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ABSTRACT
Voice command recognition remains relatively unexplored in ro-
botics, with limited insight into user acceptance and real-world
performance. In this work we try to address this by offering mul-
tiple voice command recognition models encapsulated in a single
publicly available ROS node ready to be used by the robotics prac-
titioner. We tested its actual performance with 10 volunteers of
different nationalities whose first spoken language is not English.
The obtained accuracy in these tests varies between 93.14% and
95.63% depending on the number of considered commands and
model size. Finally, we conducted a user study with 23 new vol-
unteers performing a human-robot collaborative transport task to
test whether humans are willing to use this type of system despite
having a non-negligible delay and failure rate. In addition to im-
provements in parameters such as comfort and trust in the robot,
86.9% of the volunteers chose this system over a technically more
robust one.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Empirical studies in HCI .
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1 INTRODUCTION
Since its appearance more than 100 years ago, the term "robot"
has evolved along with its capabilities and tasks. We started with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0323-2/24/03. . . $15.00
https://doi.org/10.1145/3610978.3640749

isolated automatons that performed routine and repetitive tasks.
Gradually these tasks becamemore complex but their executionwas
still performed in isolation, without interaction with any human.
Subsequently, robots began to leave the industrial environments and
began to interact with us. First dodging us as if we were obstacles,
then with small punctual interactions and now starting to perform
fully collaborative tasks in which an almost constant interaction
between human and robot is required.

This evolution is largely due to the increasing ability to detect
and interpret human intent with which we have been endowing
the robot. Starting with simple ways of modeling the motion of
the passers-by [18] to using increasingly elaborate motion predic-
tors [15, 16, 21]. Starting from more classical architectures [14, 39]
to modern Deep Learning-based models [24, 29, 38, 43].

While the previous examples are cases in which an attempt is
made to understand the human’s intention implicitly, that is, by
inferring it from their actions [9, 10]; in recent years an attempt has
been made to obtain the human’s intention explicitly, i.e., by trying
to communicate directly with them either by using user interfaces
of different types [8, 12, 13] or by using more natural means of
communication such as gestures [7, 30] or natural language [23, 28].
Within the latter group, the use of voice commands is a simpler
first approach that, although there are Deep Learning models with
high success rates [27, 33], they have rarely been used in robotics.
Even less has been tested whether humans are willing to use them
or how the price to pay (delay, system with non-negligible failure
rate) affects them.

In this work, we take several Deep Learning models already
designed (no contribution in this aspect) and encapsulate them in
a ROS (Robot Operating System) [32] node whose repository we
make publicly available together with its installation instructions,
being this our first contribution. This done, we check the actual
success rate of each model with people of different nationalities
and, therefore, different accents from those present in the training
dataset [40] typically used in the literature to train all these models.
In this way, the user of our node can know what is the expected
performance as well as the inference time being this our second
contribution. Finally, we performed a round of real experiments
with 23 volunteers in which we used a collaborative transportation
task to compare two systems for eliciting explicit human intention:
a voice command recognition system and a button-based system.
In this way, we test whether the human is willing to accept a more
natural communication system but with a higher delay and failure
rate, an assumption that we usually take for granted but that has
not been tested, this being our third contribution.
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Figure 1: User interface of our voice command recognition
node using ROS tool ’rqt_reconfigure’. It shows the params
that the user can tune to modify its performance.

In the remainder of the article, Section 2 presents thework related
to this article and Section 3 shows the capabilities of our node.
Section 4 includes the real-world accuracy of each model tested
with real humans as well as its inference time and shows the results
of our round of experiments with the two systems. Finally, Section 5
presents the conclusions and future work.

2 RELATEDWORK
Speech command recognition is a task that has been attempted
for decades using increasingly elaborate techniques from rudimen-
tary Hidden Markov Models (HMM) [6] to systems based on Mel-
Frequency Cepstral Coefficients (MFCCs) and Vector Quantization
(VQ) [35] or Dynamic Time Warping (DTW) [4]. However, it was
not until the proliferation of Artificial Neural Networks (ANNs)
that satisfactory results for finite sets of commands began to be
obtained [20, 27, 33, 42]. In turn, this proliferation of Deep Learning
based models has fostered the emergence of datasets containing
lists of typical commands being [40] the most widely used due to
containing more than 100.000 samples divided into 35 commands.
In this work, we will be based on [20, 42] to implement the different
models that will be trained and validated first on the mentioned
dataset and later with users from our research center.

Applied to robotics, the first attempts to communicate verbally
with a robot by means of voice commands in combination with
gestures [34] suffered from ambiguity problems that limited the
possibilities of these systems to control the robot. Subsequent
works [26, 31] have made use of more elaborate techniques that
can transmit simple movement commands to a mobile robot. More
recent articles seek either to achieve better command detection sys-
tems [36] or to use them in tasks where more complex interactions
are required, such as surgery [44] or industrial environments [19].
However, all of these works have in common that they assume that
humans want to use such systems despite their failure rate simply
because it comes more naturally to them. In this work we conduct
a user study to test whether this assumption holds.

As for the collaborative transport of objects, this task is usually
performed in close proximity between the human and the robot so

that a fast response system is needed in order to do not annoy or
bother the human. It consists of moving an object at a short distance
so that the robot only needs to move its end-effector or at a longer
distance so that the robot must also move its platform. It is common
to perform this task by using controllers [1, 5, 37, 41] so that the
robot adapts in the best possible way to the trajectory desired by
the human. There are also works in which they use some kind
of predictor of the trajectory [3], the velocity profile [2], or even
the force to be exerted by the human [11] to know their implicit
intention. Less common is to find works where the human can
explicitly communicate with the robot using, for example, gestures
to tell the robot where they want to take the object [25]. To the
best of our knowledge, this work is the first one in which voice
commands are used in this specific use-case.

3 VOICE COMMAND RECOGNITION
THROUGH DEEP LEARNING MODELS

The dataset mentioned in the previous section [40] is typically
used to train Deep Learning models in two variants. First, using all
samples in the dataset to detect up to 35 commands. Secondly, using
a reduced version of it with only the 12 commands from this list:
[’background_noise’, ’down’, ’go’, ’left’, ’no’, ’off’, ’on’, ’right’, ’stop’,
’unknown’, ’up’, ’yes’]. The ’background_noise’ category is obtained
from audio samples in which no command is mentioned and the
’unknown’ category using samples of the other commands present
in the dataset. The usual procedure in the literature consists of
processing these samples, with a duration not exceeding one second,
to obtain their spectrogram as an image so that Convolutional
Neural Networks (CNNs) can be used.

In this work we consider three versions of the dataset: the full
dataset with all 35 labels, a reduced dataset with 12 labels and
an extra reduced dataset with only 8 labels (discarding the op-
tions ’background_noise’, ’off’, ’on’ and ’unknown’). For each of
the datasets we train between 2 and 3 models (in the case of the full
dataset) with different sizes in terms of number of parameters and
based on CNNs and ResNets [17] as these are the workhorses used
in [20, 42]. Thus, the 12- and 35-label versions can be compared
with the State of the Art and the 8-label version is available in
case the reader needs more precision using only the most basic
commands. In total, we obtain 7 models that offer different options
when choosing between accuracy and computational load.

All these models are encapsulated in a single ROS node which we
put publicly available1 and whose user interface is shown in Fig. 1.
Through this, the user can choose the rate at which the node is
executed, whether or not to display debug messages, the minimum
probability with which the node must recognize a command for it
to be published or the specific model the user wants to use.

As for its internal operation, this is controlled by the parameters
SAMPLING_RATE and FRAMES_PER_BUFFER. The node tries to
create audio chunks of 1 second duration (this is the duration of the
samples in the dataset) so SAMPLING_RATE determines the fre-
quency in 𝐻𝑧 at which the audio signal is sampled and the number
of samples that each chunk must contain in order to be sent to the
selected model to predict the voice command. On the other hand,

1GitHub repository: https://github.com/JEDominguezVidal/dnn_voice_command_
recognition
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Table 1: Performance obtained with each of the tested models

Model Accuracy [%] Inference Time [ms] (min./avg./max.)
In testset split In real experiments RTX 2060 Mobile RTX 3060 Mobile

8 labels Small (0.71 M) 97.75 95.00 6.8 / 17.0 / 33.0 5.2 / 8.6 / 15.1
Medium (1.76 M) 98.14 95.63 9.9 / 18.5 / 34.6 5.4 / 9.0 / 14.5

12 labels Small (0.71 M) 96.12 93.75 6.8 / 16.8 / 27.6 5.1 / 8.5 / 13.8
Medium (1.76 M) 97.24 94.75 10.3 / 18.7 / 33.4 5.2 / 8.9 / 14.3

35 labels
Small (0.72 M) 95.19 93.14 6.9 / 16.9 / 30.6 5.2 / 8.7 / 16.4
Medium (2.95 M) 95.63 93.71 10.7 / 23.5 / 35.1 5.5 / 9.5 / 18.6
Large (11.2 M) 97.13 94.29 24.7 / 36.9 / 63.4 12.3 / 16.3 / 27.8

FRAMES_PER_BUFFER determines the number of old audio sam-
ples that the node must replace with new samples to create a new
chunk. In other words, between one audio chunk and the next one
there is an overlap of SAMPLING_RATE - FRAMES_PER_BUFFER
samples. This is done to ensure that if a voice command is said
out loud right between two audio chunks, this command does not
go undetected. A higher overlap offers a better guarantee that this
does not happen but at the cost of increased computational cost.

Additionally, the node repository also includes Google Colab
Notebooks with all the necessary code so that each of the models
can be retrained if desired or their internal structure modified.

4 RESULTS
Now that we have this ROS node with all the trained models we
can, first, test its actual performance in a known environment and
with people not present in the dataset. Secondly, we can use this
node in a specific task where the human can use voice commands
to guide the humanoid robot IVO [22]. In this way, we can compare
this system with one that is less natural but eliminates the problems
of delay and failure rate associated with command recognition and
check if the human is indeed willing to use this type of system.

All the experiments reported in this document have been per-
formed under the approval of the ethics committee of the Univer-
sitat Politècnica de Catalunya (UPC) in accordance with all the
relevant guidelines and regulations (ID: 2023.05).

4.1 Performance in real experiments
The original articles on which the models trained in this work are
based indicate the level of accuracy that each model can obtain in
the dataset used to train them. Here we report the actual perfor-
mance obtained with each version of each model both in the testset
split and by using this model later in real tests with volunteers.

For this purpose, 10 people (age: 𝜇 = 29.50, 𝜎 = 4.89; self-
reported spoken English skills from 1 to 7: 𝜇 = 4.88, 𝜎 = 0.83)
are recruited from our research center with different nationalities
and, therefore, different spoken accents. This allows us to obtain a
more accurate idea of its real-world performance in environments
where English is not the first language of the system users.

In this case, the nationalities of the people who have tested
the system would be as follows: 5 Spanish, 1 Chinese, 1 French, 1
Iranian, 1 Italian, 1 Mexican. They each read aloud the full list of 35
commands once, pausing for several seconds after each command.
Subsequently, they read the reduced list of 10 commands (the list
of 12 labels with out the ’background_noise’ and ’unknown’ cases)

Figure 2: Setup used to obtain our own testsets. Quite room
with a researcher on one side of the table recording the audio
samples and volunteer on the other side reading each list
of commands. Measurement of ambient noise in the middle
before start reading each list of commands.

three times, also pausing for several seconds after each command.
At the same time, a measurement of the ambient noise level is taken
before each new volunteer starts reading to know the conditions
in which the system is being tested, obtaining a mean value of
40.9±2.3 dBA (see Fig. 2 for an example of the setup used). In this
way, we obtain 1 sample per participant for the list of 35 commands
and 4 samples per participant for the list of 10 commands. With
this, we generate our own datasets of 35 labels (350 samples) and 10
labels (400 samples) with which we can check the real performance
of each model. Table 1 summarizes the result obtained.

The accuracy obtained by the different models varies between
95.19% and 98.14% in the testset split of the original dataset and
between 93.14% and 95.63% in our testsets obtained with real users
of different nationalities. Overall, there is a drop in performance of
between 2.05% and 2.75%. Table 1 also reports the inference time
obtained for each model using two different graphics cards to get
an idea of the required computational load. It is worth mentioning
that the main delay component of this type of system consists of
forming the audio chunk before sending it to the inference model.

4.2 Acceptability Study
To test whether the human really wants to use such systems we use
a collaborative transportation task as a use case. In it, the pair trans-
ports an object through a scenario with multiple walls and obstacles
so that there are multiple routes to the goal. Thus, the human must
tell the robot which route to follow at every intersection.
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Figure 3: Assessment of the main aspects involved in the interaction. Left: Comparison among the baseline experiment (without
buttons or voice commands) in gray, experiment with buttons in the handle in blue and voice commands in red. Valuation
from 1 (very low) to 7 (very high). Statistical significance marked with *: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001. ’R’ means Robot and
’H’ means Human. Right: Election made by the 23 volunteers with respect to which system they prefer for the task at hand.

Figure 4: Use case for acceptability study. Left: Human and
robot collaboratively transport an aluminium bar through a
maze. Right: Transported bar with buttons in the handle and
meaning of each button annotated next to it.

We recruit 23 new volunteers (age: 𝜇 = 27.36, 𝜎 = 4.87) who
perform three experiments each. In the first, they can only commu-
nicate with the robot by exerting force on the transported object,
which is measured and interpreted by the robot using a force sensor
on its wrist. In the second experiment, in addition to using their
force, they can also communicate explicitly with the robot by using
three buttons on the handle of the object telling it which route
to follow. In the third, instead of buttons, they can use our voice
recognition system (8-labels Medium model) and the commands
’Go’, ’Left’, and ’Right’ with the same purpose2 (see Fig. 4). To avoid
statistical distortions, the order of the second and third experiments
is randomized. After each experiment, volunteers fill out a ques-
tionnaire rating multiple aspects of the interaction. All variables
analyzed are normally distributed according to the Shapiro-Wilk
test unless otherwise stated. Fig. 3 shows the results obtained.

Applying to each variable an ANOVA test to check if there are
statistically significant differences (according to the criterion of
𝑝 < 0.05) and then a post hoc Tukey’s HSD (Honest Significant
Difference) test in case there are, it can be observed that the use
of the command recognition system outperforms in all the aspects
analyzed the system with buttons to explicitlly communicate with
the robot despite the fact that the latter does not present appreciable
delays and can not make any inference mistake. We highlight the
increases with respect to the base experiment in the contribution

2Experiments example: https://youtu.be/R7NlOYfpl5c

of the Robot to fluency (𝐹 (2, 66)=7.66; with buttons: 𝑝=0.032; with
voice: 𝑝 < 0.001), trust in the Robot (𝐹 (2, 66)=12.19; with buttons:
𝑝=0.005; with voice: 𝑝 < 0.001) and comfort (𝐹 (2, 66)=8.67; with
buttons: 𝑝=0.014; with voice: 𝑝 < 0.001).

Additionally, volunteers were asked at the end of the experiments
about which system they consider more appropriate for the task
founding that 86.9% of them prefer the system with voice command
recognition. Therefore, it can be affirmed that the human does
accept to use this type of systems, although an in-depth analysis
would be necessary to know all the reasons behind this choice.

5 CONCLUSIONS AND FUTUREWORK
In this work we deliver a series of State of the Art models for
voice command recognition encapsulated in a ROS node so that
the robotics practitioner can use this tool without the need to be
familiar with Deep Learning techniques. We have also shown the
performance of each model, not only in dataset but in controlled
environments with volunteers of different nationalities for whom
English is not their first language. We believe that this aspect is
useful to know how these models work in the real world. Finally, we
have conducted a user study in which we found that humans prefer
to use this system to communicate explicitly with the robot over
others that may be technically more robust but less human-like.

In the experiments performed with the robot, the delay problems
and higher failure rate are due to the use of a Bluetooth microphone
and the existence of ambient noise caused by the robot wheels. This
can be minimized by connecting the microphone directly to the
robot and using multiple microphones so that noise cancellation
can be performed. As future work, we plan to use this system in
other tasks such as handover or collaborative search. We consider
that this work can serve as a basis for future studies in which the
robot is provided with full natural language processing capabilities.
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