
The Inverse Kinematics of Lobster Arms
Federico Thomas∗, Josep M. Porta
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Abstract

The roots of the closure polynomial associated with a given mechanism determine its assembly
modes. In the case of 6R closed-loop mechanisms, these polynomials are usually expressed
in the half-angle tangent of one of its joints. In this paper, we derive closure polynomials of
6R robots in terms of distances, not angles. The use of a distance-based formulation provides
a fundamental advantage since it leads to closure conditions without requiring neither variable
eliminations nor variable substitutions. We restrict our attention, though, to robots with coplanar
consecutive joint axes, i.e., robots whose consecutive axes intersect at either proper or improper
points. We show that this particular arrangement of joints does not result on a reduction in the
maximum number of the inverse kinematic solutions with respect to the general case. Moreover,
this family of robots include broadly used offset-wrist arms. For instance, in this paper, we
obtain closure polynomials for robots such as the FANUC CRX-10iA/L, the UR10e, and the
KUKA LBR iiwa R800 robot in generic form (i.e., as a function of their end-effector locations).

Keywords: Lobster arm, inverse kinematics, offset-wrist robots, closure polynomials, distance
geometry.

1. Introduction

In 1841, in a communication addressed to the Philosophical Society of Cambridge, Robert
Willis (1800-1875) showed that the joints of a common crab’s claw work in the same way as
those of what we would today classify as a 5R kinematic chain [1]. Willis’ description appeared
later summarized at the end of his influential book “Principles of Mechanism” [2, pp. 461-463].
This description was accompanied by the drawing in Fig. 1. He observed that the crab’s claw
is composed of six rigid bodies (denoted by A, B, C, D, E, and E in the drawing) connected in
series through five revolute joints (denoted by 1, 2, 3, 4 and 5 in the drawing). What makes the
arrangement of these five joint axes remarkable is that any two consecutive rotation axes in the
chain intersect.

In 1979, J. Duffy and S. Derby, as a result of a suggestion by K. H. Hunt —who was aware
of Willis’ observations— studied the inverse kinematics of what they called the generalized
lobster arm, a 6R kinematic chain where every two consecutive axes intersect [3] (Fig. 2(a)).
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The resolution of this problem was seen as an intermediate step to be solved before attempting to
solve the same problem for the general 6R arm which, few years earlier, was named as the “Mount
Everest of kinematic problems” by F. Freudenstein [4]. Although rather counter-intuitive, as we
will see later, the arrangement of joints in the generalized lobster arm does not provide much
simplifications with respect to the general 6R arm, at least in the number of its inverse kinematic
solutions. J. Duffy and S. Derby showed, using a long and complicated process, how to reduce
this inverse kinematic problem to the computation of the roots of a 24th-degree polynomial. One
year after, Duffy and Crane [5], based on the extended spherical geometry to dual angles, derived
an input-output equation of degree 32, in one joint half-angle tangent, for the configuration of
the general 7R close-loop mechanism. In other words, if one of the seven angles were regarded
as the input angle, it could be said that there were at most 32 compatible values for any other
angle in the kinematic loop. At that point of the story, it seemed that making consecutive axes
to intersect could introduce a reduction in the number of possible solutions. Nothing was further
from truth.

In 1992, V. Murthy and K. J. Waldron revisited the problem in [6]. They solved it including
an important generalization: the intersection between the second and the third axis and between
the fourth and the fifth axis were no longer required. They reduced the resulting system of
equations to a single univariate polynomial equation of degree 16 in a way that no extraneous
roots were introduced in the used variable eliminations. This implied that the end-effector could
reach a given position and orientation in at most sixteen different ways. This was an important
improvement with respect to Duffy and Derby’s 24th-degree polynomial solution.

Six years earlier than Murthy and Waldron’s result, E. J. F. Primrose had already proved that
the general 6R robot could have up to 16 inverse kinematic solutions. However, due to the com-
plexity of his formulation, he could not come up with a way to remove the 16 redundant solutions
of a polynomial equation of degree 32 [7]. This was considered as an important landmark in the
history of kinematics. Nevertheless, two years earlier, H.-Y. Lee already devised a method to
explicitly obtain the 16th-degree polynomial in his Master Thesis written in Chinese [8]. This
method became known to the western world when it appeared four years later in [9, 10]. Subse-
quently, Raghavan and Roth [11, 12] reformulated it in a cleared way using Denavit–Hartenberg
(DH) parameters. Their work, based on the solution via dialytic elimination of joints variables,
inspired many other polynomial approaches, such as the Gröbner basis work proposed by Wang
et al. [13], or the eigenvalue approaches of Ghazvini [14] and Fu et al. [15]. Many other methods
and variations have appeared since then, thus leading to an extensive literature on the topic (see,
for example, [16, 17, 18, 19, 20] and the references therein). Of course, the literature also offers
plenty of local numerical approaches which are not discussed here because they only allow the
discovery of one solution to the problem (in general, the closest one to an initial guess). It is
finally worth stressing the fact that all existing non-numerical methods reduce the problem to
a univariate polynomial in the one of the joints half-angle tangent, and all the remaining joint
variables follow from linear equations once the roots of the univariate polynomials are found. In
this paper, we also obtain a polynomial, but in terms of a distance instead of an angle.

Certain combinations of values for the kinematic parameters of a 6R manipulator reduce
the degree of its closure polynomial, and hence the number of its inverse kinematic solutions.
In general, these combinations have a direct geometric interpretation in terms of orthogonality,
intersection, or parallelism, of some revolute joint axes. A celebrated case is the one in which
three consecutive joint axes intersect in a common point [21], or are parallel [5]. In both cases,
the degree of the closure polynomial drops to eight. A detailed investigation of particular cases
in which this number drops can be found in [22], where the arrangement of joint axes considered
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in this paper is not included. Thus, to the best of our knowledge, the question concerning the
degree of the closure polynomial of a lobster arm remains open.

Since the roots of a 16th-degree polynomial equation gives the solution of the general case,
one might think that it also contains the solutions to 6R serial chains with special geometric
parameters as a mere particular case. Nevertheless, as it was pointed out in [23], under certain
geometric circumstances, various problems appear. Some are of numerical nature, but others are
fundamental problems of the used method. Recently, it has been shown how the Raghavan and
Roth method fails for 6R wrist-partitioned robots [24]. The relevance of studying particular cases
has also been recently emphasized in [25] where it is argued that, while the general methods can
solve all the inverse kinematics problems of 6R manipulators, at least in theory, they can hardly
be implemented in industrial applications due to their high complexity [26]. In practice, 6R
manipulators are usually designed with simple geometric structures. They usually have pairs of
adjacent axes intersecting at a point, or perpendicular, or parallel to each other. Despite their
simple structure, a universal and efficient solution to their inverse kinematic problem is needed.
For that reason it is still useful to study 6R chains with special geometric parameters, such as the
one discussed here.

This paper is structured as follows. In the next section, we formulate the problem in terms
of distances. This will allow us to establish a kinematic connection with the 3-4 Gough-Stewart
platform from which we can readily conclude that our problem can indeed have up to 16 real
solutions. In Section 3, the basic operations with distances needed in the rest of the paper are
summarized. These operations are used in Section 4 to derive, in few lines, a scalar algebraic
radical closure condition for an arbitrary lobster arm. Then, in Section 5, it is explained how
this closure condition can be expressed in polynomial form, which comes out to be of degree 16,
as anticipated in Section 2. In Section 6, we apply the presented results to a selected set of
examples including broadly used commercial offset-wrist robots. Finally, Section 7 presents the
conclusions and prospects for future research.

2. Distance-based problem formulation

Problems in distance geometry are formulated in terms of a set of points, P1, . . . , Pn, and
their pairwise squared distances. The squared distance between Pi and P j is denoted as

si, j = s j,i = PiP j
2
. (1)

In our case, while some distances are constant, and can be deduced from the arm’s DH
parameters, others vary as the robot moves. On this basis, a lobster arm can be described as the
bar-and-joint framework depicted in Fig. 2(c). Points P2, . . . , P6 correspond to the intersections
between the six rotation axes. We assume, for the moment, that these six points are all different
and proper (they are not located at infinity). P1 and P7 can arbitrarily be taken on the first and
the last rotation axes provided that they do not coincide with P2 and P6, respectively.

The origin of the reference frames for the arm’s base and end-effector can be placed at P1
and P7, respectively. Then, we can compute the square distances

si,i+1 = d2
i , i = 1, . . . , 6, (2)

where di is the DH parameter that accounts for the translation along the i-th z-axis. These dis-
tances are associated with the bars in blue in Fig. 2(c). Moreover, since the angle between
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consecutive joint axes is known and constant (the DH parameter αi), we can also compute, using
the cosine rule for supplementary angles, the distances

si,i+2 = d2
i + d2

i+1 + 2di di+1 cosαi, i = 1, . . . , 5. (3)

These distances are associated with the bars in red in Fig. 2(c).
From the base to end-effector transform, say H, we have that the homogeneous coordinates

of P6 and P7 in the base reference frame are

p6 = H Rx(−α6) Tz(−d6) (0, 0, 0, 1)>,
p7 = H (0, 0, 0, 1)>,

where Rx represents a rotation about the x-axis and Tz a translation along the z-axis. Since
the homogeneous coordinates of P1 and P2 in the base reference frame are, respectively, p1 =

(0, 0, 0, 1) and p2 = (0, 0, d1, 1), given H we can readily determine s1,6, s1,7, s2,6, and s2,7. The
corresponding bars appear in green in Fig. 2(c). Observe that these lengths do not determine
the orientation of the tetrahedron {P1, P2, P6, P7} (a tetrahedron and its mirror reflection have the
same edge lengths). When several tetrahedra define the problem, it is fundamental to keep track
of their relative orientations [27, 28]. Otherwise, we would generate configurations that satisfy
all distance constrains but with incorrect orientations for the involved tetrahedra. Nevertheless,
in this particular problem, the set of points {P1, P2, P6, P7} defines the only tetrahedron in this
problem and, as a consequence, its orientation becomes irrelevant in the formulation.

Observe that solving the inverse kinematics of the lobster arm in Fig. 2(a) is equivalent to
find the assembly modes of the bar-and-joint framework in Fig. 2(c) which, in turn, is equivalent
to solve the forward kinematics of the 3-4 parallel Gough-Stewart platform in Fig. 2(d). If, in this
latter parallel platform, P1 and P7 are made to be coincident, the result is the octahedral parallel
manipulator which is known to have up to 16 forward kinematic solutions [29, 30], although
examples with 16 solutions are not available in the literature, up to our knowledge. Then, we
have a lower bound for the number of the inverse kinematic solutions of a lobster arm, which
coincides with the upper bound given by the maximum number of inverse kinematic solutions
of the general 6R arm: sixteen. In other words, a lobster arm can have up to sixteen inverse
kinematic solutions. An example where this occurs is given in Section 6.1.

The unknown distances in Fig. 2(c) are s1,4, s1,5, s2,5, s3,6, s3,7, and s4,7. It is not necessary
to compute them all to obtain all possible assembly modes of this bar-and-joint framework. The
problem can be reduced to compute the sets of valid values for a reduced set of unknown dis-
tances from which, together with the already known distances, the problem of giving coordinates
to the seven points can be trivially solved by a series of trilaterations (or, in general, by multilat-
erations [31]). The number of unknown distances necessary to compute the remaining distances
by trilaterations is called coupling number. There are problems whose coupling number is zero.
This means that they can be directly solved by trilaterations. This is the case, for example, of the
inverse kinematics of most wrist-partitioned 6R industrial robots [32]. Other important problems
arising in robotics, such as the forward kinematics of the octahedral parallel robot [33] or the
inverse kinematics of the 3R regional robot [34] have coupling number one. As we will see later,
the inverse kinematics of a lobster arm is also a problem with coupling number one. The cou-
pling number of the inverse kinematics of the general 6R arm and of the forward kinematics of
the general Gough-Stewart platform are four and three [27], respectively. The coupling number
is independent of the number of kinematic loops. There are problems with coupling number one
and an arbitrary large number of kinematic loops, both in two [35] and three dimensions [36].
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3. Basic operations with distances

3.1. Computing unknown distances from known ones

The valid distances between a set of points depends on the dimension of the embedding space.
These valid distances can be characterized using the so-called Cayley-Menger determinants [37,
38]. Using Lachlan’s umbral notation [39], the Cayley-Menger bi-determinant of two sets of
points, Pi1 , . . . , Pin and P j1 , . . . , P jn , is defined as

Π

Å
i1, . . . , in
j1, . . . , jn

ã
,

∣∣∣∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 si1, j1 . . . si1, jn

1
...

. . .
...

1 sin, j1 . . . sin, jn

∣∣∣∣∣∣∣∣∣∣∣∣ . (4)

An alternative definition (see for instance [37]) includes a multiplying constant factor which is
dropped here.

If the two sets of points in (4) coincide, the resulting determinant is said to be a Cayley-
Menger determinant, which we will simply denote as Π(i1, . . . , in). It comes out that a Cayley-
Menger determinant is proportional to the squared volume of the simplex spanned by the involved
points. Thus, in three dimensions, any Cayley-Menger determinant involving more than four
points necessarily vanishes. Therefore, given five points in three dimensions, say Pi, P j, Pk, Pl

and Pm, we have that
Π(i, j, k, l,m) = 0. (5)

This equation permits expressing any distance between these five points as a function of all other
distances. In particular, for sl,m , we have that

sl,m = −
1

Π(i, j, k)

Å
Π

Å
i, j, k, l
i, j, k,m

ã ∣∣∣
sl,m=0

±
√

Π(i, j, k, l) Π(i, j, k,m)
ã

︸                                                                               ︷︷                                                                               ︸
, gl,m(i, j, k)

, (6)

where the notation next to the right hand side of the bideterminant indicates that all instances
of sl,m = sm,l appearing in this bideterminant are set to 0. Due to the square root, we have two
possible values for sl,m corresponding to the two possible locations of points Pl and Pm with
respect to the plane defined by Pi, P j, and Pk (see [32, 40] for details).

In two dimensions, we have that

Π(i, j, k, l) = 0 (7)

and (6) simplifies to

sk,l = −
1

Π(i, j)

Å
Π

Å
i, j, k
i, j, l

ã ∣∣∣
sk,l=0
±
√

Π(i, j, k) Π(i, j, l)
ã

︸                                                                 ︷︷                                                                 ︸
, gk,l(i, j)

, (8)

which, as we will see, is useful even in 3D, when dealing with coplanar points.
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3.2. Trilateration

Once the problem at hand has been solved in distance space, we have to give coordinates to
all points to map the result into the 3D Euclidean world. When all pairwise distances are known,
this can be accomplished through the Cholesky decomposition [41]. Since this is not our case,
this operation will be performed through a sequence of trilaterations.

Let us denote by pi the coordinate vector of point Pi in an arbitrary reference frame. Then, it
is proved in [38] that, provided that all pairwise distances between Pi, P j, Pk, and Pl are known,
the coordinates of Pl can be computed in terms of the other point coordinates as:

pl =
1
k0

(
pi + k1(p j − pi) + k2(pk − pi) + k3(p j − pi) × (pk − pi)

)
, (9)

where

k0 = −Π (i, j, k) , k1 = Π

(
i, k, l
i, j, k

)
, k2 = −Π

(
i, j, l
i, j, k

)
, k3 = ±

√
2 Π (i, j, k, l). (10)

The square root in k3 generates two solutions for pl, located at opposites sides of the plane
supporting the triangle Pi, P j, and Pk, which is assumed to be non-degenerate. If we have
an additional distance from Pl to any point not included in the mentioned plane, then, we can
determine a single solution for pl.

The position analysis of the robots with coupling number zero, or trilaterable robots, (both
serial and parallel) can be solved by applying this operation solely. Good examples are the 3-2-1
Stewart-Gough parallel platform [42, 43] and the serial robots analyzed in [44].

3.3. From distances to angles

Once the solution has been coordinalized, we need to compute the robot’s revolute joint
angles. This is equivalent to compute some tetrahedra’s dihedral angles. A nice solution to
this problem can be found in [45]. Nevertheless, observe that distance-based and angle-based
formulations can be seen as dual coordinate-free formulations. Thanks to a little known theorem
due to M. Fiedler [46, 47], this duality arises in the form of matrix inversion.

Let us define the inverse matrix

Qi jkl =


0 1 1 1 1
1 0 si, j si,k si,l

1 si, j 0 s j,k s j,l

1 si,k s j,k 0 sk,l

1 si,l s j,l sk,l 0


−1

(11)

and let Λi jkl denote the tetrahedron defined by Pi, P j, Pk and Pl. Then, the entries of Qi jkl = (qp,q),
p, q = 0, . . . , 4 have the following geometric meaning:

• q0,0 = 4r2, r being the radius of the circumscribed sphere to Λi jkl.

• q0,q = qq,0, q = 1, 2, 3, 4, where − 1
2 q0,q are the barycentric coordinates of the circumcenter

of Λi jkl. That is, the center of this circumsphere is given by

ci jkl = −
1
2
(
q0,1pi + q0,2p j + q0,3pk + q0,4pl

)
. (12)
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• qp,q, p, q = 1, 2, 3, 4, determine the dihedral interior angles of Λi jkl. Indeed, the dihedral
interior angle φik between the faces opposite to Pi and Pk (i , k) is given by

φik = arccos
Å

qik
√

qii
√

qkk

ã
= arccos

Ö
Π

(
j, k, l
i, j, l

)
√

Π( j, k, l)Π(i, j, l)

è
, (13)

which can be regarded as the law of cosines generalized to a tetrahedron.

4. Deriving distance-based closure conditions for lobster arms

As already explained, once the end-effector of the analyzed lobster arm is fixed with respect
to its base, the distances s1,6, s1,7, s2,6, and s2,7 become determined. Now, let us take s3,6 as a
parameter. Then, we can consecutively compute the following unknown distances as a function
of s3,6

s3,7 = g3,7(1, 2, 6) = f1,1 + f2,0 X1, (14)
s4,7 = g4.7(2, 3, 6) = ( f3,2 + f4,1 X1 + f5,0 X2)/ f6,2, (15)
s5,7 = g5,7(3, 4, 6) = ( f7,4 + f8,3 X1 + f9,2 X2 − f6,2 X3)/( f6,2 f10,2). (16)

where

X1 = ±
√

f11,2, (17)

X2 = ±
√

f12,2 ( f13,2 + f14,1 X1), (18)

X3 = ±
»

f15,2 ( f16,6 + f17,5 X1 + f18,2 f19,2 X2 + f18,2 f20,1 X1 X2)/ f 2
6,2, (19)

and where fi, j are polynomials of degree j in s3,6 whose symbolic expression, in terms of all
robot parameters, cannot be included here due their length. We include them for a particular case
with 16 real inverse kinematic solutions in the Appendix of this paper.

Since s5,7 is one of the initially known distances, (16) can be readily rewritten as

f21,4 + f8,3 X1 + f9,2 X2 − f6,2 X3 = 0, (20)

which is a distance-based closure condition in the unknown distance s3,6 for any lobster arm with

f21,4 = f7,4 − s5,7 f6,2 f10,2. (21)

Since X1, X2, and X3 are nested, if we chose one of the two possible values for X1, we obtain two
possible values for X2. Likewise, given one possible value of X1 and X2, we obtain two possible
values for X3. As a consequence, the closure condition given in (20) has eight branches which
should be independently explored if we attempt to numerically solve it for s3,6. Although using
a numerical approach might be of interest in very large problems, in the problem treated here it
is much more reasonable to derive a closure polynomial from (20) by clearing radicals.

Note that we use the term closure polynomial instead of characteristic polynomial —as in,
for example, [22]— because this polynomial cannot be interpreted without stating in which vari-
able is expressed and, as a consequence, it is not unique. Indeed, other closure conditions can
of course be obtained in other unknown distances which, for the general case, do not seem to
be superior in any respect to the one just obtained. Nevertheless, it cannot be excluded that a
sequence might be better than another, in terms of simplicity, depending on the problem.
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5. Clearing radicals

The closure condition in (20) contains nested radicals. That is, expressions containing square
roots that contain other radical expressions. Euler already attempted to simplify such kind of
expressions [48, §671-681]. Unfortunately, denesting is not always possible, and, even when
possible, it is often difficult [49, Chapter 4]. In our case, it would involve the computation of
the Galois group of the polynomials inside the square root signs which is far from trivial [50].
Moreover, denesting does not alter, in general, the number of total square roots. As it does not
seem to provide any important simplification to our problem, we will simply focus on directly
clearing radicals without any kind of preprocessing.

Clearing the radicals in our closing condition (20) can be achieved by iteratively isolating
one radical at a time and squaring both sides of the resulting equation till no radical remains. In
our case, we have to first isolate X3 in (20) because it contains X2 and X1. After squaring both
sides of the equation and reorganizing the resulting terms, we obtain:

h1,8 + h2,7 X1 + h3,6 X2 + h4,5 X1 X2 = 0, (22)

where

h1,8 = − f11,2 f 2
8,3 − f12,2 f13,2 f 2

9,2 + f15,2 f16,6 − f 2
21,4,

h2,7 = f15,2 f17,5 − f12,2 f14,1 f 2
9,2 − 2 f21,4 f8,3,

h3,6 = f15,2 f18,2 f19,2 − 2 f21,4 f9,2,

h4,5 = f15,2 f18,2 f20,1 − 2 f8,3 f9,2.

Now, after isolating X2 in (22), squaring again both sides of the equation, and rearranging terms,
we obtain

k1,16 + k2,15 X1 = 0, (23)

where

k1,16 = f11,2 f12,2 f13,2 h2
4,5 + 2 f11,2 f12,2 f14,1 h3,6 h4,5 + f12,2 f13,2 h2

3,6 − f11,2 h2
2,7 − h2

1,8

k2,15 = f11,2 f12,2 f14,1 h2
4,5 + 2 f12,2 f13,2 h3,6 h4,5 + f12,2 f14,1 h2

3,6 − 2 h1,8 h2,7

Finally, after repeating the same operation with X1, we obtain

k2
2,15 f11,2 − k2

1,16 = 0, (24)

which is the closing condition in polynomial form. This polynomial can be factorized into one
term of degree 16 and in f 4

6,2 and f 4
10,2. The two later factors are singularity terms that vanish when

the triangles Ó�P2P3P6 and Ó�P3P4P6 degenerate [51]. Each real root of the 16th-degree polynomial
term in s3,6 will satisfy (20) for a particular combination of signs for X1, X2, and X3. These signs
are important because they give information on the location of P3 and P7 with respect to the
plane define by {P1, P2, P6}, P4 and P7 with respect to the plane defined by {P2, P3, P6}, and P5
and P7 with respect to the plane defined by {P3, P4, P6}, respectively. This allows us to compute
the valid lobster arm configurations by choosing the right solution, out of the two possibilities,
in the subsequent trilaterations.
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6. Examples

6.1. General lobster arm with 16 real inverse kinematic solutions
Using the DH parameters and the base-hand transformation given in Fig. 3(a) and (b), respec-

tively, the procedure presented in the previous section leads to the following closure polynomial
in s3,6:

s16
3,6 − 26.6700s15

3,6 + 324.733s14
3,6 − 2391.80s13

3,6 + 11905.7s12
3,6 − 42391.6s11

3,6

+ 111496.0s10
3,6 − 220630.0s9

3,6 + 331546.0s8
3,6 − 379279.0s7

3,6 + 329062.0s6
3,6

− 214256.0s5
3,6 + 102690.0s4

3,6 − 35058.1s3
3,6 + 8050.91s2

3,6 − 1112.91s3,6 + 69.8871. (25)

This polynomial has the 16 real roots shown in Fig. 3(c). For each of these roots, we can deter-
mine the signs of X1, X2 and X3 that satisfy (20). Then, given these signs, we can compute s3,7
and s4,7 using (15) and (16), respectively. The corresponding signs and values of s4,7 and (15) are
also shown in Fig. 3(c). Given s3,6, s3,7 and s4,7, and taking into account that P1, P2, P6, and P7
are already fixed, we can compute the location of points P3, P4, and P5 applying the following
sequence of trilaterations using Eq. (9): p3 from p1, p2, and p6, p4 from p2, p3, and p6, and
p5 from p3, p4, and p6. From these points, we can obtain the robot configuration following the
procedure described in Section 3.3. The robot poses obtained using this procedure are depicted
in Fig. 4.

Obtaining this example with 16 real inverse kinematic solutions was not a trivial task. The
discovery of a similar example for the general 6R arm by R. Manseur and K. Doty in 1989 was
considered, at that time, as highly relevant, despite it was obtained rather by chance using a
random search [52]. In our case, a random search led us to a maximum of 14 real solutions [53].
Fortunately, using the equivalence of lobster arms and 4-3 Stewart-Gough platforms in terms of
distances, we could apply Dietmayer’s method [54] to maximize the number of real solutions
thus obtaining the example given above.

6.2. A wrist-partitioned lobster arm
The vast majority of commercial 6R robots are wrist-partitioned robots. They have the im-

portant advantage that analytic closed-form solution exist for their inverse kinematics [21].
To find a distance-based model of a wrist-partitioned lobster arm, we have to reorganized

the seven points in the bar-and-joint framework shown in Fig. 2(c) as in Fig. 5. Then, the first
three axes determine the location of the wrist center (P6), and the last three, the orientation of the
robot’s end-effector (hence the adjective “wrist-partitioned”).

When the end-effector is fixed with respect to the base, the locations of P1, P2, P6, and P7 are
known. The location of P3 can be obtained by trilateriation from its distances to P1, P2, and P6.
This operation actually leads to two possible locations for P3. Then, we can locate P4 from its
distances to P2, P3, and P6. Since we have two possible locations for P3, we obtain four possible
locations for P4. Finally, the location of P5 can be obtained from its distances to P4, P6 and P7.
Since we have four possible locations for P4, we obtain eight possible locations for P5. In sum, a
decoupled lobster arm can have up to eight inverse kinematic solutions. In this case, the inverse
kinematic problem has been solved without computing any closure condition. Therefore, this is
a trilaterable robot. [44].

As an example, using the DH parameters and the base-hand transformation given in Fig. 6(a)
and (b), respectively, we obtain the eight inverse kinematic solutions given in Fig. 6(c) whose
graphical representations are depicted in Fig. 7.
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This example and the one presented in the previous subsection represent the two extreme
cases, in terms of complexity, that we have to face when solving the inverse kinematics of a lob-
ster arm. Next, we focus our attention to two intermediate cases: lobster arms with two or three
consecutive parallel joint axes. Both cases are of particular relevance since many commercial
offset-wrist robots can be classified within one of these two categories.

6.3. Lobster arm with two consecutive parallel joint axes

Cobots, or robots intended for direct human-robot interaction within a shared space, tend to
use serial kinematic architectures that are simple and inexpensive to realize compared to those
using wrist-partitioned architectures. The price to pay is that their inverse kinematics are, in gen-
eral, more challenging. This is the case, for example, of the FANUC CRX-10iA/L, the Cobotta
CVR038, and the Kinova Gen3 Lite, to name three representative examples. These three robots
have the same arrangement of joint axes, as concluded from their DH parameters (Fig. 8).

The inverse kinematics of the offset-wrist FANUC P-200e robot was reduced to finding the
roots of four separate univariate polynomials in [55]. The interesting thing about this particular
robot is all other robots considered in this section can be seen as a particular cases of it by simply
setting its DH parameter a4 to zero. Therefore, the approach presented in [55] could also be ap-
plied to solve the inverse kinematics of the robots in Fig. 8. Nevertheless, other ad hoc methods
have been presented since then. For example, in [56], a solution via numerical optimization of
a problem formulated by means of polynomials is proposed for the Kinova Gen-3 Lite. In [57],
a 16-degree closure polynomial is derived for the FANUC CRX-10iA/L by first obtaining a sys-
tem of closure scalar equations and then applying variable eliminations. More recently, in [58],
the inverse kinematics of this latter robot is solved by using the general algorithm presented
in [18] which also allows to obtain a 16-degree polynomial. Due to the complexity of the used
method, this polynomial could not be obtained in generic form, it had to be obtained for each
particular base-hand transformation. Moreover, this approach failed to provide the right solution
when it involves joint angles equal to π due to the used half-angle tangent variable substitution.

Observe that robots in this family are lobster arms except for the two parallel consecutive
joint axes. Nevertheless, since parallel joint axes can be seen as intersecting at infinity, this kind
of robots can be treated as a limit case of a lobster arm. Indeed, we could obtain a closure
polynomial in s3,6 for this kind of robots by locating the intersection point between the two
parallel axes at a finite point and then taking this point to infinity. Following this approach, the
coefficients of the polynomial would depend on a parameter, say d. If we make d → ∞, only
the leading coefficient of the closure polynomial, as a polynomial in d, would be relevant. This
coefficient would be the sought closure polynomial in s3,6. We implemented this idea and it
certainly works, but here we present a less computationally demanding approach that consists in
substituting parallelism constraints with coplanarity constraints. The interested reader can find
both implementations in the complementary multimedia material.

Let us take the FANUC CRX-10iA/L as a representative example of this family of robots.
In Fig. 9(a), we have a schematic representation of the known pairwise distances between the
points defining the joint axes of this robot. We have to pay attention to the role of P′3 and P′′3 .
Their locations can be obtained by trilaterations from the locations of P1, P2, P4 and P5, but the
distance constraints of P′3 and P′′3 with respect to these other points impose that P1, P2, P4 and P5
must be coplanar. Thus, we can focus our analysis in the position analysis of the bar-and-joint
framework shown in Fig. 9(b) with the extra constraint that P1, P2, P4 and P5 must be coplanar.
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After taking s2,5 as a parameter, we can apply the following resolution sequence:

s1,5 = g1,5(2, 6, 7), (26)
s1,4 = g1,4(2, 5), (27)
s2,6 = g2,6(2, 4, 5). (28)

Observe that, due to the coplanarity constraint, the second operation involves only four points.
After clearing radicals, we obtain a 16th-degree closure polynomial that factorizes in two

identical 8th-degree polynomials. It is important to highlight that, in all the examples presented
in this paper, the closure polynomials are obtained in generic form (that is, for arbitrary base-hand
transformations) which are then particularized for the base-hand transformation used in each
example. As a consequence, this factorization is an intrinsic characteristic of the analyzed robot,
not of the introduced base-hand transformation. For the particular base-hand transformation in
Fig. 9(c), the 8th-degree polynomial is:

P8(s2,5) =s8
2,5 − 1.4289s7

2,5 + 0.8718199738s6
2,5 − 0.2972547285s5

2,5

+ 0.06209835834s4
2,5 − 0.008158103810s3

2,5 + 0.0006595480487s2
2,5

− 0.00003005347782s2,5 + 5.918241430 · 10−7. (29)

The derivation of a polynomial of degree eight instead of sixteen, as in [58], represents an
important simplification. Since closure polynomials are assumed to be of the minimum possible
degree, one could incorrectly infer that there is something wrong in one of the two approaches,
but this is not the case. The reason behind this apparent contradiction is that the degree of
the closure polynomial obtained using a distance-based formulation is equal or lower than the
maximum number of inverse kinematic solutions. Indeed, once the solutions in distance space
are obtained, they have to be mapped onto the robot’s workspace (see Section 3.2), and this
mapping could be one-to-many. The analysis of the FANUC CRX-10iA/L robot is an excellent
example for illustrating this important fact.

The polynomial P8(s2,5) in (29) has eight real solutions. Nevertheless, in this particular case,
they can be grouped in three sets so that the roots in each set differ in less that 10−9. Thus, we
can say that, up to numerical errors, this polynomial has three solutions that we denote as sa

2,5,
sb

2,5 and sc
2,5. The first one, sa

2,5 = 0.1207, is a double root, the second one, sb
2,5 = 0.144725 is

a quadruple root and, finally sc
2,5 = 0.3043 is also a double root (Fig. 11). These solutions can

be used to obtain the locations of all points from those of P1, P2, P6, and P7 by applying the
following sequence of n-laterations: p5 from p2, p6, and p7 (two solutions); p4 from p2, p6, with
the extra constraint that it must lie on the plane defined by p2, p6 and p7 (two solutions); p′′3 from
p2, p4, and p5 (two solutions); and p′3 from p1, p2, p4, and p′′3 (one solution).

It is interesting to observe how the three solutions of P8(s2,5) are mapped onto the robot’s
workspace. While sa

2,5 and sc
2,5 lead to four valid poses each, sb

2,5 leads to eight. That is, 16 poses
in total that coincide with those given in [58].

6.4. Lobster arm with three consecutive parallel joint axes

Following the criterion introduced in the previous example, the UR-3/UR-5/UR-10 family
of robots, 6R cobots created by Universal Robots, and other robots with the same architecture
produced by companies such as Smokie Robotics, Techman Robot, AUBO Robotics, Omron,
and Doosan Robotics can be classified as lobster arms with three consecutive parallel joint axes
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(Fig. 13). The analytic solution to the inverse kinematics of this kind of robots is available
from multiple sources, in the form of both reports [59, 60, 61] and journal papers [62, 63, 64,
65, 66]. While most of them are based on elementary geometric approaches, some use rather
sophisticated mathematical methods. For example, Zhao et al. solved the problem by adopting
“analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as
well as matrix theory (sic)” [64]. Villalobos et al. devoted a series of papers to this particular kind
of robots [67, 68, 69]. They obtained a system of equations from the vector loop equation using
the conventional DH parameters, while paying particular emphasis to the singularity analysis.
An alternative analysis with the same goals was contemporaneously presented in [70].

Here, we concentrate in the resolution of the inverse kinematics of the UR10e robot as a
representative example of this family of robots. As in the previous example, we could formulate
the problem as a limit case of the general lobster arm, but, again, a simpler procedure can be
devised by leveraging coplanarity constraints.

The set of points defining the location of the six revolute axes of the UR10e robot (Fig. 14(a))
can be reduced to the bar-and-joint framework in Fig. 14(b). In this case, we have to introduce
P′6 to replace P6. This permits substituting the parallelism of P2P′2, P3P′3 and P4P5 with the
coplanarity of P2, P3, P4, and P′6.

As in the previous examples, the squared distances s1,6, s2,6, s1,7, and s2,7 are obtained from
the base-hand transformation. Nevertheless, due to the substitution of P6 with P′6, we also need
to obtain the following square distances:

s1,6′ = s1,6 − d2
4 , (30)

s2,6′ = s2,6 − d2
4 , (31)

s6′,7 = g6′,7(1, 2, 6), (32)
s4,7 = g4,7(5, 6, 6′). (33)

Observe that the square root in g4,7(5, 6, 6′) vanishes because P5, P6, and P′6 are coplanar and,
thus, we have a single solution for s4,7.

Now, after taking s2,4 as a parameter, the resolution sequence is simply reduced to:

s1,4 = g1,4(2, 6′), (34)
s4,7 = g4,7(1, 2, 6′), (35)

where the first operation involves only four points due to the coplanarity constraint.
A closure condition is obtained by identifying (33) and (35). That is,

g4,7(5, 6, 6′) = g4,7(1, 2, 6′). (36)

Then, using the base-hand transformation given in Fig. 15(a), and clearing the radicals in (36),
one finally obtains the closure polynomial equation in s2,4

s4
2,4 − 4.7510s3

2,4 + 8.4610s2
2,4 − 6.6943s2,4 + 1.9854 = 0. (37)

This equation has four real roots (1.142459, 1.151227, 1.224254, and 1.233021). Given these
values for s2,4 the locations of all points can sequentially obtained, as in the previous examples,
by n-laterations. Each valid value of s2,4 leads to two robot poses. The resulting eight solutions,
in terms of joint angles, are given in Fig. 15(b). Their graphical representation appears in Fig. 16.
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6.5. The inverse kinematics of a redundant lobster arm

The KUKA LBR iiwa R800 manipulator and the Kinova Jaco-2 can be classified, according
to their DH parameters, as redundant lobster arms (Fig. 17(a) and (b), respectively). Their spatial
configuration is determined by the location of eight points: P1, . . . , P8 (Fig. 17(c)). They are said
to be anthropomorphic robots because P2, P3, and P4 can be seen as the centers of the shoulder,
the elbow, and the wrist, respectively.

Again, the goal is to compute the robot’s joint angles for a location of its end-effector. In
this case, due to the robot’s redundancy, the problem is expected to be more complicated as
the solution should be a self-motion manifold instead of, as in the previous examples, a set
of discrete solutions. Nevertheless, it is next shown how it becomes almost trivial using the
proposed distance-based formulation.

The manufacturers of this kind of robots use numerical approaches to obtain the nearest so-
lution to a given initial configuration. This is enough when there are no obstacles in the working
area. However, the additional degree of freedom makes it possible, for example, to avoid ob-
stacles or even to perform robot motions without altering the end-effector location (and hence
the name of self-motion). To accurately characterize this self-motions, we cannot rely on the
iterative nature of a numerical method, a closed-form solution is needed.

In 2018, Faria et al. presented an analytic inverse kinematic method for 7 DoF anthropomor-
phic manipulators. This method included a redundancy resolution scheme to avoid singularities
and joint limits [71]. To address the problem of having infinite inverse kinematic solutions,
the authors introduced two additional variables in the calculation of the kinematic expressions
which were essentially derived from the standard matrix loop equation in homogeneous coordi-
nates. Two years later, Doliwa followed a similar approach based in first deriving the matrix loop
equation in homogeneous transformations to obtain seven non-linear equations, four of them re-
sulting from the rotation component, and three, from the position one [72]. These equations were
then solved by simple algebraic manipulations and the self-motion manifold was also character-
ized from simple geometric arguments. In 2021, Da Silva et al. presented an approach, based on
Gröbner bases, whose practical relevance is unclear as it only generates an a priori undetermined
number of samples on the self-motion [73].

Using a distance-based formulation, the inverse kinematic problem of the KUKA LBR iiwa
R800 manipulator reduces to solving the position analysis of the bar-and-joint framework in
Fig. 18. In this case, we simply need to locate P3 because, once the location of P3 is known,
those of P6, P7 and P8 readily follow using trilaterations. Therefore, only two relevant distances
are unknown: s1,3 and s3,5. These distances are not independent and we can express s1,3 and s3,5
as a function of each other. That is,

s1,3 = g1,3(2, 4, 5), (38)
s3,5 = g3,5(1, 2, 4). (39)

Alternatively, we can simply express the dependency between s1,3 and s3,5 in implicit form as:

Π (1, 2, 3, 4, 5) = 0. (40)

It is not difficult to prove that this implicit form defines an ellipse in the plane (s1,3, s3,5) of the
form

a s2
1,3 + b s2

3,5 + c s1,3 s3,5 + d s1,3 + e s3,5 + f = 0, (41)
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whose coefficients (a, b, c, d, e, f ) can be expressed as Cayley-Menger determinants [34]:

a = Π(2, 4, 5), b = Π(1, 2, 4), c = −2 Π

(2, 4, 5
1, 2, 4

)
,

d = 2 Π

(1, 2, 4, 5
2, 3, 4, 5

) ∣∣∣
s1,3,s3,5=0

e = 2 Π

(1, 2, 4, 5
1, 2, 3, 4

) ∣∣∣
s1,3,s3,5=0

f = −Π(1, 2, 3, 4, 5)
∣∣∣

s1,3,s3,5=0
(42)

Therefore, the possible degeneracies of the self-motion manifold can be analyzed geometrically
in terms of the distances involved in the problem.

The base-hand transformation in Fig. 18(a) leads to the ellipse in Fig. 18(b). Each point of this
ellipse, for instance the red dot in Fig 18(b) with coordinates s13 = 0.217353 and s35 = 0.143523,
determines a location for P3 from which we can obtain those for P6, P7 and P8. This finally leads
to the eight inverse kinematic solutions compiled in Fig. 18(c). The corresponding robot poses
appear in Fig. 19 which can be identified using the standard convention for antropomorphic
arms. If we take the left-down-noflip configuration and P3 is allowed to trace the whole ellipse,
the robot performs the self-motion represented in Fig. 21.

7. Conclusion

Some preliminary results on the application of distance geometry for solving the inverse
kinematics of a lobster arm were presented in [53]. Here, we have extended these seminal ideas
to solve the inverse kinematics of any 6R and 7R with consecutive coplanar revolute axes. This
allows the proposed approach to solve the inverse kinematic problem for highly popular com-
mercial robots.

We have shown how the problem can be fully formulated and solved first in terms of distances
and then mapped onto the robot’s workspace. This two-stage strategy has important advantages.
Firstly, it needs neither half angle tangent substitutions nor variable eliminations. Secondly, no
angles are involved in the generated equations. Standard formulations lead to equations involving
both rotations and translations. This means that the numerical conditioning of the problem might
depend on the used units for both magnitudes. Thirdly, the obtained closure polynomials are of
equal or lower degree than those using standard approaches. This is because the mapping from
distances to angles is, in general, one-to-many. This phenomenon appears, for example, when
solving the inverse kinematics of the FANUC CRX-10ia/L robot which represents an important
advantage with respect to previous approaches.

The presented examples illustrate the possibilities of the proposed approach for solving the
inverse kinematics of a wide range of commercial robots. For each of them, the corresponding
closure polynomial can be obtained in symbolic form as a function of the base-hand transforma-
tion. This means that, for example, the inverse kinematics of the UR10e, the AUBO-i5, or the
Doosan A0509 can be solved by obtaining the roots of a precomputed eight-degree polynomial.

Two points deserve further attention. Firstly, we have observed that some serial nR robots,
which do not necessarily have consecutive coplanar joints, can be converted to lobster form by
expressing some distances in terms of joint angles. This is the case of the robots with symmetric
DH-parameters, as recently shown in [74], and probably also the case of the serial robots clas-
sified as palindromic in [58]. Secondly, to obtain the closure polynomial of a lobster arm, we
need to introduce an unknown distance as a parameter. Nevertheless, classifying all 6R robots
in terms of the number of needed parameters, as it was done for all possible Gough-Stewart
platform topologies in [27], is an open problem.

14



Acknowledgments

We would like to express our gratitude to Dr. D. H. Salunkhe and Prof. Ph. Wenger for their
comments concerning the inverse kinematics of the FANUC CRX-10ia/L robot using the algo-
rithm presented in [18]. We would also like to gratefully acknowledge the financial support of
the Spanish Government through project PID2020-117509GB-I00/AEI/10.13039/50110001103.

15



Appendix

The three auxiliary distances computed from s3,6 to solve the inverse kinematics of the lobster
arm in distance space are

s3,7 = f1,1 + f2,0 X1,

s4,7 = ( f3,2 + f4,1 X1 + f5,0 X2)/ f6,2,

s5,7 = ( f7,4 + f8,3 X1 + f9,2 X2 − f6,2 X3)/( f6,2 f10,2).

where

X1 = ±
√

f11,2,

X2 = ±
√

f12,2 ( f13,2 + f14,1 X1),

X3 = ±
»

f15,2 ( f16,6 + f17,5 X1 + f18,2 f19,2 X2 + f18,2 f20,1 X1 X2)/ f 2
6,2.

With the base-hand transformation in Fig. 3(b), we have that

f1,1 = 2.6876 s3,6 + 0.78459,
f2,0 = 0.20406,

f3,2 = 6.4614 s2
3,6 − 20.298 s3,6 + 2.5606,

f4,1 = −0.1878 s3,6 + 0.63769,
f5,0 = −1,

f6,2 = s2
3,6 − 3.1666 s3,6 + 0.47208,

f7,4 = −5.5133 s4
3,6 − 50.442 s3

3,6 + 244.94 s2
3,6 − 134.34 s3,6 + 13.211,

f8,3 = −1.2397 s3
3,6 + 7.0639 s2

3,6 − 12.050 s3,6 + 4.3831,

f9,2 = −s2
3,6 + 12.913 s3,6 − 6.3776,

f10,2 = s2
3,6 − 24.852 s3,6 + 12.029,

f11,2 = −51.984 s2
3,6 + 181.52 s3,6 − 75.456,

f12,2 = s2
3,6 − 3.5125 s3,6 + 1.5274,

f13,1 = −1.8599 s2
3,6 + 12.062 s3,6 − 19.466,

f14,1 = 0.19320 s3,6 − 0.59445,

f15,2 = 1.5337 s2
3,6 − 9.5737 s3,6 + 4.3785,

f16,6 = 16.127 s6
3,6 − 236.21 s5

3,6 + 1055.5 s4
3,6 − 1685.8 s3

3,6 + 598.51 s2
3,6 + 110.86 s3,6 − 53.341,

f17,5 = 16.760 s5
3,6 − 123.96 s4

3,6 + 300.43 s3
3,6 − 268.22 s2

3,6 + 93.528 s3,6 − 10.025,

f18,2 = s2
3,6 − 4.1065 s3,6 + 2.3830,

f19,2 = 8.2705 s2
3,6 − 26.345 s3,6 + 4.3336,

f20,1 = s3,6 − 0.68708.

The process of obtaining the closure condition from these expressions is detailed in Sections 4
and 5.
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Figure 1: Willis’ depiction of the common crab’s claw that he used to explain how its joint axes are arranged (adapted
from [2, p. 462]).
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Figure 2: (Schematic representation of a general 6R lobster arm (a) and its standard DH parameters (b) (the parameters
marked with an asterisk can take any arbitrary real value as they can be incorporated into the base or the hand robot trans-
formations). Associated bar-and-joint framework (c) (see text for the used bar color code) and kinematically equivalent
3-4 parallel Gough-Stewart platform (d).
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Link (i) di ai αi

1 1.7516 0 1.9236
2 1.0655 0 2.3291
3 2.8190 0 2.6420
4 1.3708 0 1.0879
5 1.09690 0 1.6420
6 1.43930 0 0

H1 =


0.1911 0.1109 0.9753 1.9281
−0.8855 0.4483 0.1225 −0.1763
−0.4236 −0.8870 0.1838 2.2371

0 0 0 1.0000



(a) (b)

sol. s3,6 signs s3,7 s4,7 θ1 θ2 θ3 θ4 θ5 θ6

1 0.510315 − − + 1.766871 8.368854 1.3074 -3.0444 2.1648 -0.2014 1.9112 0.0000
2 0.511531 + + + 2.556932 5.349593 1.1897 -2.7579 -1.3991 0.1011 -2.2439 0.8478
3 0.517535 + + − 2.611473 4.985376 -2.0683 -1.9220 -0.8527 1.5262 0.4191 1.4161
4 0.549951 − + − 1.662544 7.359441 -1.4706 0.0910 -0.5592 1.4169 1.0860 2.9248
5 0.552049 − − + 1.659208 9.676559 -2.7092 3.0060 1.1400 -1.4580 -1.9520 1.1194
6 0.644244 + + + 3.426636 2.921999 -1.9294 -2.8000 0.7438 -1.5152 -1.4027 1.5271
7 1.213606 + − + 5.732403 6.754064 0.7633 2.7293 -0.6964 0.1056 -1.3257 1.5752
8 1.243517 − − + 2.420891 9.612035 -1.0238 0.3476 1.5209 -1.2424 -0.9514 -2.3640
9 1.342072 + + + 6.153180 3.077457 2.1407 -0.9368 -2.0707 0.7735 2.9416 -1.7570

10 2.274742 + + − 8.586736 4.171884 -0.1572 -3.1410 -2.0863 0.7570 1.7317 0.0933
11 2.718666 + + + 9.278002 4.570913 0.7421 2.6288 1.7610 -0.1255 1.2162 0.4594
12 2.788582 − − + 7.229026 7.619825 0.4669 1.8698 -0.2408 0.3367 -0.3508 2.0134
13 2.825605 − + − 7.412886 7.492612 1.3125 -2.3084 -2.1752 0.2054 -3.0882 -0.0126
14 2.975285 + − − 9.211062 5.612341 -0.2667 0.8603 -0.2734 0.8259 0.4635 2.6523
15 2.998423 + + − 9.089404 3.050897 -2.0301 -0.8754 0.8919 -1.5241 -0.4462 -3.0215
16 3.003898 + − + 9.033572 3.011288 -2.7632 -0.0301 -1.1731 1.4438 1.9917 -2.7305

(c)

Figure 3: DH parameters (a) and base-hand transformation (b) of a lobster arm with 16 real inverse kinematic solu-
tions (c).
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Figure 4: Representation of the 16 inverse kinematics solutions for the lobster arm with the DH parameters and hand-base
transformation given in Fig. 3(a) and (b), respectively.
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Figure 5: Bar-and-joint framework for a wrist-partitioned lobster arm. Bar color code is the same as in Fig. 2(c).
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Link (i) di ai αi

1 0.5 0 π/2
2 1.0 0 π/2
3 0.5 0 π/2
4 0.1 0 π/2
5 0 0 −π/2
6 0.1 0 0

H2 =


0.6849 −0.6976 0.2103 −1.0822
0.7008 0.7097 0.0720 −0.0847
−0.1995 0.0981 0.9750 0.6069

0 0 0 1



(a) (b)

sol. θ1 θ2 θ3 θ4 θ5 θ6

1 -0.6367 -1.3759 -0.6338 -1.4252 1.2710 0.8213
2 -0.6367 -1.3759 -0.6338 1.7164 -1.2710 -2.3203
3 -0.6367 -2.0587 0.6338 -1.7957 1.2162 -0.4379
4 -0.6367 -2.0587 0.6338 1.3459 -1.2162 2.7037
5 -1.8478 2.0587 -0.6338 0.9869 2.6572 -1.0252
6 -1.8478 2.0587 -0.6338 -2.1547 -2.6572 2.1164
7 -1.8478 1.3759 0.6338 2.3675 2.3413 1.3435
8 -1.8478 1.3759 0.6338 -0.7740 -2.3413 -1.7981

(c)

Figure 6: DH parameters of a decoupled lobster arm (a), used base-hand transformation (b), and the resulting eight
inverse kinematics solutions (c).
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1 2 3 4

5 6 7 8

Figure 7: The eight inverse kinematics solutions of the decoupled lobster arm given in Fig. 6.
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Link (i) di (mm) ai (mm) αi (rad)
1 245 0 π/2
2 260 710 0
3 -260 0 −π/2
4 540 0 π/2
5 150 0 π/2
6 160 0 0

(a)

Link (i) di (mm) ai (mm) αi (rad)
1 180 0 π/2
2 0 165 0
3 20.0 0 −π/2
4 177.5 0 π/2
5 38.5 0 −π/2
6 63.5 0 0

(b)

Link (i) di (mm) ai (mm) αi (rad)
1 243.3 0 π/2
2 30 280 π
3 20 0 π/2
4 245 0 π/2
5 57 0 π/2
6 235 0 0

(c)

Figure 8: The FANUC CRX-10iA/L (a), the Cobotta CVR038 (b), and the Kinova Gen3 Lite (c) have the same arrange-
ment of joint axes. They are offset-wrist 6R robots which can be seen as lobster arms.
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Figure 9: Schematic representation of the known pairwise distances between the pairs of points defining the joint axes in
the FANUC CRX-10iA/L (a). Since the locations of points P′3 and P′′3 can be obtained by trilaterations from the locations
of the other points, we have to focus our analysis in the location of the points shown in the bar-and-joint framework in (b).
The nodes in black correspond to points that must be coplanar. The bar color code is the same as in Fig. 2(c).
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H3 =


1 0 0 −0.4
0 −1 0 0
0 0 −1 0
0 0 0 1


(a)

sol. s2,5 signs θ1 θ2 θ3 θ4 θ5 θ6

1 0.1207 − + − -2.7688 -1.0765 1.0765 0.2400 0.0000 -2.5287
2 − + + 0.3728 -2.0651 2.0651 -2.9016 0.0000 -2.5287
3 + − − 2.7688 -1.0765 1.0765 2.9016 -0.0000 -0.6129
4 + − + -0.3728 -2.0651 2.0651 -0.2400 -0.0000 -0.6129
5 0.144725 − − − 0.3844 2.5186 1.0140 -3.1416 -2.7505 -2.7572
6 − − + -2.7572 0.6229 2.1276 -0.0000 -2.7505 -2.7572
7 − + − -2.7572 -1.0736 1.0140 0.0000 0.0596 -2.7572
8 − + + 0.3844 -2.0680 2.1276 3.1416 0.0596 -2.7572
9 + − − 2.7572 -1.0736 1.0140 -3.1416 -0.0596 -0.3844

10 + − + -0.3844 -2.0680 2.1276 -0.0000 -0.0596 -0.3844
11 + + − -0.3844 2.5186 1.0140 0.0000 2.7505 -0.3844
12 + + + 2.7572 0.6229 2.1276 3.1416 2.7505 -0.3844
13 0.3043 − − − 0.0819 2.4460 0.6956 -1.7907 -3.1416 1.8726
14 − − + -3.0597 0.6956 2.4460 1.3509 -3.1416 1.8726
15 + + − -0.0819 2.4460 0.6956 -1.3509 -3.1416 1.2690
16 + + + 3.0597 0.6956 2.4460 1.7907 -3.1416 1.2690

(b)

Figure 10: (a) Base-hand transformation for the FANUC CRX-10iA/L, and (b) the resulting inverse kinematics solutions.
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Figure 11: Plot of function P8(s2,5) in (29) in linear and logarithm scale. Three roots, of multiplicity 2, 4, and 2 are
located at sa

2,5, sb
2,5, and sc

2,5, respectively. Due to the even multiplicity of all roots, the function is positive in all its range.
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Figure 12: The sixteen inverse kinematics solutions of the FANUC CRX-10A/L for the base-hand transformation given
in Fig. 7(a).
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Link (i) di (mm) ai (mm) αi (rad)
1 180.7 0 π/2
2 0 -612.70 0
3 0 -571.55 0
4 174.15 0 π/2
5 115.985 0 −π/2
6 116.55 0 0

(a)

Link (i) di (mm) ai (mm) αi (rad)
1 96.43 0 π/2
2 0 410 0
3 100 380 0
4 20 0 π/2
5 100 0 π/2
6 80 0 0

(b)

Link (i) di (mm) ai (mm) αi (rad)
1 145.1 0 −π/2
2 0 329 0
3 0 311.5 0
4 -122.2 0 π/2
5 106.0 0 π/2
6 114.4 0 0

(c)

Figure 13: The UR10e (a), the AUBO-i5 (b), and the TM5-700 (c) have the same arrangement of joint axes, as it can be
verified from their DH parameters. Their second, third and fourth revolute axes are parallel.
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Figure 14: Schematic representation of the known distances between the points defining the joint axes in the UR10e
robot (a). By replacing P6 with P′6, the analysis can be reduced to finding the location of the points shown in the bar-
and-joint framework in (b), where nodes in black correspond to points that must be coplanar. Distance h can take any
non-null arbitrary value. Again, the bar color code is the same as in Fig. 2(c).
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H4 =


−0.4850 −0.6042 0.6323 0.8797
0.7822 −0.6230 0.0047 0.1412
0.3911 0.4968 0.7747 1.0026

0 0 0 1.0000


(a)

sol. θ1 θ2 θ3 θ4 θ5 θ6

1 0.3873 -2.7223 0.8908 2.7538 -1.3341 0.3668
2 0.3873 -1.8647 -0.8908 -2.6054 -1.3341 0.3668
3 3.0999 -1.2693 0.8746 -0.4922 1.5398 0.7049
4 3.0999 -0.4272 -0.8746 0.4149 1.5398 0.7049
5 3.0999 -0.9887 0.7294 2.5140 -1.5398 -2.4367
6 3.0999 -0.2858 -0.7294 -3.0133 -1.5398 -2.4367
7 0.3873 -2.8457 0.7104 -0.0840 1.3341 -2.7747
8 0.3873 -2.1611 -0.7104 0.6521 1.3341 -2.7747

(b)

Figure 15: The base-hand transformation for the UR10e robot given in (a) leads to the eight inverse kinematic solutions
given in (b).
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Figure 16: Representation of the eight inverse kinematic solutions given in Fig. 15(b).
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Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

Link (i) di (mm) ai (mm) αi (rad)
1 340 0 −π/2
2 0 0 π/2
3 400 0 π/2
4 0 0 −π/2
5 400 0 −π/2
6 0 0 π/2
7 126 0 0

(a)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

Link (i) di (mm) ai (mm) αi (rad)
1 275.5 0 π/2
2 0 0 π/2
3 410 0 π/2
4 9.8 0 π/2
5 311.1 0 π/2
6 0 0 π/2
7 263.8 0 π

(b)

θ1

θ2

θ3

θ4

θ5

θ6

θ7

d1 d3 d5 d7

P1 P2 P3 P4 P5

P6 P7 P8

(c)

Figure 17: The KUKA LBR iiwa R800 manipulator (a) and the Kinova Jaco-2 (b) are redundant serial robots that can be
classified as lobster arms, as it can be verified from their DH parameters. Despite their apparent complexity, their inverse
kinematics can be formulated in terms of only eight points (c), where the seven rotation axes are determined by P1P2,
P2P6, P2P3, P3P7, P3P4, P4P8 and P4P7.
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Figure 18: Bar-and-joint framework associated with the robots in Fig. 17. In this case, we just need to locate P3 because
the locations of P6, P7 and P8 become readily determined, once that of P3 is known, using trilaterations.

39



H3 =

−0.7945 0.0157 −0.6070 −0.3279
−0.5875 −0.2723 0.7620 −0.0919
−0.1533 0.9621 0.2256 1.0089


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.
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2
3

(a) (b)

sol. θ1 θ2 θ3 θ4 θ5 θ6 θ7
1 1.6378 1.7866 -1.8485 1.7574 -2.0846 1.8975 1.5478
2 1.6378 1.7866 -1.8485 1.7574 1.0570 -1.8975 -1.5938
3 1.6378 1.7866 1.2931 -1.7574 1.0570 1.8975 1.5478
4 1.6378 1.7866 1.2931 -1.7574 -2.0846 -1.8975 -1.5938
5 -1.5038 -1.7866 1.2931 1.7574 -2.0846 1.8975 1.5478
6 -1.5038 -1.7866 1.2931 1.7574 1.0570 -1.8975 -1.5938
7 -1.5038 -1.7866 -1.8485 -1.7574 1.0570 1.8975 1.5478
8 -1.5038 -1.7866 -1.8485 -1.7574 -2.0846 -1.8975 -1.5938

(c)

Figure 19: For the shown robot’s end-effector location in (a), the valid values of s13 and s35 are on an ellipse (b). Each
point of this ellipse defines a location for P3. Then, we can compute the two possible locations for P6, P7, and P8 with
respect to the triangles Ó�P1P2P3, Ó�P2P3P4, and Ó�P3P4P5, respectively, using trilateration. Thus, each point of the ellipse
determines eight inverse kinematic solutions. For example, for the point in marked in red, we obtain the eight inverse
kinematic solutions shown in (c).
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right-up-noflip right-down-noflip left-up-noflip left-down-noflip

right-up-flip right-down-flip left-up-flip left-down-flip

Figure 20: Representation of the eight inverse kinematic solutions in Fig. 18(c). Each of these solutions can be identified
with the right-left shoulder, up-down elbow, and flip-noflip wrist convention used when working with antropomorphic
arms.
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P4

P2

P3

Figure 21: Self-motion for the left-down-noflip configuration with the base-hand transformation given in Fig. 18(a).
As in all eight configurations, the center of the elbow (P3) can freely rotate about the line defined by the center of the
shoulder (P2) and that of the wrist (P4).
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