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Abstract
This study proposes to improve the reliability, robustness and human-like nature of Human–Robot Collaboration (HRC).
For that, the classical Perception–Action cycle is extended to a Perception–Intention–Action (PIA) cycle, which includes
an Intention stage at the same level as the Perception one, being in charge of obtaining both the implicit and the explicit
intention of the human, opposing to classical approaches based on inferring everything from perception. This complete cycle
is exposed theoretically including its use of the concept of Situation Awareness, which is shown as a key element for the
correct understanding of the current situation and future action prediction. This enables the assignment of roles to the agents
involved in a collaborative task and the building of collaborative plans. To visualize the cycle, a collaborative transportation
task is used as a use-case. A force-based model is designed to combine the robot’s perception of its environment with the
force exerted by the human and other factors in an illustrative way. Finally, a total of 58 volunteers participate in two rounds
of experiments. In these, it is shown that the human agrees to explicitly state their intention without undue extra effort and
that the human understands that this helps to minimize robot errors or misunderstandings. It is also shown that a system that
correctly combines inference with explicit elicitation of the human’s intention is the best rated by the human on multiple
parameters related to effective Human–Robot Interaction (HRI), such as perceived safety or trust in the robot.

Keywords Physical human–robot interaction · Human–robot teaming · Human-in-the-loop · User study

1 Introduction

In this article the classic Perception–Action (PA) cycle [1,
2] is brought up-to-day in a new framework that emphasizes
the importance for each agent to know and understand the
intention of its partner in collaborative tasks, that is, for the
robot to know the intention of the human but also for the
human to know the intention of the robot.

For this purpose, we divide all the tasks typically assigned
to the classic Perception block into two blocks at the same
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level. One of them is in charge of perceiving all the informa-
tion necessary to understand the environment and the other
one is in charge of receiving (1) directly the intention of the
other agent in case they explicitly indicate it and (2) all the
information necessary to infer the implicit intention from
their actions. This is how the Perception–Intention–Action
(PIA) cycle arises.

Its usefulness in an application that requires Human–
Robot Collaboration (HRC) lies in a greater modularity that
helps to know which stage is being worked on and how each
one of them interrelates with the others. Likewise, and due to
its generality, it can serve as a compass for a wide variety of
tasks as will be shown throughout the article. In addition, it
also lays on the table the possibility usually neglected in the
literature that the human (or robot) can explicitly indicate
their intention without the need to use complex inference
systems.

To understand this small shift in thinking, it is worth look-
ing at how we, humans, approach some of our daily tasks
as these have always served as inspiration for robotics. For
example, whenwewalk down the street, we use our sight and
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hearing to perceive possible obstacles or traffic signs andwith
these data we infer whether we should stop at a crosswalk or
whether we should brake or turn slightly to one side to avoid
colliding with another pedestrian. However, when it comes
to performing a collaborative task with other human, we use
language to communicate explicitly with our peers and thus
coordinate with our workmates, obtain information from our
friends or agree with our partner.

Using the above example, a robot navigating autonomously
along a street will use its sensors to detect the obstacles
present, infer their speed and acceleration if they are mobile
and, with all this information, it will trace the route or
sequence of actions it must perform to reach its destination.
However, when it comes to making a robot collaborate with
a human, we have not followed the above approach of imitat-
ing the human behaviour. What we have done is to use more
and better sensors and more complex and powerful infer-
ence systems in order to make better and better inferences of
their intent [3–5]. Interestingly, this is also a human behav-
ior. Whether out of fear, embarrassment or disregard of the
consequences of making a mistake, we often try to infer the
intentions of our fellow humans from their actions, resulting
in multiple errors and misunderstandings.

This is due to the fact that the correct understanding of the
intention of the other agent is essential for the correct devel-
opment of this type of tasks and that this intention is not
always inferable or, alternatively, that the associated uncer-
tainty is too high. Just as we eventually come to understand
that the best way to know another person’s intentions, pref-
erences and desires is to explicitly talk to them, we propose
to use the same approach to make Human–Robot Collab-
oration (HRC) more reliable, robust and, ultimately, more
human-like.

Specifically, we propose the PIA cycle by which we give
the human the possibility to express their intention explic-
itly and we separate everything referring to the perception
of the environment from the information necessary to under-
stand the human’s intention including an Intention stage at
the same level of the Perception one and not as a sub-block
of this. This new block can analyze jointly the implicit inten-
tion inferred through the perception of the human partner
and the explicit one indicated by this human. Once the envi-
ronment has been perceived and the partner’s intention has
been analyzed, both types of information should be properly
combined and understood. For this purpose, we resort to the
concept of Situation Awareness [6] (SA).

Thus, our first contribution is the statement of our theoreti-
cal framework explaining the previous division and using the
concept of Situation Awareness to allow the robot to under-
stand the current situation in which it finds itself, thus being
able to adapt to it by choosing the most appropriate strategy
in each case. This cycle is what allows the robot to under-
stand the action to be taken, opening the door for it to be

Fig. 1 Example of Human–robot pair collaboratively transporting an
object. Both agents must navigate through a complex environment with
multiple walls. Human has extra information since he is the only one
to understand the forbidden pass sign. The transported object is a steel
bar

adaptive, anticipatory or even proactive depending on the
situation. This cycle also serves to explain concepts such as
the cooperative roles or negotiation.

To illustrate our theoretical framework in an easy to
understand yet effective manner, we chose a human–robot
collaborative transportation task as a first use case. The
choice of this case is due to the fact that it is a task that
occurs in close proximity between human and robot, where
some response speed is required limiting the complexity of
the inference from the environment and the decision making.
It also allows us to introduce multiple scenarios in which, for
example, one of the agents has partial information or inwhich
a specific collaboration is necessary to overcome an obsta-
cle (see Fig. 1). Additionally, it is a case widely studied in
the literature [7–13], allowing us to compare state-of-the-art
solutions (typically based on inferring the human’s intention
through the force exerted on the object) with our approach
of combining both types of intention.

In order to perform real experiments, we have designed a
simple but functional force-based model based on the known
Social Force Model (SFM) [14] . This model is used to rep-
resent the environment perceived by the robot as a set of
attractive and repulsive virtual forces, just as [14] does rep-
resenting the goal of the navigation as an attractor and each
detected obstacle as a repulsor. The choice of this approach
is due to the fact that it greatly simplifies the integration of
the physical force exerted by the human, as well as the rep-
resentation of their intention as another virtual force. Taking
advantage of the model, we built a shared control system
that allows us to directly combine the robot’s preferences (its
optimization criteria) with those of the human, being the for-
mulation of this force-based model our second contribution.

Once our shared control system is implemented,we used it
to validate our theoretical framework performing two rounds
of experiments. The first round is used to check if the user
accepts our framework, i.e., that it does not impose an exces-
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sive extra burden and that they understand its usefulness.
Later, the second round is used to compare a state-of-the-
art solution based on using a complex system to infer the
human’s intention (in this case based on a deep learning archi-
tecture), with our framework and check if it can improve any
aspect associated to an effective Human–Robot interaction
(HRI).

In summary, the key findings of our work are the fol-
lowing. First, multiple tasks can fit into our framework,
demonstrating its generality. Second,wehave experimentally
verified that humans appreciate having some way to explic-
itly indicate their intention and that this does not involve any
extra physical ormental effort. Third, we have also found that
humans prefer a system in which their intention is elicited
both implicitly and explicitly. Thus, a system in which the
robot shows enough intelligence to roughly understand the
human’s intention, but also allows the human to explicitly
indicate its desires in order to avoid possible errors or mis-
understandings is the preferred one.

Two points are worth mentioning. First, that the idea of
jointly considering the human’s implicit and explicit inten-
tion to improve performance in human–robot collaborative
tasks in terms of parameters such as human comfort or trust
in the robot was briefly presented in our previous work
[15]. Albeit without the degree of depth with which it is
presented here, nor with an in-depth analysis of the experi-
mental results. In addition, the formulation of the forcemodel
was completely missing. Second, that our force model is not
intended to be perfect but to visualize all the theoretical con-
cepts we present in a simple way. This implies that any of its
parts can be improved by other researchers using more com-
plex architectures or extra modules. It is not our aim to show
a definitive method that definitively solves the task analyzed
here but to show another way to solve it that can serve as
inspiration for other tasks.

In the remainder of the article, Section2 presents the
work related to this article. Section3 explains our complete
cycle inspired by everyday examples that can be applied
to robotics. Section4 includes the formulation of the force-
based model used in order to test various parts of our cycle
in real experiments. It also includes some implementation
details to increase the reproducibility of our results. Section5
presents the two rounds of experiments performed with their
respective results. Finally, Section6 discusses some of the
limitations of the present work and Section7 presents the
conclusions.

2 RelatedWork

Since the beginning of robotics, the Perception–Action cycle
has served as an inspiration to allow, based on how the human
brain works [16], the decomposition of the robot control into

its functional modules [1, 2, 17] and the subsequent devel-
opment of more advanced architectures and more complex
robots [18]. This has allowed us to advance from the first
machines with some autonomy [19, 20] to today’s humanoid
robots [21–23], improving in the process the robotic capabil-
ities to perform specific tasks. However, despite its proven
validity in improving the capabilities of an autonomous robot,
the authors also conclude that this cycle is not sufficient
when it comes to performing collaborative tasks with another
human [24]. This is why we begin to take into account the
intention of the other agent.

Examples of attempting to infer human intent using dif-
ferent models are common in the literature [7, 25–30]. They
use the human’s previous hand or whole body motion to pre-
dict the following trajectory andwith this infer their intention.
The analysis of the human’s gaze is also common as an earlier
hint to infer the human’s desired destination or chosen option.
Another common point of these works is that their models
usually suffer from uncertainties and error rates that are still
not negligible, in spite of the diversity of models tested rang-
ing from primitives analysis and Gaussian Mixture Models
(GMM) to more recent Artificial Neural Networks (ANN) in
all their varieties. The reasons given for this behavior range
from the fact that themodel is not yet perfect or that they have
not been trained with sufficient data to the fact that the errors
are caused by particular cases and outliers and that they can
be minimized with the introduction of more complex archi-
tectures [31], while allowing the other agent to indicate their
intention explicitly when there is a high uncertainty could
simplify the problem.

While the correct understanding of the human’s intention
is essential for the correct performance of the robot, the oppo-
site case is also relevant. This is where the notion of shared
intention arises. This concept is originally studied in psy-
chology. Gilbert [32] defines shared intention as a mutual
agreement between two or more people to perform a joint
action, and [33] adds to this definition a temporal structure
in which the actions of the participants are coordinated and
take place over time. Dominey and Warneken [34] applies
this concept to the field of robotics but using robotics as a
tool for designing experiments with which testing theories
from psychology.

In actual robotics works, the concept can be found,
although treatedmore tangentially than directly, in fields such
as shared control or shared autonomy. Jain and Argall [35]
recognizes that effective HRC in shared autonomy requires
reasoning about the intentions of the human partner. In their
case, a teleoperated grasping task, they find that inferring the
robot’s goal is difficult even for humans and that both humans
and robots make mistakes when trying to predict their part-
ner’s intention. Applied to the field of robotic prostheses, in
[36] they use three sensors to detect the human’s intention
(mechanomyography signals, camera and IMU) and they cre-

123



International Journal of Social Robotics

ate a model that combines this information to improve the
control of the prosthesis. However, they still have unaccept-
able error rates (> 50%) in correctly positioning andgrasping
some objects, which could be improved by allowing the user
to have more control when the uncertainty is too high. In [37]
they allow sharing control of the prosthesis so that the human
takes control when dexterity is needed while the prosthesis
is responsible for maintaining control when a robust grasp is
needed. The main problem is to know when to switch from
one type of control to the other as this change is detected
from EMG (electromyography) signals which are consider-
ably noisy. This allocation of more or less control is what
[38] calls arbitration, presenting in the article several meth-
ods to achieve it, although maintaining the limitation that
the robot must infer the intention of the human and without
considering that the human can deliver it directly to the robot.

It is also possible to find completely theoretical articles
[39, 40] that study this concept of shared intention and its
importance to move from an instrumental interaction to a
collaboration [39] or its importance together with shared
awareness to create interactions that are transparent (reduce
the uncertainty about the behavior of an automaton) for the
human [40], but without creating any framework beyond
stating the relationships between this concept and others or
performing any experiment to support it. In contrast, our
work does both of these things, in the line of [38], but with
the addition of statistical studies that demonstrate its validity
and acceptance by the human.

The approach of allowing the human to explicitly express
their intention is not so common.Mullen et al. [41] presents a
system in which the robot autonomously performs a manipu-
lation task and, when faced with high uncertainty in meeting
any of its goals, informs the humanof the various possibilities
and asks for their explicit help. Although this work explicitly
takes advantage of the human’s capabilities to avoid errors,
it is oriented to perform autonomous and non-collaborative
tasks. Che et al. [42] makes a mobile robot navigating in
the presence of humans to indicate its intention both implic-
itly (by making movements that are legible) and explicitly
(by alerting all nearby humans of its presence through a
vibration in a wristband on each human’s wrist). However,
this work takes the opposite approach to ours, i.e., it is the
robot that indicates its intention for the human to take it into
account rather than the human informing the robot so that
it can refine its planning. In any case, they also conclude
that using both types of communication increases trust in
the robot. For its part, Gildert [43] makes use of this idea to
improve object manipulation between two robots by commu-
nicating their plans implicitly through the force exchanged
through the manipulated object and explicitly by exchang-
ing wireless messages in a pre-established code. With these
works in mind, ours differs from Gildert’s in that we take
the idea of allowing the other agent to communicate explic-

itly to human–robot collaborations rather than robot–robot
cases. It also differs from Mullen’s in that we orient to
collaborative tasks that require repeated and near-constant
human–robot interaction in order to be accomplished rather
than to tasks performed autonomously by the robot. Finally,
our work also differs from Che’s in that it is the human that
can express themselves both implicitly and explicitly rather
than the robot.

The work most similar to ours is [44]. In it they perform
a human–robot collaborative search task and also obtain the
explicit intention of the human, i.e., what area they intend
to explore next, using a mobile application as an interface
[45]. However, they neither integrate both types of intention
(the implicit intention could be obtained by analyzing the
trajectory described by the human) nor present a theoretical
framework which can be used in other use cases. In our case,
we do present a theoretical framework that allows the inte-
gration of both types of intentions and that is general enough
to be applied to tasks as disparate as collaborative search or
collaborative transportation, which is the main use case used
in this article. In any case, more theoretical articles [46, 47]
recognize the utility of combining both types of intentions
and point out that there are no current system or implemen-
tation which makes full usage of that.

Situation Awareness can be useful to integrate both inten-
tions and the environmental information. This concept is,
according to the author [6, 48], the understanding of what
is going on around you. That is, to keep all the information
that is important to the task at hand and discard the irrel-
evant data. It can be understood through three incremental
levels [49]: the first one includes the acquisition of surround-
ing information. The second one takes care of this different
information sources and integrates them considering their
relevance. Finally, the third one uses the comprehension of
the current state to make future predictions. This has been
considered as a key factor for proper decision-making in air
combat environments, since it was originally designed for the
aviation sector. However, the robotics field has mainly taken
advantage of it to design user interfaces [50–57] that include
as much information as possible without being obtrusive for
teleoperation tasks [58–60] with the objective of increasing
the Situation Awareness of the human but not the one of the
robot or the set of robots controlled by the human. Other
works [61] start from this concept but reformulate it or reor-
ganize its parts adjusting it to the needs of their task. It is
worth mentioning the work of [62], in which they use the
Situation Awareness concept both to improve the user inter-
face and to process sensor data to allow a Task Reasoner
to choose the action to be executed. However, they apply it
directly to the specific task of robotic surgery while we use
it in a general framework that can include multiple methods
of information processing and adapt to multiple tasks, even
though we choose afterwards a task as an example.
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Focusing on object transportation tasks, [8–10] are known
examples of improving the robot’s adaptability to human’s
preferences, but always on the basis that the robot is a per-
fect slave or follower of the human, who acts as master or
leader. Other works try to detect human’s role by allowing a
switching in the robot’s role among leader, follower and even
collaborative [7, 30, 63]. The relation between the measured
intent and this role allocation is explored in [38]. In that
work, they consider that the interpretation of the human’s
intent done by the robot is the one that allows to establish
a shared-control policy. By its part, the concept of shared-
control, was also widely studied in the literature [64–66]. If
we leave aside the more theoretical nature of this article and
focus on the use case discussed, collaborative transport of
objects, our work also seeks that the robot can adapt to the
intention of the human as in [8, 10, 38]. But, unlike these,
our work takes into account more roles for the human such as
the neutral or the adversarial role. This allows us to explain
situations in which the human is behaving in a way that goes
against the correct development of the task, a case usually
ignored in the literature but not infrequent. Focusing onmore
technical aspects, our system is based on the one designed
in [63] but with the advantage that we only need one force
sensor instead of the two used in their implementation.

Finally, [14]was originally considered tomodel themove-
ment of pedestrians in crowded spaces but it has served as a
basis to represent the environment in which a robot should
move, specially in urban areas where the robot should share
spaces with humans most of the time. [67–69] are examples
of trying to make the robot navigate in urban areas avoid-
ing collisions in a socially-acceptable way. The 3D version
has also been studied with [70, 71] being examples of imple-
mentations of this model adapted to aerial robots. Finally,
the previously mentioned [44] is an example of this model
used to perform a collaborative task and not an autonomous
navigation. We have sought inspiration in this work as well
as in [63] to build our force-based model.

In summary, our work differs from others in the literature
in that it provides a generic theoretical framework that can
be applied to multiple tasks rather than being limited to the
task analyzed in each article. This will be shown in Section3.
In addition, it contemplates more roles for the human than
the typically considered taking into account the possibility
that the human is opposed to the task and does not always
collaborate with the robot, either intentionally or uninten-
tionally. This is presented in Section 3.4. Subsequently, we
choose a use case such as collaborative transport of objects
and design a simple but working model to allow the robot to
carry out the task by solving or simplifying some technical
aspects present in other works also focused on this use case.
This model is presented in Section4

3 Perception–Intention–Action Cycle from
Both Perspectives

Think about the previous task, autonomous urban navigation.
As a first approach, a robot can detect its environment, pro-
cesses all the possible obstacles and plan through them. A
more elaborated system will consider the humans present in
the area as moving obstacles and an even more sophisticated
one will calculate their velocity and acceleration to make an
estimation of their future movement with increasing uncer-
tainty over time, bigger or smaller depending on the approach
[67, 69]. However, if the robot knew where each one of the
present humans intend to go, robot’s calculations would be
much simpler and the uncertainty considerably smaller. Sim-
ilarly, humans could reduce the mental burden of having a
foreign agent navigating among them if they were aware of
its intention as shown in [42].

This idea is what gives rise to our entire theoretical
approach: to create a cycle that includes the intention, both
implicit and explicit, of the agents collaborating to achieve
a better understanding of the current situation, which we
consider to be key to obtain both anticipatory and proac-
tive behaviors. Our cycle is shown graphically in Fig. 2. In
the following subsections we will explain its different parts.

3.1 Task Knowledge

The task knowledge block includes all the previous knowl-
edge that each agent has about the task to be executed. This
knowledge does not necessarily have to be the same among
all the agents involved. This block can include the objective
of the task, the environment in which it is going to be devel-
oped in case it is previously known or possible limitations as
well as skills to execute the task of each agent. This knowl-
edge is totally task-dependent, so it must be formulated for
each specific case.

Applied to the field of robotics, this prior knowledge about
the task can be formulated mathematically in each task or
can be learned using a model-free approach based on Rein-
forcement Learning [72–75]. Recent work in this regard is
promising by generating a model-free control law to make a
biped robot to walk by learning the constraints of the task it is
executing [74], or by learning the proximity limit accepted by
the human that the robot can approach to and which is depen-
dent on the task that the human is executing [75]. There is also
the possibility of modeling this information by combining
model-based and model-free solutions [76] or transitioning
from one type to the other during the learning process [77].

3.2 Implicit and Explicit Intention

As commented in previous sections, human’s intention is not
always inferable. Imagine for example two people moving
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Fig. 2 General information flow according to the Perception–
Intention–Action cycle from both agents’ point of view in a collab-
orative task. Previous knowledge about the task is used by both agents.
Agent 1 uses this information to perceive their environment and to
inference other agent’s intention. Agent 2 uses their own information to
expresses their intention explicitly when necessary to avoid misunder-

standings. The situation awareness comprehends the current situation
and make projection(s) into the future. This projection allows to estab-
lish a collaborative plan according to the role each agent is showing
at the moment. This plan generates the following actions which can
be perceived again initiating a new cycle. The other agent executes the
same cycle

together a bulky object, i.e. a long table or any piece of furni-
ture, in a side-by-side configuration. When one of them (e.g.
agent 1) perceives through the force exchanged through the
transported object that the other one (e.g. agent 2) starts to
turn, they do not know whether they are doing so because
they are going to make a turn or because agent 2 wants to
move in front of/behind agent 1 to pass through a narrow
corridor. Therefore, from agent 1’s point of view, agent 2’s
intention is not clear. Imagine now that agent 1 is carrying the
object behind agent 2 so that they have partial information
of the environment due to occlusions by the object itself. If
it is necessary to avoid an obstacle on their path or simply
to stop because they have already reached their destination,
the agent in front will not stop abruptly or it could cause an
accident. In both cases, what agent 2 will do is to inform
their partner. ”We stop here”, ”watch out for the step” or ”we
change configuration to fit through here" would be the usual
phrases in order to eliminate uncertainties or simply to fulfill
the task at hand.

This behavior, common between two humans, becomes
even more necessary when one of the partners is a robot.
This is due to the limitations in the robot’s sensors or com-
putational capacity, forcing to use compressed forms of
representing perceived information (occupancy maps, seg-
mentations, etc.) that may differ from that used by the
human [78], favoring the appearance of errors and misunder-

standings that can be minimized if the human can directly
communicate its intentions.

Let us think of a more complex example: a long pass in a
soccer game. The player carrying the ball looks at the posi-
tion of their teammates and opponents and tries to infer their
intention (which of their teammates is going to start running
towards the opponent’s goal and which is not). Based on this
information they choose and execute their pass. If they make
a mistake, they lose the chance to score a goal, while if they
are right, they could make an assist. To reduce the error rate,
as well as the mental pressure, it is common to see in profes-
sional teams that players nod or shake their heads or signal
in some disguised way where they intend to move. In other
words, they explicitly state their intention.

This is why it is so important to take explicit intention into
account andwhy in our cyclewe separate the classic ”Percep-
tion” block into two blocks: a ”Perception’ block in charge
of perceiving the environment and another ”Intention” block
in charge of capturing both types of intentions. This does not
mean that no perception is required in the ”Intention” block,
but that its purpose is different.While the ”Perception” block
is in charge of perceiving the information necessary to under-
stand the environment, the ”Intention” block is in charge of
receiving the information necessary to understand the human.
This includes perceiving both their actions in order to deduce
the implicit intention and the explicit intention itself (the
human’s voice saying what they want, the human’s gesture
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indicating what object they want) which is directly delivered
so it is only necessary to know the common communication
code.

This division allows us to return the Perception stage to
its original task of perceiving the environment as well as
all the tasks associated with it (SLAM [79, 80], autonomous
vehicles [81]...) and to differentiate it from everything related
to tasks in which it must collaborate with a human. This can
minimize errors, misunderstandings and problems related to
having partial information [44], in addition to facilitate the
development of algorithms, making them more modular.

Note that it is the correct understanding of the intention of
our peers that allowsus humans (and, consequently, robots) to
act proactively, i.e. not only adapting to each other’s actions,
but proposing a better plan if we are acting suboptimally.
It is worth mentioning that by this we do not mean that we
should dispense with implicit inferable intention and rely
solely on explicit intention, but that both should be taken
into account and processed together to improve performance
in any collaborative task since both are contained in the cycle.

3.3 Situation Awareness

In order to jointly process both the information from the envi-
ronment and the intention (both implicit and explicit) of our
partners, Situation Awareness comes into play. This concept
was presented by Endsley and Garland in [6] and it explains
the mental process that allows us to know and understand
what is really happening around oneself. It implies using
the information received and the previous own knowledge to
understand the current situation sifting all the irrelevant data
out. For example, if you are looking for a child and you see a
group of twenty people, you will rule out anyone taller than a
child and you will not waste time looking at their faces. Once
this is done, a projection of the future possible situation(s)
can be done.

Returning to the previous example with two people mov-
ing a heavy object, agent 1 perceives that there are two
possible routes, one wider and the other narrower, and hears
their partner explicitly telling them that they are going to
stand in front, otherwise they will not fit. With this informa-
tion, agent 1 comprehends the movement that their partner
is starting and projects that they are going to go through the
narrow path so they can start collaborating towards this goal.

If we go to other sportive example, in the case of an Amer-
ican football match, knowing the position of their teammates
and opponents, as well as their intention, is what allows the
quarterback to choose which play is the most likely to be
successful or even change the play on the fly if they find that
the situation has changed.

Applied to robotics, the power of this concept lies in the
fact that it is able to organize multiple works that have been
proposed in the literature and bring them together under the

same umbrella, allowing, on the one hand, to include them
under a common term and, on the other hand, allowing other
researchers to recognize which stage of the Situation Aware-
ness they are working on. Works on issues of perception and
sensor fusion [82–86] would correspond to the first stage,
while works on modeling human actions to try to understand
their goal [3, 26, 87] could be included in the second stage.
Finally, articles on predicting human movement or future
action [4, 28, 67, 88] could be placed in the third stage.

Thus, in our cycle in Fig. 2, the SA is in charge of pro-
cessing the information received from both the ”Perception”
and the ”Intention” blocks in order to understand the situa-
tion in which the human–robot pair finds itself and to predict
possible future situations.

3.4 Collaborative Task Roles

Once we understand what our partners are doing and we can
predict what they are going to do, we can assign a role to
each agent based on the task. We consider the classical roles
of master/leader, slave/follower and collaborative common
in the literature, but we also seek inspiration in other works
[38, 89, 90] to consider the neutral and the adversary role.

For the sake of clarity, we define the collaborative role
as the one exposed by partners who consider each other as
equal peers and who contribute with their knowledge and
skills (not necessarily equal among them) to accomplish the
task. Likewise, we assign the leader role to the agent who
imposes their ideas about how the task should be performed
and the follower role to the agent who accepts this vision
and fulfills the leader’s plans. It is worth mentioning that
these three roles carry with them the implicit objective of
fulfilling the task satisfactorily. The same is not true for the
other two. We consider an agent as neutral if they neither
act in favour of the task nor against its correct performance
and as an adversary if their intention is manifestly against
accomplishing our task.

In the example of the bulky object transportation, both
agents act collaboratively as they both provide force to move
the object. As soon as one of them takes the initiative tomove
in front/behind in order to pass through a narrow corridor, this
agent acts as a leader and the other as a follower if they do not
oppose to this movement. Both cases of competitive sports
serve to illustrate the adversarial role. In both cases, for each
player on each team their teammates act collaboratively as
they are all contributing with their skills (different among
them) to accomplish the task. Likewise, the players of the
opposing team act as adversaries as they will act to avoid the
previous task.

Applied to robotics, the leader and follower role as well
as the collaborative one have been extensively studied [7,
30, 63] but not the neutral or adversarial cases, which does
not mean that they do not occur. The adversarial role can be
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assigned in situations where robots are used in the presence
of children who prefer to play with the robot, making its
movements or, in general, the task that the robot was to per-
form impossible. It also happens with people who have never
worked with a robot before and, therefore, do not know the
correct way to perform the task with it. In both cases, detect-
ing and assigning an adversarial role to the human allows to
an automatic change of strategy aborting the task in case of
being in the presence of a curious child or try to communicate
with the human partner if it is detected that it does not know
how to execute the task. Similarly, the neutral role can be
assigned to pedestrians who are unaware of the robot’s pres-
ence in urban navigation tasks (the collaborative role could
be assigned to a passer-by slowing down or braking to let the
robot pass).

3.5 Action Planning and Execution

As shown in our cycle in Fig. 2, once the SA reports what is
happening and what can happen, the sequence of actions to
be executed can be selected [91, 92].We consider that the first
thing to do is to assign a role to each of the agents involved,
since this allows to automatically eliminate some possibil-
ities before planning. Considering the previous example, it
does not make sense to plan a newmovement while a child is
playingwith the robot arm,while it does if the child ismoving
away and, therefore, exercising a collaborative role. Once a
role has been assigned to each agent, it is possible to plan both
the actions to be performed by the agent executing the cycle
and the actions that the other agent is expected to perform.
It should be noted that this planning can include a change in
the roles exercised. This is useful if what is intended is to be
proactive, that is, to perform an action that causes a change
in the other agent in order to convert an adversary into a col-
laborator or a neutral agent that stops interfering in the task.
This assignment-planning process can be repeated for each
of the projections delivered by the SA or only with the most
probable one depending on the temporal requirements of the
task or the agent’s computational capacity. Once planned,
each agent can execute their actions causing a change in the
environment that may ormay not be perceived by both agents
initiating a new cycle.

This process is executed simultaneously by both agents.
In the case of the human, using the innate or learnt through
experience cognitive processes and, in the case of the robot,
using modules of perception, processing, prediction, plan-
ning and action present in the literature.

Two last details should be mentioned. First, that we
have not added an explicit stage of agreement between
the two agents. This is because such agreement can occur
both implicitly and explicitly. For example, in the case of
the transport of the bulky object, when one of the agents
explicitly expresses that they wish to position themselves in

front/behind to pass through a narrow passageway, the other
agent will accept this proposal by facilitating the maneuver
(or simply not resisting) and will reject it by exerting force
against it or by explicitly expressing their intention to refuse.
This may be perceived by both agents initiating a new cycle
until they reach an agreement. The alternative is that both
agents decide to pause momentarily, share their plans and
come to an agreement before resuming the march. This pos-
sible exchange of information is what represents the dashed
arrow between the two stages of decisionmaking. This possi-
bility is explored in [44], in which the human must explicitly
accept or reject the planningdoneby the robot for both agents.

Secondly, not all the stages of this cycle must always be
executed because some of themwould not present significant
differences with the previous execution. In other words, from
a conceptual point of view, it can be understood that this cycle
is executed at a variable speed: slower when new relevant
information requires making a new prediction completely
different from the previous ones, forcing a new decision
making process, and faster when the last prediction is being
fulfilled and the decision making/planning process can be
bypassed. From a technical perspective, the cycle can run at
a constant speed but with the high-level modules with low
sensitivity to minor variations in their inputs.

This theoretical framework will be tested in Section4
applied to a specific task such as collaborative transportation.
The task knowledge will be presented as constraints and both
the environment and the implicit and explicit intention will
bemodeled using a forcemodel in Section 4.1. Subsequently,
this model will be experimentally tested in Section5.

4 Collaborative Transportation as Use-Case

Asmentioned in the introduction, we will use a collaborative
lightweight rigid object transportation task as a use case to
test our proposal. Using this task, we will try to emulate
several of the discussed situations with the example of two
humans transporting a bulky object. Our goal is to verifywith
a first round of experiments that the human accepts to indicate
their intention explicitly understanding that this can reduce
the probability of error andmisunderstandings with the robot
and that this improves the performanceof the task. In a second
round of experiments we will add a force predictor, which
will do the job of the third stage of the SA. To achieve this,
we need a model that allows us to combine four elements:
(1) the human’s contribution to the task through the force
exerted on the transported object, (2) the robot’s perception
of the environment, (3) the human’s implicit intention that
can be inferred from the force exerted, and (4) the human’s
explicit intention indicated by other means.

Thus, the following subsection will show the force model
developed for this purpose. This model will be responsible
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for combining the information received by the robot from the
environment and from its human companion and combining
them appropriately to obtain a resultant force that represents
the current situation inwhich the robot finds itself. Therefore,
this would represent the first two stages of the SA, leaving
the third for the aforementioned force predictor.

The reason for using a force model and not another
approach is because this allows the physical variable associ-
ated with human effort to be used directly without the need
to translate it into any other format. In addition, the Social
ForceModel (SFM) [14] serves as an inspiration to represent
the environment with virtual forces. This allows us to obtain
a model with low computational requirements that is easy
to understand and implement. Some implementation details
will be indicated below with the intention of increasing the
reproducibility of our experiments, as well as facilitating the
development to any other researcher who wishes to use our
model.

Weare aware that thismodelmaybedifficult to extrapolate
to those tasks in which forces are not exchanged. However,
its main purpose is to serve as an example to explore several
of the concepts presented. It should be stated that, in this
first exploratory work, this force model will not be used to
provide the robot with proactive behaviors.

Regarding the prior task knowledge, we will assume the
following constraints:

• The map will be known to both agents and it consists of
a set of valid positions collected in a set M ∈ R

2.
• There will be a set of obstacles: O ∈ R

2, O ⊂ M.
• The goal of the task will be a valid position within the
map known to both agents: goal ∈ R

2, (goal ∈ M) ∧
(goal /∈ O).

• The speed of the robot will be limited: vrobot ∈ R
2,

vrobot = [vrobot x , vrobot y ] with vrobot x < vmax
lin and

vrobot y < vmax
ang .

• The number of involved agents will be N = 2, being the
robot the agent 1 and the human the agent 2.

• The environment is represented by a force FE,C ∈ R
2

parallel to the map M.
• The force exerted by the human fhuman ∈ R

2 is parallel
to the map M, being projected on this plane in other case.

We will use a global planner to calculate the robot’s origi-
nal plan as a succession of waypoints or partial goals to reach
the task’s goal, in this case, the place to locate the object. If
they were two robots collaborating, a shared planner would
be enough but, since there is a human in-the-loop, we will try
to understand their actions to condition and select the final
actions to be performed by the robot.

For that, we will use a force sensor attached to the robot’s
wrist which is in contact with the transported object. In this
way, the human exerts a force on the other end of the trans-

ported object and this force propagates through the object to
the wrist of the robot where the force sensor that measures
it is located. To simplify the control of the robot, this mea-
sured force is projected onto the xy plane eliminating the z
component that would not produce any movement. In turn,
the sensor can measure forces up to 540 N on each of its
axes. However, we decided to saturate its measurement to
12 N so that the human does not need to exert great effort to
perform the task and so that there is no reward for exerting
excessive force that could compromise the integrity of the
sensor. Details about how to transform the force measured at
the sensor into the force actually exerted by the human will
be discussed in the following subsections.

4.1 Perception–Intention–Action Force-BasedModel

We use [63] as a starting point. In that work, a lightweight
rigid object is also transported collaboratively among two
agents. Nevertheless, they do not model the environment by
any means. So, as they also did, we will attach a frame C to
an arbitrary point over the transported object and assume that
the dynamics of the object in that frame are determined by
the joint action of two forces: the one performed by the robot
at one end of the object and the force exerted by the human
at the other end. In turn, the force exerted by the robot is
determined by its interpretation of the environment (present
obstacles, location of the task’s goal...). Therefore, we can
define the task force to be exerted on frame C as:

FTask,C = FE,C + FH,C (1)

being FE,C the component due to the environment and FH,C

the component due to the force exerted by the human.

4.1.1 Environment Perception

In order to model the task’s environment using virtual forces,
we can start from [14]. According to this work, the accel-
erations and decelerations of a passer-by walking along a
crowded street are determined by the joint action of virtual
repulsive and attractive forces according to the following
expression:

fa,o = Ua,o
(∥∥ra,o

∥
∥)

(2)

being the virtual repulsive (attractive) force generated by
object o ∈ O over the agent a ∈ {r , h}, fa,o, the result
of applying a monotonic decreasing (increasing) potential
Ua,o over the vector ra,o which goes from the agent to the
object.

These objects in O can be obstacles or the goal. In the
first case, we can consider that all the obstacles in the robot’s
field of viewwill generate a virtual repulsive force decreasing
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Fig. 3 Response of the Perception–Intention–Action Force-based
Model in different situations. a Robot navigating alone without any
input from the human. b Human–robot pair navigating collaboratively
with the humancontributingwith their effort to fulfill the task. cHuman–

robot pair navigating together but not collaborating since the human is
making force to oppose the task. d Human–robot pair passing collabo-
ratively trough a narrow pass. Forces not normalized for clarity

with the distance from a maximum frep,max . If the obstacle
is further than a threshold dmax we will not consider it:

fa,obs =

⎧
⎪⎪⎨

⎪⎪⎩

frep,max
∥
∥ra,obs

∥
∥ < dmin

0
∥
∥ra,obs

∥
∥ > dmax

frep,max ·10α· ‖ra,obs‖−dmin
dmax−dmin otherwise

(3)

with ra,obs the vector from the agent to the nearest border of

each obstacle and α = − log10(
frep,min
frep,max

) the decay constant.
Likewise, the goal generates a virtual attractive force from
fatt,max to 0 with dgoal the distance to start slowing down:

fa,goal =
{
fatt,max if

∥
∥ra,goal

∥
∥ > dgoal

fatt,max · ‖ra,goal‖
dgoal

otherwise
(4)

In our case, the goal will be each of the successive way-
points of a collision-free route calculated with a global
planner so the virtual attractive force will be equal to fatt,max

except for the waypoint(s) close enough to the task’s goal
when this force will start to decline. The way to introduce
the constraint related to the task goal is through this global
planner: if the goal is not a valid position, the global planner
will not generate a valid route so there will be no attrac-
tive force. The joint action of all the virtual repulsive forces
and the virtual attractive force gives a total force, FE,C ,
which represents the effect of the task’s environment cal-
culated at the frame C using wRep and wAtt as weights to
balance both types of forces. Figure 3a shows a simplifica-
tion of these forces calculation process for the robot if it were
autonomously navigating.

FE,C = wRep ·
(

O−1∑

obs=1

wobs · fC,obs

)

+ wAtt · fC,goal (5)

Since the total virtual repulsive force’s amplitude depends
on the number of obstacles and this number can variate from
one LiDAR detection to the next one, it is necessary to nor-
malize their addition using wobs (

∑O−1
obs=1 wobs = 1) weighs

in order to never exceed frep,max . More details about this
normalization of the obstacle forces will be shown in Sec-
tion 4.2.2.

The maximum amplitude for the attractive, fatt,max , and
repulsive, frep,max , forces can differ, for which we intro-
duced wRepand wAtt to obtain a common maximum value,
fmax .

frep,max = fmax · 1

wr
, fatt,max = fmax · 1

wa

fmax = wr · frep,max = wa · fatt,max

(6)

Withwr andwa the values that equal the maximum repul-
sive force and the maximum attractive force. Selecting the
waypoints which generates each partial goal in such a way
that there are no obstacles between the collaborative pair and
the following goal, it can be inferred that wRep < wrep and
wAtt > watt must be fulfilled to ensure that the maximum
repulsive force is always smaller than the maximum attrac-
tive force to make the robot to move towards the next goal
avoiding the known local minima problem associated to the
use of the SFM [71]. This ensures that the environment force
will tend to reduce the distance to the next goal except if
∥
∥ra,goal

∥
∥ < dgoal when FE,C could be 0. This implies that

the equilibrium point will be reached at a distance d < dgoal
closer or further to the goal depending on the number and on
how close the obstacles are to it.

Both wRep and wAtt can be variable and updated accord-
ing to some policy that meets the above restrictions. In this
case, both weights will take constant and equal values for all
experiments as will be indicated in Section 5.1.

Additionally, this environmental force can be normalized
to impose fmax as maximum in order to make it comparable
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to themeasuredmaximum human’s exerted force if we select
fmax = fhuman,max .

Fnorm
E,C = FE,C

wRep + wAtt
(7)

4.1.2 Human Intention

Instead of just adding the human’s exerted force to Fnorm
E,C ,

we can use this last force as well as the virtual generated
forces to understand the human’s intention, which we pos-
tulate that be divided into two terms: implicit intention and
explicit intention.

The first one is calculated as follows. The force exerted by
the human on the other end of the object, fhuman, is detected
at the robot’s force sensor, fsen, as the difference between
the force exerted by each agent over the object:

fsen = fhuman − frobot (8)

If the robot moves without acceleration, the force due to
this agent, frobot , will be 0. In fact, if both the human and
the robot move at the same velocity and the human does not
desire to accelerate or slow down, no force will appear at
the sensor. In addition, the robot knows its own movement
so it can discount its effect as well as the objects weight to
calculate the force due to the human’s action at the sensor:

fh,sen = Rh,sen × fhuman (9)

being Rh,sen the rotationmatrix which eliminates the robot’s
force and transforms the human’s force from their grasping
point to the robot’s force sensor frame. Likewise, we can
transform this force to frameC using the corresponding rota-
tion matrix, Rsen,C :

fh,C = Rsen,C × fh,sen = Rsen,C × Rh,sen × fhuman(10)

Finally, this force is compared with the attractive virtual
force previously generated in (4) resulting in a coefficient iim
proportional to the angle between the human’s force trans-
lated to the frame C and the goal force, φh,C;goal :

iim = k · cos (
φh,C;goal

)
(11)

This angle can be used to detect whether or not the human
is cooperating with the task. Thus, if it is below a threshold
φcollab the robot can consider that the human is collaborating
since the force the human is exerting is consistent with the
path the robot has calculated to follow. At the same time,
if this angle is greater than a second threshold φadver , the
human can be considered to be opposing the task since the
force they are exerting is opposite to the force that should be

exerted to follow the stipulated path. Finally, if this angle is
between the two thresholds, φcollab < |φh,C;goal | < φadver ,
nothing can be stated about the human’s contribution. In the
first case, the robot can assign them a collaborative role; in
the second, an adversarial role; and in the third, a neutral
role. This way, in (11) k = 1 if it is detected that the human’s
force goes in favour of the task (i.e., the robot assigns to the
human a collaborative role) and k = 0 if it goes against the
task (neutral or adversary role).

The cos(·) function can be replaced by any function that is
maximum for φh,C;goal = 0. In this case, the cos(·) function
has been chosen so as not to overly penalize small deviations
between the force exerted by the human and the expected
one.

As for the explicit intention, this term depends on the sub-
task and on the means of communication used by the human.
In general, we convert this explicit intention to a change in
the environment. The general expression for this term is sim-
ilar to (2) but taking into the account that this term is valid
for a limited period of time t .

fex,o ∝ Ua,o
(∥∥ra,o

∥
∥ , t

)
(12)

We generate a explicit intention vector for each of the
commands given by the human. For example, if the human
indicates that they wish to avoid a particular path, this com-
mand will generate a virtual obstacle which generates an
extra repulsive force. If they indicate that they wish to pass
through a narrow passage, it will substitute the task’s goal
by a temporal subtask’s goal at the other end of the passage
generating an attractive force.

4.1.3 Situation Awareness

With all the virtual forces and coefficients calculated in the
previous steps, it is possible to check if the implicit inten-
tion is relevant according to its coefficient and generates the
human’s contribution to the task force:

FH,C = fh,C + fim = fh,C + iim · fh,C (13)

being fim the implicit intention force when its coefficient is
considered as relevant.

We use this intention as a way to potentiate the human’s
force, as it can be seen in Fig. 3b. The human’s force is
transformed to frame C and the implicit intention coefficient
is calculated and with this, a collaborative role is assigned
to the human. The total force potentiates the human’s force
avoiding the obstacle on the left while it keeps going towards
the goal. Figure 3c instead, shows the case where the human
exerts a force that goes against what the robot would expect
them to do. This force is also transferred to frame C and the
corresponding coefficient is calculated but, as it goes against
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the task, the human is assigned an adversarial role, k = 0 in
(11), and this virtual force is not taken into account.

Likewise, the situation awareness converts the received
commands into modifications of the attractive (generating
subgoals) and repulsive (generating obstacles) forces taking
into account their time validity and the previous understand-
ing of the current situation. Figure 3d illustrates the case of
a narrow passage through which the human has explicitly
expressed their interest in going through.

Thus, the task force to be applied to the object for each
explicit intentions is:

FTask,Ce = wE · Fnorm
E,Ce

+ wH · FH,C

= wE · Fnorm
E,Ce

+ wH (1 + iim) · fh,C
(14)

being Fnorm
E,Ce

the emodified version of the task’s environment
force. Like in (7), the task force can also be normalized in
order to delimit it to fmax = fhuman,max .

Fnorm
Task,Ce

= FTask,Ce

wE + wH
(15)

This process is repeatedwith each explicit intention e ∈ Ie
being Ie the set of considered intentions. Finally, each task
force can be used to generate a future projection of how the
object will move and its impact on the development of the
task.

4.2 Implementation Details

The approach followed by the authors to implement the
model into a real robot and solve the collaborative transporta-
tion taskwas based on building a reactive control scheme that
couldmake fast decisions using the latest information coming
both from the environment and the human. The importance of
the reactivity of the robot’s response comes from the human’s
sensitivity towards the actions of the robot, as both agents are
linked together through a rigid object.

Three aspectsmust be taken into account by any researcher
wishing to reproduce our experiments. First, how we detect
and process environmental obstacles. Second, how we nor-
malize the repulsive forces so that their sum is comparable
to the attractive force and that of the human. Third, how we
convert the total force into velocity commands.

4.2.1 Environmental Obstacles Processing

The detection of obstacles in the environment is performed
by LiDAR sensors, being valid for this task both 2D and 3D
sensors, since the 3D LiDAR information can be projected
over the plane of the robot making it equivalent to a 2D
sensor (although with the advantage of being able to detect

obstacles that have been suspended in height above the plane
of the sensor).

In the case of using a 3D sensor, the algorithm starts by
limiting the height it takes into account to eliminate the beams
towards the floor and the ceiling. The resulting beams are
then projected onto the sensor plane. Hereafter the process-
ing is the same for both sensors. First, the points that are
at a distance greater than a threshold dmax selected for the
experiment are eliminated.

As the cloud generated is referred to the sensor frame,
it is necessary to convert it into a common frame using the
transformation tree of the robot. Having all sensor clouds
referred to the same frame, we will proceed to merge them
in case the robot has more than one LiDAR sensor into a
single data structure which will be processed. The merged
cloud is then filtered to remove outliers points using a sta-
tistical filter which analyses the k-points neighbourhood of
each point, focusing on the distribution of those points. The
points exceeding a certain deviation threshold are classified
as outliers and removed from the cloud. All the calculations
until here are done using the PCL library for C++ [93].

The filtered cloud is projected to the floor plane if it was
not already and then used to define an occupancy map to
simplify the obstacles detection. As the cloud was previously
filtered, we have considered a cell occupied if a single point
of the cloud is projected over that cell. The last processing
step consist of clustering the obstacles using a connectivity
method that uses the 8-neighborhood to make the cells into
a higher syntax level: obstacles. From these obstacles, the
Social Force Model is only interested in the nearest point to
the robot that will be used to compute the repulsive term. In
the clustering process it was also established a minimum size
for the obstacles to remove small clusters that may be noise.

This processing module has been tested in two social
robots such as TIAGo++1 and IVO [94] with similar results.
The first one has a 2D LiDAR in the front part and the second
one a 3D LiDAR in the front and a 2D LiDAR in the back,
being necessary in the case of the second robot to project
the information of the front LiDAR on a plane and later to
merge the resulting informationwith that of the back LiDAR.
Figure 4 shows the obstacle detection workflow in a simu-
lated environment using the IVO robot. All the experiments
that will be shown and analyzed in the following section
were performed with a single robot, TIAGo, to make them
all comparable.

4.2.2 Normalization of Repulsive Forces

Each obstacle generates a repulsive vector in the direction
of the distance vector from the nearest point of the obstacle
towards the robot. The module of the vector is bounded by

1 TIAGo URL: https://pal-robotics.com/robots/tiago/.
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Fig. 4 Environmental obstacles detection workflow. a Simulation in
Gazebo of IVO robot in an indoors environment. b Environment detec-
tion with front 3D LiDAR (in red) and rear 2D LiDAR (in blue). c
Occupancymapwith the obstacles generated after clusterization of data

from both LiDARs. dOccupancymapwith the nearest point to the robot
of each detected (bigger than a minimum size) obstacle. (Color figure
online)

definition, but when there are several obstacles it is not pos-
sible to know if the magnitude of the total repulsive termwill
exceed the maximum set for the total repulsive force.

To solve this problem, one possibility is to directly sat-
urate the magnitude of the vector keeping its direction, but
this can lead to saturating the repulsive term in a direction
that does not correspond to the one which would be gener-
ated by the nearest obstacles. Other possibility is to select a
constant number of obstacles following a distance criteria,
as the number of obstacles is constant then the term can be
bounded directly, or using themagnitude of the nearest obsta-
cle which generates the highest repulsive force [71]. Another
possibility relies on experimental data of how humans solve
a certain task, from which a fitting process is done for all the
parameters of the model until the behaviour matches the data
available [95].

However, the first approach misses environment informa-
tion and the second one is based on experimental data, which
can be difficult to obtain for certain tasks and can change
between experimental cases. For this reason, we propose
a new normalization mechanism of the repulsive term that
bounds the total repulsive term without human intervention
or prior knowledge of the environment nor of the task.

The normalization procedure computes the mean magni-
tude of the N repulsive terms at a given instant to compute
a normalization coefficient in (17). Then, the coefficient is
applied to each individual term in (18). After that, the total
repulsive term is guaranteed to be bounded as can be seen
in (19).

R = 1

N
·
( N∑

i=0

|| fobs,robot,i ||
)

(16)

wobs = max

⎧
⎪⎨

⎪⎩

R

Fmax
· N

1
(17)

f normobs,robot,i = fobs,robot,i
wobs

(18)

f normobs,robot,i =
N∑

i=0

fobs,robot,i
wobs

⇒

|| f normobs,robot,i || ≤ 1

wobs
·

N∑

i=0

|| fobs,robot,i || ⇒

|| f normobs,robot,i || ≤ 1
R

Fmax
· N

·
N∑

i=0

|| fobs,robot,i || ⇒

|| f normobs,robot,i || ≤
∑N

i=0|| fobs,robot,i ||
1
N ·(∑N

i=0|| fobs,robot,i ||)
Fmax

· N
⇒

|| f normobs,robot,i || ≤ Fmax (19)

This maximum value Fmax can be used to limit both
the repulsive and attractive forces. If it is also equal to the
maximum force of the human that the system takes into
consideration (the human can exert a higher force but it is
not taken into account), all forces are comparable. Besides,
human forces were bounded to 10 N with a double aim:
reduce the necessary effort that a human has to exert to con-
trol the robot and protect the sensor and the hand from an
excessive effort that may affect the integrity of the robot. The
bounded force proved to be comfortable to most humans in
the experimental phase.

4.2.3 Robot’s Platform Controller

Our approach considers that the robotmoves on a plane so the
calculated resultant force, Fnorm

E,C , will have two components,
x and y, which can be used to calculate the robot’s linear and
angular velocity. Figure 5 shows a diagram of the control
scheme used.

The logic of operation is as follows. While the task is
running, there will be a goal and potentially obstacles in the
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Fig. 5 Control structure used to generate the platform’s linear and angu-
lar velocity.APDcontroller is used to generate velocity commands from
the task total force. These commands are sent to the robot’s internal con-

troller making the robot to do whatever is necessary to fulfill the task
taking into account the human’s intention

way. This added to the choice of weights in (6), guarantees
that FE,C is not null. At the same time, being a collaborative
transport task, the human will have to make an effort making
FH,C non null either, unless the human perfectly follows the
robot’s movements. This implies that FTask,C will only be 0
when the task is finished. Therefore, we take 0 as the set-point
and Fnorm

Task,C as the controlled variable. The error is sent to a
task controller (in our case, a PD controller) which generates
the linear and angular velocity commands necessary for the
robot to solve the task by adapting to the human’s wishes
in the process. This also ensures that, if the human exerts
the exact opposite force to cancel the FE,C component by
opposing the task and making FTask,C = 0, the robot stops.
Therefore, the control loop designed follows the common
disturbance rejection architecture, in which the environment
(obstacles and task) and the human forces are modelled as
disturbances that should be rejected to achieved the control
goal, being in our case arriving to the goal point of the task.
In other words, our objective function to minimize would be:

min
frobot , fC,goal , fC,obs

� = Fnorm
Task,C (20)

where Fnorm
Task,C is obtained following eq. (15).

It is worth mentioning that this controller is not an action
planner, since it is not planning high level actions but gen-
erating the necessary velocity commands to move the robot.
In this case, with a frequency of 10 Hz as this is the slowest
input signal, the LiDAR.

Note that we split the platform control into two blocks:
our task controller and the robot’s internal wheel controller
which would be inside the plant model. This may seem like
a weakness of our force-based model, but it is actually a
strength as it allows us to decouple our controller from the
robot’s own controller. This allows us to abstract from the
specific robot we are using and use our model in any other
robot.

The disadvantage of this is that if the plant model is not
known, as it is in our case as we are using the commer-
cial robot TIAGo++ manufactured by the external company
PAL Robotics, the stability analysis of the complete sys-

tem becomes significantly more complicated. In our case,
we have assumed that the robot controller is stable for the
reduced speeds we are considering in this use case. In turn,
we have not considered it necessary to perform a stability
analysis of the PD controller used since it is a widely known
architecture and it was tuned for this specific experiments
with very low allowed speeds.

Now that the force model to be used has been presented,
two rounds of experiments with this model will be performed
in Section5 to test its validity. Subsequently, in Section6
some of the limitations of the results obtained will be dis-
cussed.

5 Experimental Results

The force-based model outlined in the previous section is
used to perform two rounds of experiments. With the first
round we seek to demonstrate both that humans understand
that they should give the robot their intention explicitly when
necessary tominimize errors andmisunderstandings and that
not only it is not bothersome to thembut also helps to improve
task performance. With the second round of experiments we
try to compare our approach (including both types of inten-
tion) with a classical system that uses only implicit intention
to predict the human’s future actions. In doing so, we seek to
show the advantages of taking both intentions together into
account. The study of proactive behaviors on the part of the
robot is therefore outside the scope of this work.

5.1 Experiments Setup andMethodology

All the experiments presented in this section have been per-
formed in an indoor environment on a 7.8×5.7 m stage with
OptiTrack on the ceiling to allow localization of both agents.
In all of them a pair consisting of a human and a robot per-
form a collaborative transport task in which the transported
object is an 80 cm steel bar. This task is repeated in differ-
ent scenarioswithmultiple obstacles (walls, columns, narrow
corridors and/or forbidden passage signs) that limit the possi-
ble routes or require a different type of collaboration between
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Fig. 6 Experimental setup. a Example of human–robot pair perform-
ing one of the experiments. The human wears a protective helmet. Both
agents wear OptiTrack markers on the head/helmet to allow them to be
precisely located. The scenario has several walls limiting the number
of possible routes to the target. bModules used for mounting the walls.

One of the forbidden pass signs used. c Handle used for the human to
grasp the transported object and to communicate their intention explic-
itly using the buttons present. Code associated with each button printed
next to the handle

both agents in order to avoid them. Figure 6a shows a volun-
teer performing one of the experiments in one of the designed
scenarios. Both the exterior and interior walls are mounted
with modular blocks (Fig. 6b) to allow changing from one
scenario to the next one as quickly as possible.

As for the robot used, it is a TIAGo++ manufactured by
PAL Robotics. It has a force sensor on each of its wrists.
On the right wrist of the robot, an accessory is added to
rigidly and securely attach the transported object. To allow
the human to explicitly indicate their intention, we have
designed a handle with 5 buttons, one for each finger, and
placed it on one of the ends of the transported object. This
improves ergonomics and allows the human to communi-
cate directly with the robot using a robust code known to
both parties. The last two buttons (corresponding to the ring
and little fingers of the right hand) are not used while the
other three represent different commands depending on the
round of experiments. This communication system guaran-
tees robustness as long as the only possible failure is due
to a human pressing the wrong button. To minimize this,
indicative signs are attached to the side of the handle as a
reminder so that the human knows at all times the meaning
of each button (Fig. 6c). More information on this subject in
the following subsections.

Also to ensure the robustness of the experiment, the force
sensor is calibrated according to the manufacturer’s instruc-
tions before starting each round of experiments with a new
volunteer to avoid the effects of possible drifts that this sensor
may have. For its part, the reliability of the robot’s movement
is guaranteed by the manufacturer’s low-level controller in
charge of moving the robot’s wheels as long as the speed
commands generated by our system are valid.

As for the humanswhoparticipated in this study, theywere
recruited from our research institute, as well as from differ-
ent schools of the partner university (industrial engineering,
telecommunications engineering, mathematics, architecture,

physics and chemistry), which allows us to have a diverse
population sample with varied knowledge of robotics from
professional experts to no prior knowledge. At the same time,
their ages range from 19 to 55 years old, all of them being of
legal age and in full use of their mental faculties. No volun-
teers were paid for participating in this study, ensuring that
there is no conflict of interest. A total of 58 people performed
246 experiments, ofwhich thefirst 135were in thefirst round,
39 were used exclusively to train a force predictor, and the
last 72 were used in the second round of experiments.

In all of them, anonymousobjective and subjective data are
obtained. The objective data are obtained from the position-
ing usingOptiTrack,which allows us to obtainmeasurements
of distance traveled and time spent on the task. We also
store data from the force sensor to measure the average
and maximum force exerted in each experiment. The subjec-
tive data are obtained with a hand-made questionnaire that
the volunteers fill out in-situ after each run so that they do
not forget their impressions. These questionnaires include
multiple-choice and rating questions. For the second ones,
we use a scale of 1–7, thus giving the volunteer more options
to express themselves than with a classic scale of 1–5. All
variables analyzed in this article by variance tests are nor-
mally distributed according to the Shapiro–Wilk test unless
otherwise indicated. Additionally, after finishing the ques-
tionnaire, a brief interview with open questions is performed
with each volunteer. Appendix A shows an example of the
common hand-made questions used in every round of exper-
iments and the structure of the interview.

All experiments have been recordedwith a fixed camera in
those cases where the volunteer gave consent to be recorded
(in addition to their consent to participate in the study and for
the rest of the data collected to be used anonymously). Addi-
tionally, data relating to the force sensor readings, the robot’s
LiDAR and the location of both agents using the OptiTrack
positioning systemhave been stored anonymously (assigning
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a random numerical ID to each volunteer) for later analysis.
In total the experiments take between 30 and 40 min, includ-
ing fulfilling the questionnaire.

Finally, the weights used are wAtt = 1.01, wRep = 0.99,
wE = wh = 1.0, the thresholds are φcollab = ±45◦ and
φadver = ±120◦ and the controller gains are kP = −2.0
and kD = −0.35 in all experiments. All the experiments
reported in this document have been performed under the
approval of the ethics committee of the Universitat Politéc-
nica de Catalunya (UPC)2 in accordance with all the relevant
guidelines and regulations (ID: 2021.10) and all volunteers
who participated in this study have signed an informed con-
sent form.

5.2 Explicit Intention User Study

The main objective of this first round of experiments is to
check that the humanwillingly accepts to state their intention
explicitly and that this does not place an excessive burden
on them. Having done this, the effects that the inclusion of
explicit intention has on the task are tested.

For this purpose, five scenarios are developed, which can
be seen in Fig. 7 (the sixth shown scenario will be ana-
lyzed in the following subsection corresponding to the second
round of experiments); and 27 volunteers (age: μ = 28.29,
σ = 6.58) perform a first round of 135 experiments (5 each).
After each experiment, i.e., after performing the task in each
of the five scenarios, the volunteer fills in a section of the
questionnaire used to assess subjectively various parameters
of the model or the task.

The first two scenarios serve as an introduction to let the
human know how well the robot can navigate on its own and
how the human can control it. Thus, in the first, the robot
acts as a leader by making iim = 0 in (14) for the whole
experiment to take control of the task. This implies that the
human is still able to collaborate with the robot but will have
to exert much greater force if they intend to prevail. In the
second scenario, the robot becomes a follower of the human
by making iim = 0 for the whole experiment and reducing
wAtt = 0.1 to thusmaintain obstacle avoidance but following
the human’s commands. In this way, the human discovers the
robot’s response speed and learns to communicate implicitly
through their force. As can be seen in Fig. 7a, b, in both
scenarios there are two routes to accomplish the task.

The next three experiments confront the human–robot pair
with different situations that they must solve to complete the
task. In the third, the human detects a forbidden pass sign
on the route that the robot cannot ”see” (the robot has no
system that allows it to interpret the meaning of this sign).
The human must use their force to make the robot re-plan
once they have brought it to a point where the other route is

2 Ethics committee URL: https://comite-etica.upc.edu/en.

shorter. The fourth experiment is similar to the third, but the
human can use the buttons on the handle (see Fig. 6c). These
include a button to take control of the task, i.e., explicitly
tell the robot that the human wishes to become the leader
with a consequent increase in wH ; and another to command
the robot not to continue along the current path, in which
case, the robot uses this message to generate a virtual obsta-
cle along the path it is following causing the attractive force
that was driving it along that path to become repulsive and
force the robot to replan. As in the previous two experiments,
in both the third and fourth experiments there are also two
routes to complete the task. Since these two routes are the
same size, the human can choose the route theywant, making
it impossible to know a priori which route should be blocked
to force the human to go back and take the alternative route,
which is the situation we want to force the human to confront
in order to check if they understand the utility and neccesity
of explicit communication. In consequence, two forbidden
pass signs were placed, one in each route, so that the vol-
unteer is forced to deal with the situation regardless of the
choice. Once a route is picked, a research assistant removes
the remaining sign to enable the alternative path. This is done
so that the experiments are systematic and do not depend on
chance ensuring that all volunteers are forced to dealwith this
situation regardless of their choices. The human is unaware
of the fact that both paths are blocked at the beginning of the
experiment.

The fifth and final experiment features an overly narrow
corridor on the shortest route that forces the human to stand
behind the robot instead of beside it in order to pass. To do
this, they are allowed to use a third button that serves to com-
municate to the robot their explicit intention to change the
pair configuration by placing the human behind the robot.3

The first two scenarios serve for the human to get practice
with the robot in the task to be performed and for us to know
if the force-basedmodel is comfortable for them or should be
improved in following works. Therefore, the answers given
by the volunteers to the first two sections of the questionnaire
corresponding to the first two experiments are analyzed qual-
itatively. Being the scale used from 1 to 7 we can use 4 as
the threshold that determines whether the human agrees or
disagrees with what is being asked.

Thus, Figs. 8 and9 show that the humanconsiders that they
feel comfortable both accompanying the robot when it acts
as a leader and guiding the robot when it is the human who
leads the interaction. At the same time, they consider that the
solutions proposed by the robot are acceptable without being
aggressive in its movements. Likewise, they consider that
the robot’s response speed is adequate and that the robot’s
control system is sufficiently intuitive. Finally, trust in the

3 1st round example: https://youtu.be/LO6zLUbnKMU.
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Fig. 7 Setups for each experiment. The robot is located at the starting
point in each experiment. The goal is marked with a green X in the
diagrams and with a chequered flag in the real setups. There are two
routes in each experiment to fulfill the task except in Exp. 05, where

the human has to change the footprint to enable the second one, and
in Exp. 06, where there are at least eight feasible routes. Camera icon
on the left represents picture’s point of view on the right. (Color figure
online)

Fig. 8 Valuation performed by volunteers after Exp. 1. Average and
std. dev. of the parameters asked to valuate from 1 (very low) to 7 (very
high). Error bars represent std. dev

robot increases when it is the human who takes control of
the task. This aspect will be discussed in more depth below.

We can therefore proceed to use this force-based model to
test our hypotheses about allowing humans to express their
intention explicitly versus not allowing them to do so:

Fig. 9 Valuation performed by volunteers after Exp. 2. Average and
std. dev. of the parameters asked to valuate from 1 (very low) to 7 (very
high). Error bars represent std. dev

H1 - Allowing humans to explicitly state their intention
allows for a reduction in their effort.

H2 - Allowing humans to explicitly state their intention
increases parameters of effective HRI including perceived
safety and trust in the robot.
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Table 1 Subjective (from 1 to 7) and objective (in Newtons) measuring
of needed force

Measurement Exp. 3 Exp. 4 p value

Necessary Force 5.11 (0.93) 3.15 (1.26) < 0.001

Difficulty to 3.93 (1.66) 5.56 (1.05) 0.005

comm. intent

Avg. Force [N] 8.62 (3.35) 5.73 (2.56) < 0.001

Max. Force [N] 26.1 (7.71) 19.8 (7.09) 0.004

Avg. Force 7.93 (1.54) 5.91 (1.43) < 0.001

last 25% [N]

H3 - Humans understand that their explicit intention is
needed to improve task performance.

Before presenting the results, it is interesting to perform
a post-hoc statistical power test to know what values we can
be statistically sure of, taking into account the sample size
used. Thus, using the criterion of p < 0.05 and having 27
volunteers, we can detect effect sizes as low as η2 = 0.135
with a statistical power of 80%.

To test hypothesisH1,wewill compare the third and fourth
experiments, since both pose the same situation with the only
difference being whether or not the human can explicitly
indicate their intention using the buttons on the handle. At
the end of each of these experiments, in the corresponding
section of the questionnaire, the volunteers are asked about
the force they subjectively consider they had to exert to make
the robot go the other way from 1 (negligible) to 7 (extreme).
They are also asked how difficult it was for them to commu-
nicate their intention to the robot from 1 (impossible) to 7
(no difficulty). At the same time, both the average force and
the maximum force measured by the force sensor in each
experiment are analyzed. The results are shown in Table 1.
It also shows the p-value calculated for each variable using
ANOVA tests on the samples of both experiments.

As it can be seen, there is a statistically significant reduc-
tion in both subjective variables, taking into account a
criterion of p < 0.05. That is, the human considers that
they must exert significantly less force to make the robot
change its route when they can explicitly communicate with
it (F = 42.2, d f = 53, η2 = 0.448), which has repercus-
sions in that they also consider that it is significantly easier for
them to communicate their intention (F = 18.5, d f = 53,
η2 = 0.263). This is corroborated when analyzing the two
objective variables, also producing a statistically significant
reduction in both the average force and the maximum force
exerted.

If the evolution of the force exerted in each experiment
is analyzed, a noteworthy phenomenon appears. Figure 10 is
obtained by resampling the sequence of force measurements
in the third and fourth experiments to make them all have the
same duration (same number of samples) so that the samples

Fig. 10 Evolution of the average force exerted in Exp. 3 and 4. Extra
force needed in the third experiment once the forbidden path sign is seen
to make the robot to go backwards until it replans using other route. No
extra force needed in the forth experiment

in each percentage of the experiment can be averaged. As it
can be seen, the humanmust significantly increase their effort
to force the robot to go the other route in the third experiment
by lacking away to tell the robot that it has partial information
about the task. This extra effort can be avoided in the fourth
experiment.

This may seem an obvious result considering the two
setups. However, the interesting part is that the user still
exerts a greater effort once the robot has replanned, when
there is no longer a difference between the two experiments.
The last row of Table 1 shows the result of comparing the
average force exerted by the human during the last 25% of
each experiment. As it can be seen, there is a statistically sig-
nificant reduction in the effort exerted (F = 25.1, d f = 53,
η2 = 0.326). Therefore, we can affirm that hypothesis H1 is
correct.

In the section of the questionnaire corresponding to the
third experiment, volunteers are asked to evaluate different
parameters related to human–robot interaction. Volunteers
are asked again to evaluate the same parameters after the fifth
experiment by evaluating the fourth and fifth together. In this
way, we can compare their experience to test hypothesis H2
using an ANOVA test. The results are shown in Fig. 11.

Comparing the fluency of the interaction, there is a slightly
significant increase in the perceived fluency of the human–
robot pair: without optionsμ = 4.15, σ = 1.29;with options
μ = 4.96, σ = 1.50; F = 4.40, d f = 53, η2 = 0.080,
t(26) = −2.16, p = 0.0403. However, since its effect size
is lower than the minimum considered to have an acceptable
statistical power, we cannot be totally sure of this result. The
same does not occur if we look at the robot’s contribution
to the fluency of the interaction, with a clearly significant
increase: μ = 3.52, σ = 1.28; with options μ = 5.11,
σ = 1.42; F = 18.6, d f = 53, η2 = 0.264, t(26) =
−4.48, p < 0.001. As for the human’s responsibility, i.e.,
how attentive to the task must be the human to correct the
robot, there is a statistically significant reduction (without
μ = 5.30, σ = 1.32; with μ = 4.26, σ = 1.35; F = 12.1,
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Fig. 11 Assessment of the main aspects involved in the interaction. Comparison between exp. 3 in blue and exp. 4 and 5 together in red. Valuation
from 1 (very low) to 7 (very high). Statistical significance marked with *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent std. dev.

Fig. 12 Trust in the robot in each situation and direct comparison
between third and fourth experiment. Left - Trust in the robot for the
three first experiments and for exp. 4 and 5 together (both with explicit
intention options). Statistical significance marked with *: p < 0.05,

**: p < 0.01, ***: p < 0.001. Error bars represent std. dev. Right -
Election made by the volunteers instead of valuate aspects numerically.
The maximum is 27 as it is the number of volunteers. (Color figure
online)

d f = 53, η2 = 0.188, t(26) = 3.85, p < 0.001), as well as
in the importance the human gives to their own contribution
to the task (without μ = 5.52, σ = 1.34; with μ = 4.48,
σ = 1.31; F = 9.96, d f = 53, η2 = 0.161, t(26) = 3.31,
p = 0.0027). This implies that allowing the human to state
their intention explicitly allows to reduce the mental burden
the task places on them, at least subjectively.

There is also a statistically significant increase in the
contribution to the task that the human believes the robot
makes (without μ = 3.63, σ = 1.27; with μ = 4.96,
σ = 1.43; F = 13.1, d f = 53, η2 = 0.201, t(26) = −3.95,
p < 0.001), as well as in the belief that the robot con-
tributes to the same extent as the human (without μ = 2.70,
σ = 1.07; with μ = 3.96, σ = 1.56; F = 19.1, d f = 53,
η2 = 0.271, t(26) = −4.57, p < 0.001). However, the robot
is still considered to contribute less than the human.

The last two parameters to be assessed are aimed at check-
ing whether the robot is trustworthy. To do this, firstly, the
volunteers are asked if they trust the robot to do the right
thing when necessary, producing a statistically significant
increase: without μ = 3.96, σ = 1.53; with μ = 5.22,
σ = 1.48; F = 18.8, d f = 53, η2 = 0.265, t(27) = −4.49,
p < 0.001. Second, they are asked to directly rate their
degree of trust in the robot, as they did at the end of the

first and second experiments. Figure 12 Left shows the four
ratings obtained.

Applying an ANOVA test we obtain that there is a sta-
tistically significant change between the four cases studied:
F = 7.45, d f = 107, η2 = 0.175, p < 0.001. By applying
a Tukey HSD (Honestly-Significant-Difference) test we can
make multiple comparisons between each pair of variables.
Thus, we find that there is an increase in trust in the robot
when the human takes control of the task but it is not sta-
tistically representative (robot master μ = 4.93, σ = 1.24;
human master μ = 5.63, σ = 1.01; p = 0.189). In con-
trast, the drop in trust that occurs in the third experiment
is significant indeed: human master μ = 5.63, σ = 1.01;
collaborative (without options) μ = 4.00, σ = 1.52;
p < 0.001. This trust is partially recovered when we give the
human a way to recover part of his ability to control the task
such as options to explicitly indicate his intention: collabo-
rative (without options) μ = 4.00, σ = 1.52 collaborative
(with options) μ = 5.04, σ = 1.31; p = 0.019.

In addition to asking the volunteers to evaluate the above
parameters numerically, at the end of the fourth experiment,
avoiding the possible effect that the fifth experiment could
have, they were asked to choose between the third and fourth
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Fig. 13 Valuation of the utility of indicating explicit intention. Valua-
tion from 1 (totally disagree) to 7 (totally agree) with respect to different
aspects. Error bars represent std. dev

experiments which of them they found safer, easier to per-
form, etc. The result is shown in Fig. 12 Right.

There is an unanimous response that being able to indi-
cate your intention explicitly makes the task safer or, at least,
that it does not produce any additional danger. Similarly,most
volunteers feel that they find it easier and faster to execute the
taskwhen they have the options to indicate their intention and
that the task runs more smoothly. On the other hand, there
is disagreement as to which method makes the interaction
more natural or similar to how two humans would do it. This
is because both metrics depend heavily on the volunteers’
ability to make the equivalence between the communica-
tion method they used (buttons) and speaking or gesturing
to their partner. The statements of some of the volunteers in
the post-questionnaire conversation confirm these results. ”I
feel safer knowing that I can always take control” says volun-
teer 3 regarding safety while volunteer 12 states ”The robot
should be able to detect that sign, a human does” regarding
the naturalness of the interaction. Nevertheless, hypothesis
H2 is confirmed.

As for the third hypothesis, to validate it, a final request
is made to the volunteers in the last section of the question-
naire once all the experiments have been carried out. This
consists of rating the usefulness of explicitly indicating their
intention for various purposes. Since this last section of the
questionnaire is not compared with any previous section, and
in order to check if the answers are statistically significant,
the result obtained for each question will be compared using
ANOVAs with the scale mean, 4 (the answers range from
1 to 7), since this would be the answer they would give if
they neither agreed nor disagreed with the statements in the
questionnaire. The variance associated with this hypothetical
response of 4 in each sentence is the same as that obtained
for each sentence in the questionnaires. Fig. 13 shows that
they fully agree that explicit intention is necessary both to
solve complex situations (F = 55.3, d f = 53, p < 0.001,
η2 = 0.516) and to avoid misunderstandings (F = 122.2,
d f = 53, p < 0.001, η2 = 0.701). Likewise, they agree that
this facilitates communications with the robot (F = 82.6,
d f = 53, p < 0.001, η2 = 0.614), which allows them to

Fig. 14 Comparison of the roles exerted by the voluntaries in exp. 3
and 4. Percentage of each role detected with our system. Buttons in the
handle are disabled in the third and enabled in the fourth. Error bars
represent std. dev

trust it more (F = 22.5, d f = 53, p < 0.001, η2 = 0.302)
and feel safer (F = 22.5, d f = 53, p < 0.001, η2 = 0.301).
This reaffirms hypothesis H2 and confirms hypothesis H3.

Finally, this first round of experiments gives us a first
glimpse of the role assignment allowed by our system (see
Fig. 14). According to it, the human can only assume the
role of leader if they explicitly indicate to the robot that they
wish to take control. This, together with the other options
of explicitly indicating their intention, results in the human
being labeled primarily as an adversary or a neutral (uncata-
logable) agent in the third experiment. In experiment 4, on the
other hand, the robot knows their intention so that they can
be assigned a collaborative role most of the time. It is worth
noting the enormous variance in the assignment of each role,
demonstrating the usefulness of the five roles, since some
volunteers want to collaborate with the robot, others prefer
to take the lead, and others just go along with the robot.

5.3 Comparison with a Classical Approach

In the previous round of experiments, it has been proven that
humans agree to state their intention explicitly without undue
extra effort and that they understand that this allows them to
avoid misunderstandings and to resolve complex situations.
However, it has not been shown that humans prefer this sys-
tem to one in which only their intention is elicited through
inferencemethods. Nor have the possible advantages of com-
bining both types of intention been shown. At the same time,
the inference of the human’s implicit intention has beenmade
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by looking only at the current force being exerted (which cor-
responds to the second stage of the SA) but no projection has
been made into the future of this (which would correspond
to the third stage of the SA).

In consequence, a second round of experiments is per-
formed in which a force predictor is used to obtain a
prediction of the force to be exerted by the human based on
the environment in which they are located and the force they
have exerted during the last few seconds. This is a frequent
strategy in the literature: using a predictor of the human’s
movement to make the robot anticipate it [7, 27, 29, 88].
This predictor allows us to compare three systems: 1) a clas-
sical approach that makes use of this predictor to predict
the human’s intention without giving them the possibility to
express it explicitly, 2) the approach of the previous exper-
iments in which no use is made of this predictor but the
human is allowed to indicate their intention, 3) a system that
combines both approaches using the predictor to improve
its inference but taking into account the intention explicitly
given to it by the human.

In order to make this comparison, we use a new scenario
(see Fig. 7 - f) specially designed so that there are muchmore
than two different routes allowing the human to make sev-
eral decisions throughout the same experiment so that they
can check several times the advantages and disadvantages of
each approach. In turn, we designed our own force predictor
using an architecture based on a combination of Convolu-
tional Neural Networks (CNN) [96] and Long Short-Term
Memory (LSTM) [97] units. The technical details of this
predictor can be found in [98].

This model uses as inputs the measurements made dur-
ing the last 2 seconds of: the LiDAR of the robot, the total
environmental force Fnorm

E,C from (7), the linear and angular
velocity of the robot and the force exerted by the human,
fh,C from (10). And as output, it generates a prediction of
the force exerted by the human during the next second. To
train it, the recorded data from the previous experimentswere
used. However, a sixth different scenario was used for the set
of experiments, which led us to perform a preliminary round
of experiments to obtain a training dataset with the aim of
achieving higher accuracy compared to a predictor built only
over the data from the previous five scenarios.

A total of 13 new volunteers (age: μ = 31.28, σ = 8.61)
perform 39 experiments (3 each) in which they perform the
same collaborative object transportation task in the new sce-
nario using the robot the same control structure used in the
previous experiments but without allowing the human to
indicate their intention explicitly in any way (equivalent to
the situation shown in Exp. 3). Finally, these new samples
together with the previous ones allow to obtain a predictor
with an accuracy in the testset ranging from 94.4% for the
force the human is about to exert in the next sampling period
to 92.3% for the force to be exerted in 1 s. The dataset gener-

ated for training the force predictor used in the current study
are available from the corresponding author on reasonable
request.

We will use this predictor to try to anticipate whether the
human wishes to go straight or turn, and if so, which way
and with what intensity. This enables us to infer the position
towards which the humanwishes to go and use it to condition
the starting point of the global planner that generates the
waypoints used to generate the attractive force of the force-
basedmodel explained in Section4.1. In this way, this system
can infer the implicit intention of the human and adapt to it.
As for the explicit intention, in this round of experiments it
will also be obtained from the buttons on the handle of the
transported bar. However, and in order to be on equal footing
with the previous predictor, the options given to the human
will be to indicate to the robot their intention to ”take the left
path”, ”continue through the middle” or ”take the right path”
(see Fig. 6c); which may allow the robot to directly discard
the rest of the options when the predictor is not available or
to know which way to continue after that first second if they
are used together.

With these tools, a new round of experiments is designed
in which 18 new volunteers (age: μ = 29.44, σ = 7.67)
perform a total of 72 experiments (4 each). Since we are
dealing with a different population sample, the first experi-
ment serves as a baseline for statistical purposes (and to train
the new volunteers in the system’s usage). Therefore, neither
the predictor nor the buttons on the handle are used. In the
second and third experiments, the same task is performed in
the same scenario but adding in one of them the predictor
and enabling in the other the options to indicate the inten-
tion explicitly. The order of these two experiments alternates
randomly from one volunteer to the next one to avoid that
this may affect their assessment. At the end, 9 volunteers
performed first the experiment with the predictor and then
with the buttons and the other 9 in reverse order. Finally,
the fourth experiment makes use of both systems together.
In order to obtain subjective measures, at the end of each of
the four experiments, the volunteers completed a section of a
new questionnaire.4 In this case, our hypotheses to be tested
are the following:

H4 -Humans prefer to state their intention explicitly rather
than the robot try to infer it.

H5 - A system that takes into account both types of inten-
tion improves multiple parameters of effective HRI over just
considering either type of intent separately.

H6 - Humans prefer a system that takes into account both
types of intentions.

Before presenting statistical results, another post-hoc sta-
tistical power test should be performed to check which is
the smallest effect size that can be detected with a statistical

4 2nd round example: https://youtu.be/cyrLoJX13mY.
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Table 2 Objective measures associated with second round of experi-
ments

Measurement Value

Exp. 1 (baseline) Duration [s] 58,23 (17,05)

Mean force [N] 6,80 (2,46)

Max force [N] 16,33 (7,80)

Exp. 2 or 3 (with predictor) Duration [s] 60,83 (24,40)

Mean force [N] 8,00 (2,67)

Max force [N] 19,38 (9,56)

Exp. 3 or 2 (explicit intent) Duration [s] 72,92 (19,68)

Mean force [N] 5,15 (2,01)

Max force [N] 13,83 (5,84)

Exp. 4 (both systems) Duration [s] 66,86 (20,40)

Mean force [N] 6,66 (1,92)

Max force [N] 22,37 (7,41)

power of at least 80%. In this case we have 18 volunteers
performing 4 experiments each, so if we maintain the crite-
rion of p < 0.05, any effect size greater than η2 = 0.145
will have the desired statistical power.

Taking advantage of the fact that all the experiments in this
round are performed in the same scenario, we can analyze
objective data under equal conditions. Table 2 shows a sum-
mary of the variables considered and their mean (std. dev.)
for each experiment. The large number of possible routes
in this scenario causes a high variability in the duration of
each experiment as the human does not always choose the
shortest route. This is in addition to the natural tendency
of each volunteer to perform more or less force resulting
in a higher or lower speed. This variability means that the
variable ”Duration” does not meet the Saphiro-Wilk test,
making it necessary to perform a non-parametric test. A
Mann–Whitney U test is performed without obtaining sig-
nificant results. The same happens with the high variability
of the maximum force. Another U-test is performed without
finding significant results either.

The mean force, on the other hand, does meet the normal-
ity condition. AnANOVA test is performed and a statistically
significant variation is found: F = 3.129, d f = 71 p-value
= 0.035, η2 = 0.176. A Tukey HSD (Honestly-Significant-
Difference) test is therefore applied to verify that there is a
reduction in the mean force exerted between Exp. 2 and 3:
with predictor μ = 8.00, σ = 2.67; with buttons μ = 5.15,
σ = 2.01; p = 0.019. This reaffirms hypothesis H1 from the
previous round, i.e., there is a reduction in human effort when
allowed to explicitly state their intention. However, it cannot
be asserted that this has an impact on faster task execution.

To test hypothesis H4, at the end of Exp. 3, the volunteers
are asked through the questionnaire to choose between the
system with predictor or the one that allows them to indicate

their intention explicitly in terms of parameters similar to
those used in the previous round of experiments (see Fig. 12
right). They are also asked which mode of operation seems
more appropriate for the task they are performing. The results
are shown in Fig. 15.

Volunteers find it safer and easier to execute the exper-
iment in which they can express themselves explicitly.
Likewise, they consider that the experiment that allows the
smoothest interaction is the one in which the force predictor
is used to infer their intention. On the other hand, there is
no consensus as to which system allows them to execute the
task faster or which system is more similar to the behavior
that two humans would exhibit. Finally, there is a technical
tie when it comes to choosing which system they find most
appropriate, so hypothesis H4 is rejected since there is no
majority (i.e. greater than two-thirds) in favor of the system
that makes use of the buttons.

To test hypothesis H5, at the end of each of the four exper-
iments in this round, volunteers are asked to fill out a section
of the questionnaire (in addition to the choice part asked at
the end of the third experiment and shown in Fig. 15) inwhich
they numerically rate the same parameters that were asked in
the previous round (see Fig. 11). In addition, we added two
parameters that we considered could be useful, such as the
quality of the solutions offered by the robot to solve the task
and how comfortable the interaction with the robot was in
general terms. The results obtained are shown in Fig. 16.

To obtain the statistical significances shown in Fig. 16, an
ANOVA test was applied to each parameter analyzed and, if
it was found that there was a significant difference among the
four experiments, a TukeyHSD test was applied to determine
the significance between each pair of variables. For the sake
of clarity, Table 3 shows a summary of the p-values obtained
for each pair of variables with a statistically significant dif-
ference.

In general terms, the results presented in Table 3 show that
in both the experiment using the force predictor and the exper-
iment allowing the human to explicitly state their intention,
there is a higher or lower significant improvement in practi-
cally all parameters compared to using neither of these tools,
except for the human’s responsibility and the importance that
the human gives to their contribution to the task where no
significant change is detected. This tells us that allowing the
human to express their intention explicitly can achieve the
same beneficial effect as using a complex predictor to try to
infer their intention using significantly more computational
resources. At the same time, it is also clear that the highest
rated system in practically all the aspects analyzed is one
that makes use of both tools together. Hypothesis H5 is thus
demonstrated.

Among the results obtained, it should be noted that only
the system that makes use of both types of intentions makes
the human begin to consider that the robot contributes to the
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Fig. 15 Direct comparison between using force predictor and explicit
intention. Left - Election made by the volunteers with respect to same
aspects valuated in previous round of experiments. Right - Election

made by the volunteers with respect to which system they consider per-
forms better at the task at hand. The maximum is 18 in both cases as it
is the number of volunteers

Fig. 16 Assessment of the main aspects involved in the interac-
tion. Comparison among the baseline experiment (without predictor
or explicit intention buttons) in gray, experiment with the force pre-
dictor in orange, experiment with the buttons in the handle in blue and

experimentwith both systems together in yellow.Valuation from1 (very
low) to 7 (very high). Statistical significance marked with *p < 0.05,
**p < 0.01, ***p < 0.001. Error bars represent std. dev. (Color figure
online)

task to the same extent as the human (rating of 4.89). It is
also interesting the statistically significant increase in trust
in the robot that occurs when we compare the system with
both tools and the one using only the predictor. This result
shows that allowing the human to express themselves, even
in a rudimentary way, can offer low-cost solutions to increase
the degree of trust in human–robot interactions. Likewise, the
complete system is able to significantly improve the human’s
evaluation of the solutions proposed by the robot, as well as
offering the highest degree of comfort.

It is worth mentioning that the use of a smaller population
sample in this round of experiments makes these evaluations
more sensitive to some outliers making it more difficult to
reach higher statistical significance as in the case of the pre-
vious round (see Fig. 11). In any case, the values obtained
for the ”Baseline” and ”With buttons” cases are consistent
with those previously obtained giving greater validity to the
results of this second round of experiments.

Finally, to test hypothesis H6, we use the same method
used to test hypothesis H4. At the end of the four experi-
ments, in the last section of the questionnaire, the volunteers
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Table 3 Parameters with
statistically significance in
second round of experiments

Parameter F,η2, p value Pair analysis

Experiments pair p value

H-R fluency 11.07,0.328< 0.001 Baseline - Buttons 0.016

Baseline - Both < 0.001

Predictor - Both 0.003

Buttons - Both 0.027

R contr. tofluency 9.40,0.293,< L0.001 Baseline - Predictor < 0.001

Baseline - Buttons < 0.001

Baseline - Both < 0.001

Predictor - Both 0.032

H respon 0.299,0.0130.826 – –

H importance 2.46,0.098,0.070 – –

R contr. to performance 6.99,0.236,< 0.001 Baseline - Predictor 0.008

Baseline - Buttons 0.022

Baseline - Both < 0.001

Buttons - Both 0.035

R contr. as H 5.876,0.206,0.001 Baseline - Predictor 0.014

Baseline - Buttons 0.033

Baseline - Both < 0.001

R do the right thing 9.55,0.296,<0.001 Baseline - Predictor 0.023

Baseline - Buttons 0.004

Baseline - Both < 0.001

Trust in R 12.18,0.350,< 0.001 Baseline - Predictor 0.025

Baseline - Buttons 0.002

Baseline - Both <0.001

Predictor - Both 0.009

R good solutions 9.16,0.288,<0.001 Baseline - Both <0.001

Predictor - Both 0.023

Buttons - Both 0.002

Comfort 10.99,0.327,<0.001 Baseline - Predictor 0.035

Baseline - Buttons 0.021

Baseline - Both <0.001

Predictor - Both 0.021

Buttons - Both 0.035

Pair analysis with Tukey HSD only performed if the analysed parameter shows a statistically significant
difference (p < 0.05)

Fig. 17 Direct comparison among the three systems: force predictor,
explicit intention and both together. Left - Election made by the volun-
teers with respect to same aspects valuated previously. Right - Election

made by the volunteers with respect to which system they consider per-
forms better at the task at hand. The maximum is 18 in both cases as it
is the number of volunteer
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are again asked to choose, this time between the system with
the predictor, the system with the buttons or the system with
both tools at the same time, with respect to the parameters
they had previously assessed (see Fig. 15). In addition, they
are also asked again which mode of operation they find most
appropriate for the task, this time with the three options men-
tioned above. Figure 17 shows their choices.

As it can be seen, there is a technical draw as to which
system they find safer between the system that only uses the
buttons to indicate explicit intent and the system that uses
both tools together. This allows us to deduce that it is the
ability to indicate their intention explicitly that increases the
human’s sense of safety, which is consistent with hypothesis
H2 demonstrated in the previous round. However, and unlike
the previous choice, there is no longer a division between the
first two systems in terms of the rest of the parameters to
be evaluated, but the volunteers mostly (with majorities of
two-thirds or higher) choose the system that uses both tools
as the one that allows the task to be executed more quickly
or the one that makes the interaction more fluid or similar
to how two humans would do it. This causes the majority
choice as to which system is more appropriate for executing
the task to be the complete system with a majority higher
than three-fourths. Thus, hypothesis H6 holds true.

However, a non-negligible minority still chose the system
with only the predictor. In the post-experiment interview, one
volunteer expressed their expectation that the robot would be
able to infer whatever was necessary without them having
to tell it their intention. ”I would like the robot to be able
to do the task without me having to tell it anything,” said
volunteer 8. It is possible that prior expectations may keep
some volunteers opting for this option. Other volunteers, on
the other hand, anticipate the possible errors that this may
cause, such as volunteer 10 who commented ”It’s good that
the robot can predict my intentions but it can be wrong”
which encourages them to opt for the system that makes use
of both tools.

6 General Discussion

In this study, it has been shown that the human willingly
accepts to give their intention explicitly, contrary to the gen-
eral thought that we would like robots to be able to infer
everything by themselves. This is made explicit in the com-
ment made by volunteer 10 in the last round of experiments,
demonstrating that, although we would like not to have to
give any instructions to the robot, we are aware that it may
make mistakes. This explicit intention has also been shown
to improve the human’s subjective assessment of the human–
robot interaction by making them trust the robot more, feel
safer and, most importantly, begin to consider that the robot
contributes to the task in equal proportion to the human. This

is what opens the door to start considering the robot as a
partner and not a mere tool. In turn, it is also what justifies
that we continue working on the other aspects not analyzed,
such as the effect of roles.

On the other hand, the authors acknowledge that the force-
based model presented here is remarkably simple. Possibly
too simple, making it not as general as it should be. For
example, the estimation of the human’s implicit intention is
done by a simple comparison between the force the human is
exerting and the force one would expect the human to exert.
Similarly, obtaining the human’s explicit intention is done
by using three buttons which, in this case, are ergonomic
and simple to use as there is one object with which the
human must be in contact throughout the task. Obviously,
the mechanism proposed to obtain the implicit and explicit
intentions may not be valid for other types of tasks. However,
as indicated in the introduction, the aim of this study and the
mathematical model used is to make it as simple as possible
to understand, so that the reader can easily visualize all the
theoretical concepts shown in Section3. The authors leave
it as future work to use more complex and potentially more
accurate inference engines, as well as other explicit commu-
nication systems, such as gesture-based or natural language
processing.

Similarly,multiple concepts are presented and interrelated
in Section3. However, the experiments shown in Section5 do
not demonstrate all of them but focus on those aspects that
show that the approach presented here is promising, encour-
aging more research related with it. The authors are aware
that the influence of the assignment of collaborative roles on
task performance, as well as the choice of different strate-
gies that these roles enable, has not been analyzed in depth.
We believe that these two topics deserve two specific rounds
of experiments to demonstrate their promising possibilities,
and are therefore beyond the scope of this first study.

About the limitations of this study, it is worth mention-
ing that there are also potential problems associated with the
use of explicit intention communicationmethods. First, if the
method used is not easily understood by the human, it may
cause errors in its use. For this reason, we add labels next
to the buttons in order to minimize errors on the part of the
human. Secondly, the processing and consequent delay asso-
ciated with each method of communication must be taken
into account so as not to undermine the fluidity of the inter-
action. Finally, there is always the possibility that any of
these methods may be misused or abused and, although the
goodness of the human’s actions is generally assumed, this
possibility should not be overlooked.

Likewise, the authors recognize four weaknesses in the
experimental results. First, the experimental results obtained
are, to some extent, task-dependent. This implies that it is
needed to implement our full cycle on a different task and
check that this also improves performance in terms similar to
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those obtained here, probably using differentmethods to infer
the implicit intention and to obtain the explicit one. At the
same time, this task has been executed in a laboratory envi-
ronment, which does not always capture the full complexity
of the same task executed in a real-world setup. Second,
the set of parameters used (weights, thresholds, gains...) has
been the same in all experiments. This makes them com-
parable to each other but also limits our knowledge of the
effect these parameters have on the task. That is, it has not
been tested what effect it would have if the robot exhibited a
more aggressive or a more cautious behavior. Nevertheless,
it is considered that this does not undermine the fundamen-
tal objectives of the present work since the expected result
of changing the set of parameters would be a reduction or
increase in the subjective assessment of the related aspects.

Third, the population sample size used in the second round
of experiments may be small. Although the results obtained
are remarkably consistent with those obtained in the first
round, an effort has beenmade to give sufficient implementa-
tiondetails inSection4.2 to increase the reproducibility of the
experiments and to allow any other researcher to implement
and test our model if desired. Finally, the fourth weakness of
the experimental results relates to howhypothesesH4 andH6
have been confirmed or rejected. These have been addressed
by directly asking the volunteers about which system they
prefer with respect to various parameters or which one they
consider more appropriate for the task. This type of direct
question forces the user to choose and allows at a glance to
know their preferences. However, it also eliminates the pos-
sibility of performing a classical statistical analysis based on
ANOVA tests, for example. Because of this, their acceptance
or rejection must be carefully considered. This is a limitation
of the study that we believe can be solved in future studies
by changing the type of question so that they also choose
between one system or the other but using a graduated scale
(for example between -3 and 3 with 0 representing the draw)
so that further statistical analysis can be performed.

As for the effect of the robot used, it is neither fully
humanoid, as would be the Talos or ARI robots from the
same manufacturer, nor of industrial type. The authors con-
sider that the numerical values obtained in the experimental
part would vary slightly when using a robot that is closer
to one of these two categories, tending to be lower in some
evaluations, both for the base experiment and for each sub-
sequent one, and higher in other evaluations. However, they
also believe that the statistically significant effects observed
when using each system would remain the same. In other
words, the human should still trust a robot that makes use
of a system that allows them to communicate both explicitly
and implicitly more than one that allows only one type of
communication.

Finally, it is worth mentioning some ethical issues related
to our work. Regarding its potential impact on human

employment, the framework proposed is oriented at all times
to collaborative tasks in which at least one human is always
involved, offering more than a displacement, the possibil-
ity of improving human capabilities. Regarding its potential
impact on human safety and autonomy, the approach of com-
bining the implicit intention with the explicit one directly
indicated by the human allows to improve human safety
by being able to control the development of the task and
its related decision-making in more flexible ways. Regard-
ing data protection, an effort has been made not to use data
sources that could identify the user such as video or voice.
However, if they were to be used, the users’ right to privacy
should be taken into account and the information should be
processed in a way that does not cause any potential harm.

7 Conclusions

In this article we have presented our Perception-Intention-
Action cycle in all its depth, which we believe allows to
encompass andfit togethermultipleworks present in the liter-
ature. Using the concept of SituationAwareness, we combine
the implicit intention of the human that can be inferred by
the robot with the explicit intention directly delivered by
the human, thus achieving a better understanding of the cur-
rent situation in which the human–robot collaboration takes
place, andwith that, a projection of the future situation. These
enable the assignment of collaborative roles to the interacting
agents.

In the experimental part, it has been shown that the human
agrees to give their intention explicitly without this plac-
ing an excessive extra effort on them and understands that
this allows avoiding misunderstandings and resolving com-
plex situations. It has also been shown that using a system
that allows the human to express themselves explicitly can
improve the human’s subjective assessment of their inter-
action with the robot to the same extent as using complex
systems that seek to infer the human’s intention as accurately
as possible. This is because the human prefers to maintain
some sense of control over the task and because deep down
they know that the robot can make mistakes. Finally, it has
been found that the system that achieves the best ratings in
its interaction with the human is the one that combines the
inference of the human’s intention with the possibility of the
human directly expressing their intention.

These three results open the door to designing systems that
do not seek, or rely on using, increasingly accurate inference
engines, but rather systems that improve communicationwith
the human to be able to explicitly ask for their intention or
preferences in the most human possible way. This increases
trust in the robot as well as the human’s sense of safety.
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Appendix A Example of the Questions Used
in Questionnaires

In this seccion, a sample of the questionnaires used in both
rounds of experiments is shown.

Generally speaking, after each experiment in each round,
each volunteer fulfills a section of the questionnaire with
some 7-point likert questions followed by some multiple-
choice questions in which they should chose between system
A or B (being sometimes the draw also an option) if perti-
nent (it is not pertinent to ask for an election between two
systems before testing both systems). After fulfilling the sec-
tion relative to the experiment just carried out, they perform
the next experiment in the round and then they fulfill the next
section of the questionnaire, usually with exactly the same

questions, in order to evaluate the difference. At the end of all
the experiments in the round, a research assistant makes the
volunteers some open questions in which they can express
themselves as desired.

The 7-pint likert questions are the following (questions 9
and 10 were added in the second round of experiments.):

Using the provided scale, to what extent do you agree or
disagree with the following statements? (1: definitely dis-
agree, 7: definitely agree).

1. The human–robot team worked fluently together.
2. The robot contributed positively to fluency of the interac-

tion.
3. I had to bear the brunt to make the human–robot team

better.
4. I was the most important team member on the team.
5. The robot contributed positively to the team performance.
6. The robot contributed equally to the team performance.
7. I trusted the robot to do the right thing at the right time.
8. The robot was trustworthy.
9. The robot proposed good solutions to complete the task.

10. I felt comfortable accompanying the robot.

The multiple-choice likert questions are the following:
With respect to the (system A) and (system B) experi-

ments, which one do you consider as...?

1. Safer.
2. Easier to execute.
3. More agile.
4. More fluid.
5. More natural.
6. More like two humans.

The open-ended questions are the following:

1. What do you think of the experiment?
2. How did you feel in each experiment?
3. What would you change and why?
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