, that is, the
singularities. In a singularity, there is a change in the robot’s
rigidity in certain directions. Therefore, the identification and
avoidance of singularities are issues of practical importance.
Although the singularity geometric identification problem
has attracted a significant volume of research, it is still a
far from simple task in the general case. It is generally
restricted to relatively simple particular cases in which some
extra constraints in the location of the leg attachments are
introduced.

The algebraic characterization of the singularities of a
Gough-Stewart parallel robot reduces to finding the robot
configurations in which the determinant of the Plücker co-
ordinates of the six leg lines vanish [1]. Then, a singular-
ity implies a linear dependence between these vectors [2].
Alternatively, the geometric characterization approach tries
to identify the geometric constraints that these lines must
satisfy for these linear dependencies to occur [3], [4], [5],
[6], and to translate them into geometric constructions to
identify all the singularities. Since the nineteenth century

*This work was partially supported by the Spanish Government through
project PID2020-117509GB-I00/AEI/10.13039/50110001103.

Federico Thomas is with the Institut de Robòtica i Informàtica Industrial
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Fig. 1. A general Gough-Stewart parallel robot consists of six extensible
legs (in dotted black) connecting a base (in orange) to a moving platform
(in blue) through spherical joints. The leg linei = 1, . . . , 6 (in red) is
determined by the location of the spherical joint attachments centers in
the base and the platform,ia and ib, respectively. The length of legi is
di = ‖ib − ia‖.

both approaches, analytic and synthetic, have competed to
provide elegant solutions to geometric problems [7].

A synthetic approach to solve a geometry problem leads
to geometric constructions without the use of coordinates or
formulae. In general, this has the advantage of producing
more general algorithms than those resulting from the ana-
lytic approach. In our case, the primitives of the synthetic
geometry associated with the Gough-Stewart platform sin-
gularity problem are six lines, each of them defined by two
points, and the tetrahedra defined by any subset of four of
these points. In the characterization of parallel robot singu-
larities, the synthetic approach has been dominated by the
use of Grassmann-Cayley algebra. This paper is essentially
devoted to present new alternative tools and results —to
those already obtained using Grassmann-Cayley algebra— in
which derivation only elementary linear algebra arguments
have been used.

This paper is organized as follows. Section II briefly sum-
marizes some basic facts on the singularities of the general
Gough-Stewart parallel robot and the different bracket poly-
nomials that have been previously derived using Grassmann-
Cayley algebra. Section III presents the required operations
between two lines that are needed in the derivation of the
new bracket polynomials presented in Section IV. These
new polynomials rely on the concept offocal pointswhose
geometric interpretation is provided in Section V. Finally,
we conclude in Section VI.



II. GOUGH-STEWART PARALLEL ROBOT
SINGULARITIES AND BRACKET POLYNOMIALS

Fig. 1 presents part of the notation used throughout this
paper. To simplify the presentation, we incur in some abuses
of notation. For example, no notational difference is used
between scalars and vectors, or between points and their
coordinates, but we have been careful to make the nature of
each symbol unambiguous in its context. Although the usual
practice when using Grassmann-Cayley algebra is to refer to
the twelve legs attachments asa, b, c, ..., l, the information
on which two points define a given leg is not explicit when
using this notation. This decreases readability when working
with reciprocal products. Thus, we have opted to denote leg
lines byi = 1, . . . 6, and the attachments of legi to the base
and the moving platform byia and ib, respectively.

From the algebraic point of view, the singularities of a
Gough-Stewart parallel robot are those robot configuration
in which the matrix that maps the twist of the platform
into the velocities of the actuators is singular. Using the
principle or virtual work, this is equivalent to say that the
singularities are those configurations in which the matrix that
maps the wrench exerted by the moving platform into the
forces exerted by the linear actuators in the extensible legs
is singular. It directly follows that one matrix is the transpose
of the other. Since the version of this analysis based on the
robot statics is much easier [8], it is the one summarized
next.

Since the legs of a Gough-Stewart parallel robot are
connected to the base and the moving platform through
spherical joints, only forces along the leg lines can be
transmitted between the base and the platform. A force of
magnitudefi applied along legi leads to the following force
and torque in the moving platform expressed in the base
reference frame:

σi =
fi
di
(ib − ia),

and

τi = ia × σi =
fi
di

[ia × (ib − ia)] =
fi
di

(ia × ib) ,

respectively. Therefore, the total transmitted force and torque
(wrench) is

W=
6∑

i=1

(
σi

τi

)

=

(
1b−1a . . . 6b−6a
1b×1a . . . 6b×6a

)

︸ ︷︷ ︸

,K






1

d1

· · · 0
...
. . .

...
0 · · · 1

d6











f1
...
f6




 .

Now, assuming that all leg lengths are not null, if we want
to know how a given wrench applied to the moving platform
is distributed into six forces along the leg lines, we have to
invertK. When this is not possible, the robot might collapse
for some particular applied wrenches.

The columns ofK are the Plücker coordinates [1] of the
six leg lines. Then, a singularity implies a linear dependence
between these vectors [2], a situation that occurs if these
lines satisfy particular geometric constraints [3], [4]. The
result of the leg lines becoming linearly dependent is that

the matrix K drops rank. Then, the most straightforward
way to identify the singular configurations is to analyze
when det(K) vanishes. However, it is not obvious from the
determinant ofK alone as to which specific condition causes
the drop in rank, despite all the different representations
and strategies that have been used to achieve the explicit
expression of det(K) [9], [10], [11], [12].

A way around the complexities of working with the
analytic expansion of the determinant ofK consists in using
Grassman-Cayley algebra (see, for example, [13], [14]).
Using this algebra, the determinant ofK can be rewritten as
a bracket polynomialformed by adding monomials of three
multiplying brackets each. A bracket is a4×4 determinant
whose elements are the homogeneous coordinates of four leg
attachments. Therefore, the singularity condition reduces to
a bracket polynomial equated to zero. Since each bracket can
be interpreted, up to an irrelevant constant factor, as the ori-
ented volume of the tetrahedron formed by four attachments,
the singularity condition thus obtained is known as thepure
conditionto stress the fact that it is intrinsically associated to
the robot (that is, independent of the chosen reference frame).
Hence, brackets may also be thought of as coordinate-free
symbolic expressions. In what follows, the bracket ofp1, p2,
p3 andp4 will be denoted by[p1, p2, p3, p4].

The pure condition is unique up tosyzygies, a term
borrowed from the literature on classic invariant theory,
which refer to the three-term Grassmann-Plücker relations.
In practice, this means that there are different equivalent pure
conditions that vary in their number of terms and involved
brackets. This certainly complicates things.

In 1983, White obtained the first pure condition for the
Gough-Stewart parallel robot [15]. The obtained bracket
polynomial had 96 adding monomials. White suggested that
this was the minimum number of possible monomials for this
polynomial. Nevertheless, in 1990, McMillan obtained a sim-
pler polynomial in his thesis [16]. This bracket polynomial
had 24 bracket monomials. Later on, in 2002, Downinget al.
came up with even a simpler polynomial containing only 16
monomials [13]. Nevertheless, Ben-Horin and Shoham found
more useful McMillan’s than Downinget al.’s polynomial
because the former was simpler to manipulate as all brackets
appearing in it were in a particular lexicographic order
known as straightened form [14]. For comparison purposes,
these three bracket polynomials are included in the appendix.

We can say that the complexity of a bracket polynomial is
not only given by the number of its monomials, but also by
the total number of different brackets involved. It is important
to observe that there are three kinds of brackets: 3-1 brackets
(those involving three attachments in the base and one in
the platform), 2-2 brackets (those involving two attachments
in the base and two in the platform), and 1-3 brackets
(those involving one attachment in the base and three in the
platform). Calculating the corresponding combinations, we
conclude that there are 120, 225, and 120 possible different
3-1, 2-2, and 1-3 brackets, respectively.

An important subset of 2-2 brackets is the set of brackets
involving the attachments of two legs. There are only 15



such brackets which will be calledreciprocal bracketsfor
the reason that will be clear in the next section.

Each monomial in a bracket polynomial is the product of
three brackets. All twelve attachments are present in every
monomial and occur only once in each. Therefore, if a
monomial is the product of aa-a′ bracket, ab-b′ bracket
and ac-c′ bracket, thena+b+c = a′+b′+c′ = 6. In other
words, each monomial in a bracket polynomial is the product
of either three 2-2 brackets, or the product of one 1-3 bracket,
one 3-1 bracket, and one 2-2 bracket. Now, one important
question arises: would it be possible to derive a bracket
polynomial involving only 2-2 brackets? In Section IV, we
show that this is indeed possible. Before presenting these
results, we need to review some facts on the reciprocal
product of two lines and related concepts.

III. OPERATIONS WITH TWO LINES

A. Reciprocal product

The reciprocal product of linesi andj is defined as

i⊗ j , (ib − ia) · (jb × ja) + (jb − ja) · (ib × ia), (1)

which, in matrix form, can be expressed as

i⊗ j =

(
ib − ia
ib × ia

)T (
03×3 I3×3

I3×3 03×3

)

︸ ︷︷ ︸

,M

(
jb − ja
jb × ja

)

. (2)

Now, observe that, expressing the two triple products in (1)
in determinant form, this product can be rewritten as

i⊗ j =
∣
∣ib − ia jb ja

∣
∣+

∣
∣jb − ja ib ia

∣
∣

=
∣
∣ib − ia jb − ja ja

∣
∣+

∣
∣jb − ja ib − ia ia

∣
∣

=

∣
∣
∣
∣

ia ib − ia ja jb − ja
1 0 1 0

∣
∣
∣
∣

=

∣
∣
∣
∣

ia ib ja jb
1 1 1 1

∣
∣
∣
∣
= [ia, ib, ja, jb]. (3)

In other words, the reciprocal product of two lines can be
seen as a bracket. That is, as one sixth the oriented volume of
the tetrahedron defined by the points defining the two lines.
It is thus invariant to any Euclidean isometry.

In 1869, Cayley proved in [1] that the reciprocal product
of two lines can also be expressed as

i ⊗ j = di dj δij sinϕij , (4)

wheredk = ‖kb − ka‖, δij is the shortest distance between
the two lines, andϕij is the angle formed by both lines when
projected along their common normal with the orientation
resulting from the application of the right-hand rule.

Also in 1869, Drach proved in [17, p. 132] the further
alternative expression

i⊗ j = di dj ηij cosϑij , (5)

where ηij = ‖ia − ja‖ and ϑij is the angle between the
normal to the plane defined by the three pointsia, ib andja
and linej.

Fig. 2 graphically presents the above three alternative
geometric interpretations of the reciprocal product between
two lines. These alternative forms are highly relevant when
combined with the new bracket polynomials presented in the
next section to come up with new geometric interpretations
of singularities.

B. Reverse product

We define the reverse product as the standard reciprocal
product in which the second line is reflected over the origin
[18, §7.2]. That is, the reverse product between linesi and
j is defined as

i⊙ j ,

(
ib − ia
ib × ia

)T (
jb × ja
ja − jb

)

=

(
ib − ia
ib × ia

)T (
03×3 I3×3

−I3×3 03×3

)

︸ ︷︷ ︸

,N

(
jb − ja
jb × ja

)

. (6)

As above, this product can be rewritten as

i⊙ j =
∣
∣
∣
∣

ia ib −ja −jb
1 1 1 1

∣
∣
∣
∣
= [ia, ib,−ja,−jb]

= −
∣
∣
∣
∣

−ia −ib ja jb
1 1 1 1

∣
∣
∣
∣
= −[−ia,−ib, ja, jb].

Therefore, while the reciprocal product is commutative oper-
ation (i⊗ j = j ⊗ i), the reverse product is anticommutative
(i⊙ j = −j ⊙ i).

C. Generalized reverse product and focal points

The reverse product can be extended to incorporate a
reflection across an arbitrary point, sayf , instead of the
origin. We will refer tof as afocal point. Since the result of
reflecting another arbitrary point, sayv, acrossf is 2f − v,
we can generalize the definition of reverse product to the
reverse product with respect to pointp as follows

i⊙p j ,

∣
∣
∣
∣

ia ib 2f − ja 2f − jb
1 1 1 1

∣
∣
∣
∣
. (7)

Now, an interesting problem arises: where have we to
locatef so thati ⊙f j = 0 ? To solve this problem, first
observe that

i⊙f j = i⊙ j + 4

∣
∣
∣
∣

ia ib f ja−jb
2

1 1 0 1

∣
∣
∣
∣
. (8)

Then, iff is chosen to be a point in the plane whose equation
is

−

∣
∣
∣
∣
∣
∣

iay iby
jay−jby

2

iaz ibz
jaz−jbz

2

1 1 1

∣
∣
∣
∣
∣
∣

x+

∣
∣
∣
∣
∣
∣

iax ibx
jax−jbx

2

iaz ibz
jaz−jbz

2

1 1 1

∣
∣
∣
∣
∣
∣

y

−

∣
∣
∣
∣
∣
∣

iax ibx
jax−jbx

2

iay iby
jay−jby

2

1 1 1

∣
∣
∣
∣
∣
∣

z =
i⊙ j

4
,

we have thati⊙f j = 0. Therefore, if we have three lines, say
1, 2 and 3, in general position, the value off that makes
1 ⊙f 2 = 0, 1 ⊙f 3 = 0, and 2 ⊙f 3 = 0, is uniquely
determined as the intersection of three planes. This will be
useful in the next section.
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Fig. 2. Three geometric interpretations of the algebraic definition of the reciprocal product between two lines, sayi and j (depicted in red), due to
Sylvester (left), Cayley (center), and Drach (right).

IV. NEW BRACKET POLYNOMIALS

A. New polynomial in terms of reciprocal products

It is straightforward to observe that

123456⊗

123456

,

∣
∣
∣
∣
∣
∣
∣
∣
∣

1⊗ 1 1⊗ 2 . . . 1⊗ 6
2⊗ 1 2⊗ 2 . . . 1⊗ 6

...
...

...
6⊗ 1 6⊗ 2 . . . 6⊗ 6

∣
∣
∣
∣
∣
∣
∣
∣
∣

=det(KTMK) = det(KT )det(M)det(K)

=− det2(K). (9)

As early as in 1861, Sylvester already showed that, when
the determinant of recirpocal products in (9) vanishes, the
six involved lines are ininvolution, a term used by him and
Cayley to refer to our singularity condition [19]. Sylvester
also knew that this determinant was the squared of the
determinant ofK [20], a fact rediscovered in [21].

The determinant (9) can be expanded using the generalized
Laplace’s expansion formula with respect to the3×3 minors
of its first three rows and their complementary3×3 minors
in the other three rows. This idea was almost simultane-
ously explored in [9] and [22] for the direct expanssion of
det(K). In [22], half of the terms are missing which might
induce some confusions. The application of this expansion
to det2(K) reads as follows

det2(K) =
123⊗

123

456⊗

456

−

456⊗

123

123⊗

456

−

124⊗

123

356⊗

456

+

356⊗

123

124⊗

456

+

125⊗

123

346⊗

456

−
346⊗

123

125⊗

456

−
126⊗

123

345⊗

456

+
345⊗

123

126⊗

456

+
134⊗

123

256⊗

456

−
256⊗

123

134⊗

456

−

135⊗

123

246⊗

456

+

246⊗

123

135⊗

456

+

136⊗

123

245⊗

456

−

245⊗

123

136⊗

456

+

145⊗

123

236⊗

456

−

236⊗

123

145⊗

456

−

146⊗

123

235⊗

456

+

235⊗

123

146⊗

456

+

234⊗

123

156⊗

456

−

156⊗

123

234⊗

456

. (10)

The most interesting feature of (9) is that it is completely
expressed in terms of reciprocal products. This allows us to

explore other forms of the singularity conditions using Cay-
ley’s and Drach’s formulas for these products. For example,
using Cayley’s formula, we have, after extracting non-null
common row and column factors, that

456⊗

123

= D

∣
∣
∣
∣
∣
∣

δ14 sinϕ14 δ15 sinϕ15 δ16 sinϕ16

δ24 sinϕ24 δ25 sinϕ25 δ26 sinϕ26

δ34 sinϕ34 δ35 sinϕ35 δ36 sinϕ36

∣
∣
∣
∣
∣
∣

. (11)

where D = d1d2d3d4d5d6. Here, bothδij and ϕij vary
with the pose of the moving platform.D also varies, but,
since it is common to all factors in (10), it can be dropped.
Alternatively, using Drach’s formula, we have that

456⊗

123

= D

∣
∣
∣
∣
∣
∣

η14 cosϑ14 η15 cosϑ15 η16 cosϑ16

η24 cosϑ24 η25 cosϑ25 η26 cosϑ26

η34 cosϑ34 η35 cosϑ35 η36 cosϑ36

∣
∣
∣
∣
∣
∣

. (12)

Sinceηij is the distance betweenia andja, it is independent
of the moving platform location. In this case, onlyϑij varies.
Moreover, if we exchange the role of the base and the moving
platform, we can obtain an equivalent expression involving
the distances between the attachments in the moving platform
instead. Both, (11) and (12), will be useful in the next
subsection.

The main problem with expression (10) is that it actually
is the square of the pure condition which, in general, does
not factorize in terms of reciprocal brackets. Apparently, we
can only express the square of the pure condition in terms
of reciprocal brackets, not the pure condition itself. A way
around this difficulty is presented in the next section thanks
to the use of focal points.

B. New polynomial in terms of reverse products

As in the previous subsection, we observe that

123456⊙

123456

,

∣
∣
∣
∣
∣
∣
∣
∣
∣

1⊙ 1 1⊙ 2 . . . 1⊙ 6
2⊙ 1 2⊙ 2 . . . 1⊙ 6

...
...

...
6⊙ 1 6⊙ 2 . . . 6⊙ 6

∣
∣
∣
∣
∣
∣
∣
∣
∣

= det(KTNK) = det(KT )det(N)det(K)

= det2(K). (13)



Since the reverse product is anticommutative, the above
determinant is skew-symmetric. What is important for us is
that the determinant of an×n skew-symmetric matrix, with
n an even number, is the square of a polynomial of degree
n/2, called the Pfaffian, a term coined by Cayley in [23]. In
our case, by symbolically computing the determinant in (13)
and factorizing the result, it can be verified that its Pfaffian
can be expressed as

±det(K)=(1⊙2) [(3⊙4)(5⊙6)−(3⊙5)(4⊙6) + (3⊙6)(4⊙5)]

−(1⊙3) [(2⊙4)(5⊙6)−(2⊙5)(4⊙6) + (2⊙6)(4⊙5)]

+(1⊙4) [(2⊙3)(5⊙6)−(2⊙5)(3⊙6) + (2⊙6)(3⊙5)]

−(1⊙5) [(2⊙3)(4⊙6)−(2⊙4)(3⊙6) + (2⊙6)(3⊙4)]

+(1⊙6) [(2⊙3)(4⊙5)−(2⊙4)(3⊙5) + (2⊙5)(3⊙4)]. (14)

This sign ambiguity is irrelevant because we are just inter-
ested in the roots of det(K). Moreover, since the root locus
of det(K) is independent of the chosen reference frame,⊙
can be substituted with⊙f without altering the result (this
can be verified using a computer algebra system). This is an
important observation because we can chosef so that (14)
is simplified as explained in Section III. For example, let us
suppose that1, 2 and3 are in general position. Then, we can
find f such that1⊙f2 = 0, 1⊙f3 = 0, and2⊙f3 = 0. In this
particular case, (14) can be rewritten in this very compact
form

±det(K) =

∣
∣
∣
∣
∣
∣

1⊙f4 1⊙f4 1⊙f4
2⊙f5 2⊙f5 2⊙f5
3⊙f6 3⊙f6 3⊙f6

∣
∣
∣
∣
∣
∣

. (15)

As a consequence, in terms of reciprocal products, we have
that

±det(K) =

4
′
5
′
6
′

⊗

123

=

∣
∣
∣
∣
∣
∣

1⊗4′ 1⊗4′ 1⊗4′

2⊗5′ 2⊗5′ 2⊗5′

3⊗6′ 3⊗6′ 3⊗6′

∣
∣
∣
∣
∣
∣

. (16)

This expression still involves six leg lines; namely, those
denoted by 1, 2, and 3 in the original Gough-Stewart parallel
robot and 4’, 5’, and 6’ which result from the point reflection
of leg lines 4, 5, and 6 acrossf (the focal point determined
by leg lines 1, 2, and 3). It is easy to see that 4’, 5’, and 6’ are
parallel to 4, 5, and 6, respectively. Pointf , whose geometric
interpretation is given in the next section, is thus essential in
our formulation. Since there are 20 different combinations
of three lines out of six, there are up to 20 different focal
points. This is useful when looking for the most convenient
expression for a given particular robot.

It is also important to observe that (16) can be reformu-
lated in terms of angles directly using either (11) or (12).
Also observe thatϕ14′ = ϕ14 andϑ14′ = ϑ14 because 4 and
4’ are parallel, and analogously for all other angles.

The expansion of (16) leads to a bracket polynomial with
only six monomials, each of them involving the six lines. It
is a bracket polynomial with only nine different reciprocal
brackets which represents an important simplification with
respect to the previously obtained bracket polynomials. Ta-
ble I compiles the number of monomials and the different
kinds of brackets appearing in the five bracket polynomials
considered in this paper.

x y

z

x y

z

Fig. 3. Three lines in space in general position determine a one-sheeted
hyperboloid (left), a doubled-ruled surface that contains two reguli (right).
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Fig. 4. Lines 1, 2, and 3 in space determine a one-sheeted hyperboloid
(top), the projection of these lines across the center of the paraboloid (1’, 2’
and 3’, respectively) also lie in the paraboloid (bottom). Both sets of lines
are in the two different reguli contained in the paraboloid. The center of the
paraboloid is actually the focal point determined by 1, 2, and 3. Observe
that 1’, 2’, and 3’ are parallel to 1, 2, and 3, respectively. In this drawing,
the hiperboloid is projected onto thexy-plane.

V. GEOMETRIC INTERPRETATION OF THE
FOCAL POINTS

If we choose any three lines in space in general position,
the set of lines meeting these three lines is a regulus. These
three lines lie in an uniquely defined hyperboloid of one sheet
[25, p. 15], a doubly ruled surface containing two reguli. One
regulus contains the three lines, and the other, all the lines
meeting these three lines (see Fig. 3).



TABLE I

NUMBER OF MONOMIALS AND DIFFERENT KINDS OF BRACKETS APPEARING IN THE FIVE CONSIDERED BRACKET POLYNOMIALS.

Bracket Polynomial Number of Different 1-3 3-1 2-2 Reciprocal
monomials brackets brackets brackets brackets brackets

White’s [15] 96 56 14 14 28 0
McMillan’s [16], [24], [14] 24 34 8 8 18 2
Downing et al.’s [13] 16 24 6 6 12 0
Bracket polynomial in (10) 130 15 0 0 15 15
Bracket polynomial in (16) 6 9 0 0 9 9

It is interesting to observe that the equation of the hy-
perboloid of one sheet defined by lines1, 2, and3 can be
expressed in terms of brackets as:

[1a 1b 3a p][2a 2b 3b p] = [1a 1b 3b p][2a 2b 3a p], (17)

wherep = (x, y, z, 1)T . This equation was apparently first
presented without proof in [26, p. 198] where it was delivered
as an exercise (see [27] for its detailed derivation). The first
expression for this hyperboloid was obtained by A. Cayley
in [1]. It is a much more complicated expression than that
in (17) as it is expressed in terms of the Plücker coordinates
of the three lines.

Our problem is to obtain the value off that satisfies the
system of equations1⊙f 2 = 0, 1⊙f 3 = 0, and2⊙f 3 = 0
(see Fig. 4). In other words line2, after projected acrossf
(let us call it2′), must meet line1; and line3, after projected
acrossf (let us call it 3′), must meet lines1 and 2. As a
consequence,2′ and3′ must be in the complementary regulus
to the one containing1, 2, and3. Therefore, all lines (1, 2,
3, 2’, and 3’) lie in the same hyperboliod of one sheet. The
point that, after projecting across it an arbitrary line in one
regulus, is a line in the complementary regulus is the center
of the hyperboloid containing both reguli. This provides a
neat geometric interpretation of our focal points.

VI. CONCLUSION

From the use of Grassmann-Cayley algebra, we already
knew that the singularity condition for the general Gough-
Stewart platform could be expressed as the sum of products
of threebrackets(4×4 determinants involving the homoge-
neous of four leg attachments) equated to zero. However,
using elementary linear algebra arguments, we have pre-
sented similar results with the important advantage that only
those brackets that can be interpreted as reciprocal products
between leg lines are needed.

Space limitations prevent us from including examples, but
it is not difficult to imagine how all the presented new tools
can be used to obtain new insights into the singularities of
particular Gough-Stewart parallel robot architectures; that is,
Gough-Stewart parallel robots in which some attachments,
either on the base of the moving platform, coincide, are
aligned, or are coplanar.

It can be said that the presented results are far reaching.
For example, they can be easily adapted to characterize
the singularities of 6R robots. In this case, the problem
consists in identifying the linear dependencies between six
lines representing the revolute joint axes with the important

simplification that the reciprocal products between the lines
corresponding to consecutive joint axes are constant.

APPENDIX

For comparison purposes, we include here the expressions
for Whyte’s, McMillan’s, and Downinget al.’s bracket
polynomials. Due to space limitations, we present them in
terms of permutations with signum (see [24] for details on
this notation).

• Whyte’s bracket polynomial (1983) [15]

[1a1b
⑦

4a
④
5a
⑤
][2a2b

⑦
4b
④
6a
⑥
][3a3b

⑦
5b
⑤
6b
⑥
]

−[4a4b
⑧

1a
①
2a
②
][5a5b

⑧
1b
①
3a
③
][6a6b

⑧
2b
②
3b
③
],

where ①,②,③,④,⑤,⑥ denote the permutations with
signum of the 2-element sets{1a, 1b}, {2a, 2b},
{3a, 3b}, {4a, 4b}, {5a, 5b}, and{6a, 6b}, respectively,
and ⑦ and ⑧, the permutations with signum of the 3-
element sets{1a1b, 2a2b, 3a3b} and{4a4b, 5a5b, 6a6b},
respectively. Then, the expansion of the above expres-
sion leads to2·2·2·6+2·2·2·6 = 92 monomials.

• McMillan’s bracket polynomial (1990) [16]

[1a1b2a2b][3a3b4a
①
5a
②
][4b

①
5b
②
6a6b]

−[1a1b2a
③
3a
④
][2b

③
3b
④
4a4b][5a5b6a6b]

−[1a1b2a
⑤
3a
⑥
][2b

⑤
4a4b5a

⑦
][3b

⑥
5b
⑦
6a6b]

+[1a1b2a
⑧
4a
⑨
][2b

⑧
3a3b5a

⑩
][4b

⑨
5b
⑩
6a6b]

Observe that, in this case, all permutations involve only
2 elements. Therefore, the total number of monomials
is 2·2+2·2+2·2·2+2·2·2 = 24

• Downing et al.’s bracket polynomial (2002) [13]

[1a1b4a
①
5a
②
][2a2b4b

①
6a
③
][3a3b5b

②
6b
③
]

−[4a4b1a
④
2a
⑤
][5a5b1b

④
3a
⑥
][6a6b2b

⑤
3b
⑥
].

In this case, all permutations also involve only 2 el-
ements. Therefore, the total number of monomials is
2·2·2+2·2·2 = 16.
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