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Abstract— It is well known that the singularities of a Gough-
Stewart platform arise when the determinant of the Pliicker
coordinates of the robot leg lines vanish. The direct expansion
of this determinant in terms of the configuration of the moving
platform leads to an intimidating algebraic expression which
is difficult to organize in a manner that facilitates extracting
geometric conditions for singularities to occur. The use of
Grassmann-Cayley algebra has permitted expressing this de-
terminant as a bracket polynomial which is easier to manipulate
symbolically. Each monomial in this polynomial is the product
of three brackets, 4x4 determinants involving the homogeneous
coordinates of four leg attachments. In this paper, we show how
to derive, using elementary linear algebra arguments, bracket
polynomials where all brackets can be interpreted as reciprocal
products between lines. Contrarily to what one might expect,
these new bracket polynomials are simpler in general than those
previously obtained using Grassmann-Cayley algebra. s

Fig. 1. A general Gough-Stewart parallel robot consists of six extensible
I. INTRODUCTION legs (in dotted black) connecting a base (in orange) to a moving platform

A Gough-Stewart parallel robot incorporates six prismati¢n blue) through spherical joints. The leg line= 1,...,6 (in red) is
. determined by the location of the spherical joint attachments centers in
actuators, orlegs all of them connected SImUItaneouswthe base and the platform, and i;, respectively. The length of legis
to a fixed baseand amoving platformthrough spherical d; = |jiy — ial|.
joints, or attachmentqFig. 1). It triggered the research on
parallel manipulators and continues to be the center of many
researches because, despite its simple geometry, its anal2#h approaches, analytic and synthetic, have competed to
translates into challenging mathematical problems. One @fovide elegant solutions to geometric problems [7].
these problems is to characterize the configurations in whichA synthetic approach to solve a geometry problem leads
the moving platform becomes uncontrollable, that is, th& geometric constructions without the use of coordinates or
singularities. In a singularity, there is a change in the robot®rmulae. In general, this has the advantage of producing
rigidity in certain directions. Therefore, the identification andnore general algorithms than those resulting from the ana-
avoidance of singularities are issues of practical importancktic approach. In our case, the primitives of the synthetic
Although the singularity geometric identification problemgeometry associated with the Gough-Stewart platform sin-
has attracted a significant volume of research, it is still gularity problem are six lines, each of them defined by two
far from simple task in the general case. It is generallpoints, and the tetrahedra defined by any subset of four of
restricted to relatively simple particular cases in which som#ese points. In the characterization of parallel robot singu-
extra constraints in the location of the leg attachments al@rities, the synthetic approach has been dominated by the
introduced. use of Grassmann-Cayley algebra. This paper is essentially
The algebraic characterization of the singularities of gévoted to present new alternative tools and results —to
Gough-Stewart parallel robot reduces to finding the robdhose already obtained using Grassmann-Cayley algebra— in
configurations in which the determinant of the Pliicker cowhich derivation only elementary linear algebra arguments
ordinates of the six leg lines vanish [1]. Then, a singulahave been used.
ity implies a linear dependence between these vectors [2]. This paper is organized as follows. Section Il briefly sum-
Alternatively, the geometric characterization approach trie®arizes some basic facts on the singularities of the general
to identify the geometric constraints that these lines mu&tough-Stewart parallel robot and the different bracket poly-
satisfy for these linear dependencies to occur [3], [4], [5Jpomials that have been previously derived using Grassmann-
[6], and to translate them into geometric constructions t&ayley algebra. Section Il presents the required operations
identify all the singularities. Since the nineteenth centurpetween two lines that are needed in the derivation of the
new bracket polynomials presented in Section IV. These
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II. GOUGH-STEWART PARALLEL ROBOT the matrix K drops rank. Then, the most straightforward
SINGULARITIES AND BRACKET POLYNOMIALS way to identify the singular configurations is to analyze

Fig. 1 presents part of the notation used throughout thi¥hen det&’) vanishes. However, it is not obvious from the
paper. To simplify the presentation, we incur in some abus&etermmapt of{ alone as to which sp.ecn‘lc condition causes
of notation. For example, no notational difference is usel!® drop in rank, despite all the different representations
between scalars and vectors, or between points and thé[id strategies that have been used to achieve the explicit
coordinates, but we have been careful to make the nature ®fPression of def() [9], [10], [11], [12]. _ _
each symbol unambiguous in its context. Although the usual A Way around the complexities of working with the
practice when using Grassmann-Cayley algebra is to refer @alytic expansion of the determinant/gfconsists in using
the twelve legs attachments asb,c, ..., [, the information Grassman-Cayley algebra (see, for example, [13], [14]).
on which two points define a given leg is not explicit wherl/Sing this algebra, the determinant&fcan be rewritten as
using this notation. This decreases readability when workirfgbracket polynomiaformed by adding monomials of three

with reciprocal products. Thus, we have opted to denote I6gultiplying brackets each. A bracket isda4 determinant
lines byi = 1,...6, and the attachments of légo the base Whose elements are the homogeneous coordinates of four leg

and the moving platform by, andi,, respectively. attachments. Therefore, the singularity condition reduces to
From the algebraic point of view, the singularities of & b.racket polynomial eqL!ated to zero. Since each bracket can
Gough-Stewart parallel robot are those robot configuratid?® interpreted, up to an irrelevant constant factor, as the ori-
in which the matrix that maps the twist of the p|(.mcormented volume of the tetrahedron formed by four attachments,
into the velocities of the actuators is singular. Using th&"e singularity condition thus obtained is known as fthee
principle or virtual work, this is equivalent to say that theconditionto stress the fact that it is intrinsically associated to
singularities are those configurations in which the matrix thdf€ robot (that is, independent of the chosen reference frame).
maps the wrench exerted by the moving platform into thgence,_brackets may also be thought of as coordinate-free
forces exerted by the linear actuators in the extensible le§¥mPolic expressions. In what follows, the brackepofp,,
is singular. It directly follows that one matrix is the transpos@3 @ndpa will be denoted byipi, p, ps, pa].
of the other. Since the version of this analysis based on the The pure condition is unique up teyzygies a term

robot statics is much easier [8], it is the one summarizegerrowed from the literature on classic invariant theory,
next. which refer to the three-term Grassmann-Pliicker relations.

Since the legs of a Gough-Stewart parallel robot arlh practice, this means that there are different equivalent pure
connected to the base and the moving platform throu nditions that vary in their number of terms and involved
spherical joints, only forces along the leg lines can b&rackets. This certainly complicates things.
transmitted between the base and the platform. A force of In 1983, White obtained the first pure condition for the
magnitudef; applied along leg leads to the following force Gough-Stewart parallel robot [15]. The obtained bracket

and torque in the moving platform expressed in the badPlynomial had 96 adding monomials. White suggested that
reference frame: this was the minimum number of possible monomials for this

o — ﬁ(z‘b —ia) polynomial. Nevertheless, in 1990, McMillan obtained a sim-
Yd “ pler polynomial in his thesis [16]. This bracket polynomial
and had 24 bracket monomials. Later on, in 2002, Dowrenal.
. ‘ came up with even a simpler polynomial containing only 16
T =g X 0p = < [ig X (ip — ia)] = = (ia X i), monomials [13]. Nevertheless, Ben-Horin and Shoham found
i di more useful McMillan’s than Downingt al’s polynomial
respectively. Therefore, the total transmitted force and torqufecause the former was simpler to manipulate as all brackets
(wrench) is appearing in it were in a particular lexicographic order
1 f known as straightened form [14]. For comparison purposes,
6 di 1 . . . .
o; 1,—1, 6,—6, L ) these three bracket polynomials are included in the appendix.
W:Z (Tl> - (1b><1a e 6b><6a> Pl * | We can say that the complexity of a bracket polynomial is
=t 0-- d% fe not only given by the number of its monomials, but also by
=K the total number of different brackets involved. It is important
Now, assuming that all leg lengths are not null, if we wanto observe that there are three kinds of brackets: 3-1 brackets
to know how a given wrench applied to the moving platforn(those involving three attachments in the base and one in
is distributed into six forces along the leg lines, we have tthe platform), 2-2 brackets (those involving two attachments
invert K. When this is not possible, the robot might collapsén the base and two in the platform), and 1-3 brackets
for some particular applied wrenches. (those involving one attachment in the base and three in the
The columns ofK are the Plicker coordinates [1] of theplatform). Calculating the corresponding combinations, we
six leg lines. Then, a singularity implies a linear dependenaonclude that there are 120, 225, and 120 possible different
between these vectors [2], a situation that occurs if the®1, 2-2, and 1-3 brackets, respectively.
lines satisfy particular geometric constraints [3], [4]. The An important subset of 2-2 brackets is the set of brackets
result of the leg lines becoming linearly dependent is thatvolving the attachments of two legs. There are only 15




such brackets which will be callekciprocal bracketsfor Fig. 2 graphically presents the above three alternative

the reason that will be clear in the next section. geometric interpretations of the reciprocal product between
Each monomial in a bracket polynomial is the product ofwo lines. These alternative forms are highly relevant when

three brackets. All twelve attachments are present in eveepmbined with the new bracket polynomials presented in the

monomial and occur only once in each. Therefore, if @ext section to come up with new geometric interpretations

monomial is the product of a-a’ bracket, ab-b’ bracket of singularities.

and ac-¢’ bracket, themu+b+c = a’'+b'+¢’ = 6. In other

words, each monomial in a bracket polynomial is the produ ] )

of either three 2-2 brackets, or the product of one 1-3 bracket, W& define the reverse product as the standard reciprocal

one 3-1 bracket, and one 2-2 bracket. Now, one importaHdeUCt in Whlch_ the second line is reflected over_the origin

question arises: would it be possible to derive a brackét8: 87.2]. That is, the reverse product between linesd

polynomial involving only 2-2 brackets? In Section IV, weJ i defined as

show that this is indeed possible. Before presenting these =~ iy — iy T b X Ja

results, we need to review some facts on the reciprocal ! ©J = < > <ju, —jb>

product of two lines and related concepts.

. Reverse product
C% p

iina

_ (b —a O3x3  I3x3\ (Jb — Ja ©6)
I1l. OPERATIONS WITH TWO LINES ip X ig —I3xs 03x3/) \Jpb X Ja /)~
A. Reciprocal product sy
The reciprocal product of linesandj is defined as As above, this product can be rewritten as
1© 2 (ip—ia) - (b X ja) + (o = Ja) - (ib X ia), (1) i@ =" e T = ig, i, —ja, i)

—lq  —lp ja jb
1 1 1 1

. . T . .
i®j= (’b - Za) (03X3 I3x3) (Jb - Ja) . (2 Therefore, while the reciprocal product is commutative oper-

which, in matrix form, can be expressed as _

= _[_iaa _ibajaa ]b]

ib X lq Isxs O3x3) \Jb X Ja ation ¢ ® j = j ®1), the reverse product is anticommutative
A (tOj=—jO1).
Now, observe that, expressing the two triple products in (1§- Generalized reverse product and focal points
in determinant form, this product can be rewritten as The reverse product can be extended to incorporate a
o S . o reflection across an arbitrary point, sdy instead of the
i®j=liv—ia o Ja|+|io—Ja b i origin. We will refer to f as afocal point Since the result of
=liy—ia Jo—Ja Ja|+|jb—Ja i —ia idl reflecting another arbitrary point, say acrossf is 2f — v,

we can generalize the definition of reverse product to the
reverse product with respect to pojntas follows

ia ib ja jb 7:a Z.b 2.f_ja 2f_jb (7)

1 1 1 1 1 1 1 1 )
In other words, the reciprocal product of two lines can be Now, an interesting problem arises: where have we to

seen as a bracket. That is, as one sixth the oriented volumel@gate f so thati ©; j = 0 ? To solve this problem, first
the tetrahedron defined by the points defining the two line§bserve that

lq 1y —iq ja jb - ja
1 0 1 0

A

= [ia,ilnja,jb]- (3) zQPj:

It is thus invariant to any Euclidean isometry. i ia iy f @ 8
In 1869, Cayley proved in [1] that the reciprocal product LOr =107+ 1 1 0 1 (8)
of two lines can also be expressed as Then, if f is chosen to be a point in the plane whose equation
7 ®j = dz dj 61’]’ sin Pijy (4) IS
. : O = L B A T
wheredy, = ||k, — k||, d;; is the shortest distance between | * ™ . 2. et i ow e
the two lines, and;; is the angle formed by both lines when Z‘iz ”iz i ‘iz liz % Y
projected along their common normal with the orientation o
resulting from the application of the right-hand rule. faz  dba  LoEFlE PG
Also in 1869, Drach proved in [17, p. 132] the further — liay Gpy THFPE|z= T
alternative expression 1 1 1
i®j=d;d;n; cosVy; (5) Wwe have thai®;j = 0. Therefore, if we have three lines, say
- (¥} ¥} 17

1, 2 and 3, in general position, the value gf that makes
wheren;; = |iq — jo| and¥;; is the angle between the 1 ©y2 = 0, 1 ®;3 = 0, and2 ®; 3 = 0, is uniquely
normal to the plane defined by the three poifjtsi, andj, determined as the intersection of three planes. This will be
and linej. useful in the next section.



i ® J = [ia, b, Jas Jo] 1 ® j = d;d;di; sin @y i ®j =d;djn cosdy;

Fig. 2. Three geometric interpretations of the algebraic definition of the reciprocal product between two linesingay (depicted in red), due to
Sylvester (left), Cayley (center), and Drach (right).

IV. NEW BRACKET POLYNOMIALS explore other forms of the singularity conditions using Cay-
A. New polynomial in terms of reciprocal products ley’s and Drach’s formulas for these products. For example,
using Cayley’s formula, we have, after extracting non-null

It is straightforward to observe that
common row and column factors, that

1®1 1®2 ... 1®6
123456 2 ® 1 2 ® 2 . 1 ® 6 456 514 sin P14 515 sin P15 516 sin P16
é . . . ® = D 524 sin P24 525 sin Y25 526 sin P26 |- (11)
123456 . . . 123 534 sin ©34 535 sin ©35 536 sin ©36
6@l 602 ... 6®6

T . where D = didadsdadsds. Here, bothd;; and ¢;; vary
=det(K" MK) = de{( K" ) det(M) de( K) with the pose of the moving platfornD also varies, but,
= — def(K). (9) since it is common to all factors in (10), it can be dropped.

As early as in 1861, Sylvester already showed that, Whééhlternatlvely, using Drach’s formula, we have that

the determinant of recirpocal products in (9) vanishes, the 456 NacosViy M5 costdys Mg cosig
six involved lines are innvolution, a term used by him and ® = D |n2acostVas  Mos cosVas  Nog COSVag|. (12)
Cayley to refer to our singularity condition [19]. Sylvester 123 N34 cosU3q M35 cOs V35 136 COS Ve

also knew that this determinant was the squared of th§pce,, . s the distance betweep andj., it is independent
determinant ofi" [20], a fact rediscovered in [21]. of the moving platform location. In this case, onfy; varies.

The dfatermmar_n (9) can be expanded using the generalizgg o er, if we exchange the role of the base and the moving
Laplace’s expansion formula with respect to the3 minors platform, we can obtain an equivalent expression involving

of its first three rows and their complementary3 minors e gistances between the attachments in the moving platform

in the other three rows. This idea was almost SimUItan(?hstead. Both, (11) and (12), will be useful in the next
ously explored in [9] and [22] for the direct expanssion ot hcaction. ’

det(®). In [22], half of the terms are missing which might
induce some confusions. The application of this expansi
to def (K) reads as follows

The main problem with expression (10) is that it actually
98 the square of the pure condition which, in general, does
not factorize in terms of reciprocal brackets. Apparently, we

def(K) = can only express the square of the pure condition in terms
123 456 456 123 124 356 356 124 125 346 of reciprocal brackets, not the pure condition itself. A way
® ® — ® ® — ® ® + ® ® + ® ® around this difficulty is presented in the next section thanks
123 456 123 456 123 456 123 456 123 456 to the use of focal points.

346 125 126 345 345 126 134 256 256 134

_ ® ® _ ® ® + ® ® + ® ® _ ® ® B. New polynomial in terms of reverse products

123 456 123 456 123 456 123 456 123 456 As in the previous subsection, we observe that
135 246 246 135 136 245 245 136 145 236

IR AR- OV AR+ QR

123 456 123 456 123 456 123 456 123 456 A 201 202 ... 106

236 145 146 235 235 146 234 156 156 234 -

AP PR PR RR-QR- a0 i1 gor L ses

123 456 123 456 123 456 123 456 123 456
. : : . =def KT NK) = def{ K”) det N) det K
The most interesting feature of (9) is that it is completely ( ) (&) de(n) detx)

expressed in terms of reciprocal products. This allows us to = def'(K). (13)



Iz

Since the reverse product is anticommutative, the above 1%
determinant is skew-symmetric. What is important for us is \ VWY W
that the determinant of axn skew-symmetric matrix, with \ \\“ ViV /
- - N\ 4
n an even number, is the square of a polynomial of degree WE@‘?&%W//

n/2, called the Pfaffian, a term coined by Cayley in [23]. In
our case, by symbolically computing the determinant in (13)

and factorizing the result, it can be verified that its Pfaffian /// ~_
can be expressed as x y 3 AR y
: VNS

+detl K)=(102) [(304)(506)—(305)(406) + (306)(4®5)] //////7/’;”

—(133) [(204)(506)—(205)(436) + (206)(4®5)] AN N

+(104) [(203)(506)—(205)(306) + (206)(35)]

—(105) [(203)(406)—(204) (306) + (206)(304)] Fig. 3. Three lines in space in general position determine a one-sheeted

hyperboloid (left), a doubled-ruled surface that contains two reguli (right).
+(106) [(203)(405)—(204)(305) + (205)(304)]. (14)

This sign ambiguity is irrelevant because we are just inter-
ested in the roots of dgk’). Moreover, since the root locus

of det K) is independent of the chosen reference frame,

can be substituted witlb; without altering the result (this

can be verified using a computer algebra system). This is an
important observation because we can chfs® that (14) y
is simplified as explained in Section Ill. For example, let us 2, e
suppose that, 2 and3 are in general position. Then, we can 2q 3
find f suchthal®;2 = 0,103 = 0, and2© 3 = 0. In this

particular case, (14) can be rewritten in this very compact 34
form

1y

1074 1054 1044
2055 2055 2055
3076 3056 3056

+de(K) = : (15) .

As a consequence, in terms of reciprocal products, we have
that
4'5'¢’
+detK) = Q) =

123

104" 14 14
205" 2@5 25
3®6" 36" 36’

. (16)

Yy 34 2
This expression still involves six leg lines; namely, those - 2!

denoted by 1, 2, and 3 in the original Gough-Stewart parallel
robot and 4’, 5’, and 6’ which result from the point reflection
of leg lines 4, 5, and 6 acrog5s(the focal point determined
by leg lines 1, 2, and 3). It is easy to see that 4’, 5’, and 6’ are
parallel to 4, 5, and 6, respectively. Pojftwhose geometric
interpretation is given in the next section, is thus essential in
our formqlatlon' Smce. there are 20 different (.;Ombmatloﬁig. 4. Lines 1, 2, and 3 in space determine a one-sheeted hyperboloid
of three lines out of six, there are up to 20 different focajiop), the projection of these lines across the center of the paraboloid (L', 2

points. This is useful when looking for the most convenierdnd 3', respectively) also lie in the paraboloid (bottom). Both sets of lines
expression for a given particular robot are in the two different reguli contained in the paraboloid. The center of the

. . paraboloid is actually the focal point determined by 1, 2, and 3. Observe
It is also important to observe that (16) can be reformunat 1', 2", and 3' are parallel to 1, 2, and 3, respectively. In this drawing,

lated in terms of angles directly using either (11) or (12)the hiperboloid is projected onto they-plane.
Also observe thap14 = p14 andv,4 = Y14 because 4 and
4’ are parallel, and analogously for all other angles.

The expansion of (16) leads to a bracket polynomial with V. GEOMETRIC INTERPRETATION OF THE
only six monomials, each of them involving the six lines. It FOCAL POINTS
is a bracket polynomial with only nine different reciprocal If we choose any three lines in space in general position,
brackets which represents an important simplification witthe set of lines meeting these three lines is a regulus. These
respect to the previously obtained bracket polynomials. Tdhree lines lie in an uniquely defined hyperboloid of one sheet
ble | compiles the number of monomials and the differen25, p. 15], a doubly ruled surface containing two reguli. One
kinds of brackets appearing in the five bracket polynomialsegulus contains the three lines, and the other, all the lines
considered in this paper. meeting these three lines (see Fig. 3).



TABLE |
NUMBER OF MONOMIALS AND DIFFERENT KINDS OF BRACKETS APPEARING IN THE FIVE CONSIDERED BRACKET POLYNOMIALS

Bracket Polynomial Number of | Different 1-3 3-1 2-2 Reciprocal
monomials | brackets | brackets| brackets| brackets| brackets
White’s [15] 96 56 14 14 28 0
McMillan’s [16], [24], [14] 24 34 8 8 18 2
Downing et al’s [13] 16 24 6 6 12 0
Bracket polynomial in (10) 130 15 0 0 15 15
Bracket polynomial in (16) 6 9 0 0 9 9

It is interesting to observe that the equation of the hysimplification that the reciprocal products between the lines
perboloid of one sheet defined by linés2, and3 can be corresponding to consecutive joint axes are constant.
expressed in terms of brackets as:

APPENDIX
[1a1s3apl[2a 2635 p] = [1a 1635 P][24 20 3a ], (17)
For comparison purposes, we include here the expressions

wherep = (z,y,2,1)7. This equation was apparently first ; o X )
presented without proof in [26, p. 198] where it was delivereaor Whyttes, McMillan’s, an_d _Do_vvnlnget al's bracket .
olynomials. Due to space limitations, we present them in

as an exercise (see [27] for its detailed derivation). The fir%lt ¢ ot ith si 241 for detail
expression for this hyperboloid was obtained by A. Cayleﬁirg‘so?at%f?u ations with signum (see [24] for details on

in [1]. It is @ much more complicated expression than tha _
in (17) as it is expressed in terms of the Pliicker coordinatess Whyte’s bracket polynomial (1983) [15]

of the three lines. O00 Oo0oOo oOoo

Our problem is to obtain the value g¢f that satisfies the [1alp4a5a][2a264664][3436556)
system of equations©;2=0,10;3=0,and2G;3 =0 000 000 000
(see Fig. 4). In other words ling, after projected acrosg —[40461624][56551534][6a66253b),
(let us call it2"), must meet liné; and line3, after projected
acrossf (let us call it3’), must meet linesd and?2. As a where [, 01, 10, 1, 11, U denote the permutations with
consequence’ and3’ must be in the complementary regulus ~ Signum  of the 2-element set§l., 1y}, {24,20},
to the one containind, 2, and3. Therefore, all lines (1, 2, {34, 30}, {4a, 46}, {5a,50}, and{6a,6,}, respectively,

3, 2’, and 3") lie in the same hyperboliod of one sheet. The ~and0 and[l, the permutations with signum of the 3-
point that, after projecting across it an arbitrary line in one  €lementset$1,1y, 2,2y, 343y} and{444s, 5455, 6461},
regulus, is a line in the complementary regulus is the center ~respectively. Then, the expansion of the above expres-
of the hyperboloid containing both reguli. This provides a  Sion leads t@-2-2:6+2-2-2:6 = 92 monomials.

neat geometric interpretation of our focal points.

VI. CONCLUSION « McMillan’s bracket polynomial (1990) [16]

From the use of Grassmann-Cayley algebra, we already oo 00
knew that the singularity condition for the general Gough- [La16242e][3a354a5a] 455560 60
Stewart platform could be expressed as the sum of products _[1a1b2[¢|13Da][5}574a4b][5a5b6a6b]
of threebrackets(4 x4 determinants involving the homoge- 00 o 0 oo
neous of four leg attachments) equated to zero. However, —[10152430] [254a4554] [35556465)
using elementary linear algebra arguments, we have pre- 00 0 0 00
sented similar results with the important advantage that only +1a152044] (26303654 [46566460)
those brackets that can be interpreted as reciprocal products
between leg lines are needed. Observe that, in this case, all permutations involve only

Space limitations prevent us from including examples, but 2 elements. Therefore, the total number of monomials
it is not difficult to imagine how all the presented new tools IS 2-2+2-2+42-2-242-2.2 = 24
can be used to obtain new insights into the singularities of
particular Gough-Stewart parallel robot architectures; that is, « Downing et al’s bracket polynomial (2002) [13]
Gough-Stewart parallel robots in which some attachments,
ei_ther on the base of the moving platform, coincide, are [1a1bia][2a2b£&][3a3b5mba]
aligned, or are coplanar.

. . 00 00 00

It can be said that the presented results are far reaching. —[4a451024][5a561534][6a65253)-
For example, they can be easily adapted to characterize
the singularities of 6R robots. In this case, the problem In this case, all permutations also involve only 2 el-
consists in identifying the linear dependencies between six ements. Therefore, the total number of monomials is
lines representing the revolute joint axes with the important  2-2.2+2-2.2 = 16.
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