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Probabilistic Graph-based Real-Time Ground Segmentation for
Urban Robotics

Iván del Pino, Angel Santamaria-Navarro, Anaı́s Garrell Zulueta,
Fernando Torres and Juan Andrade-Cetto

Abstract—Terrain analysis is of paramount importance for
the safe navigation of autonomous robots. In this study, we
introduce GATA, a probabilistic real-time graph-based method
for segmentation and traversability analysis of point clouds. In
the method, we iteratively refine the parameters of a ground plane
model and identify regions imaged by a LiDAR as traversable
and non-traversable. The method excels in delivering rapid, high-
precision obstacle detection, surpassing existing state-of-the-art
methods.

Furthermore, our method addresses the need to distinguish
between surfaces with varying traversability, such as vegetation
or unpaved roads, depending on the specific application. To
achieve this, we integrate a shallow neural network, which
operates on features extracted from the ground model. This
enhancement not only boosts performance but also maintains
real-time efficiency, without the need for GPUs.

The method is rigorously evaluated using the SemanticKitti
dataset and its practicality is showcased through real-world
experiments with an urban last-mile delivery autonomous robot.

The code is publicly available at https://gitlab.iri.upc.edu/
idelpino/iri ground segmentation

Index Terms—Ground Segmentation; Terrain Analysis; Se-
quential Innovation; LiDAR

I. INTRODUCTION

Robust detection of obstacles and traversable space is a
fundamental requirement for any autonomous robot to navigate
safely. While this capability is easily achieved in indoor
environments, it becomes considerably more challenging in
outdoor settings due to unpredictable ground structures and
uncontrolled illumination conditions. LiDAR sensors are a
popular choice for outdoor scenarios because they provide
precise geometric information over acceptable ranges and are
relatively insensitive to external illumination sources. How-
ever, the sparsity and lack of color information in LiDAR
data, combined with the complexities of outdoor environments,
make LiDAR-based ground segmentation a highly demanding
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Fig. 1. Real-time terrain analysis using a probabilistic graph-based approach:
The figure illustrates ground model predictions (depicted as blue squares),
a traversability graph (where yellow edges represent traversable paths and
red edges indicate non-traversable paths), and a segmented point cloud (with
obstacles marked in green, traversable ground in blue, and non-traversable
ground in magenta).

task, particularly when real-time performance is a practical
necessity.

In recent research trends, Deep Learning models have
gained prominence for the semantic segmentation of point
clouds. These models have demonstrated remarkable results
in benchmark tests such as SemanticKitti and NuScenes,
accurately distinguishing among various classes [1], [2], [3].
However, Deep Learning methods have their drawbacks. They
require an extensive amount of labeled data for supervised
training, are computationally intensive both during training
and inference, and raise concerns regarding their susceptibility
to adversarial attacks when used in critical processes like
obstacle detection [4].

In addition to Deep Learning methods, a wide range of al-
ternative approaches exists. These include Elevation maps [5],
Gaussian Processes [6], RANSAC with polynomial fitting [7],
or Markov Random Fields [8]. Each approach has its advan-
tages and drawbacks, but common challenges include achiev-
ing real-time performance, adapting to different sensors, and
addressing traversability estimation.

To address these challenges, we propose GATA a proba-
bilistic Graph-based real-time Approach for Terrain Analysis.
The method generates a ground model organized as a graph
structure encoding traversability information, facilitating fast
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and robust obstacle detection. Moreover, the ground model
produces features that can be harnessed to refine traversability
analysis. If ground-truth data is available, we train a shallow
neural network to distinguish between traversable and non-
traversable ground. While this shallow neural network cannot
match the complexity of modern Deep Learning methods, it
offers advantages, including the need for a modest amount of
annotated data, fast training, and real-time segmentation on a
single CPU core.

Key features of the method are:
• LiDAR-only: It can be utilized without complex hardware

setups or calibration processes.
• Single-shot: It does not require odometry or localization

for concatenating point clouds.
• Lightweight: It operates in real-time on a single CPU

core.
• Easy to tune: It has a small number of meaningful pa-

rameters, such as Kalman noises, ROI sizes, and angular
resolution.

• Flexible: It works with various 3D LiDAR sensors, re-
gardless of their field-of-view or resolution.

• Easy to train: It requires minimal annotated data and
training time [9].

• Complementary to Deep Learning methods: It can
serve as an alternative to protect against adversarial
attacks [10].

• Provides excellent point cloud segmentation and
traversability analysis, outperforming existing methods
in its class.

The remainder of this paper is organized as follows: in
Section II, we provide a brief review of related works. In
Section III, we offer a detailed description of our method,
leading to an experimental evaluation in Section IV. Finally,
in Section V, we present our conclusions and outline future
research directions.

II. RELATED WORK

Over the past few years, we have seen how Deep Learning-
based algorithms have achieved excellent results in classic
computer vision tasks, such as image classification or object
detection, expanding technological possibilities and practical
applications to unprecedented levels [11]. Beyond image pro-
cessing, deep neural networks have recently been extended
to point cloud processing, which is of great interest for
autonomous driving since LiDAR sensors are a fundamental
piece in most of these systems [12]. Initially, Deep Learning
techniques were primarily applied to object detection in point
clouds [13], however, with the advent of new tools, such as
highly realistic simulators (e.g., CARLA [14]) and automated
labeling algorithms (similar to those used in SemanticKITTI
[1]), we now have access to point-wise-level annotated point
cloud datasets. These datasets enable the development of Deep
Learning-based semantic segmentation algorithms. Currently,
the top-performing semantic segmentation methods in the
SemanticKITTI benchmark rely on Deep Learning and employ
various techniques. Among these, Knowledge Distillation [15]
has gained prominence. In the study by Yan et al., [3],

a Knowledge Distillation strategy is developed to leverage
RGB camera information during network training but not
during inference. This approach allows the system to operate
even in the absence of cameras. Another notable example of
Knowledge Distillation is found in the work presented by Hou
et al., [16], where they introduce a method called “Point-to-
Voxel Knowledge Distillation.” By reducing the complexity
of several large models, this technique enhances the handling
of dispersion and variable density in point clouds generated
by LiDAR sensors and currently ranks second in the Se-
manticKITTI semantic segmentation benchmark.

Despite their commendable performance, the practicality of
employing deep-learning algorithms for ground segmentation
is often limited. This limitation is primarily due to their
substantial computational demands, rendering them unsuitable
for real-time applications on robots lacking GPU capabilities
[17]. Furthermore, deep neural networks possess qualities that
are not yet fully understood and that generate counterintuitive
and even “intriguing” effects, as shown in the work [18] where
it is stated that unlike in classic computer vision algorithms,
small or even imperceptible alterations in the input images
of a deep network can cause serious classification errors in
its output. These counterintuitive properties of deep networks
have been studied within the Adversarial Machine Learning
community [19] to develop methods able to degrade the
performance of artificial Deep Learning-based systems by
“adversarial attacks” and to create methods to defend them
against such attacks [20].

Various studies have illuminated the vulnerabilities of deep
learning-based point cloud processing algorithms. Noteworthy
examples include: a) Physical Camouflage: In the work by Tu
et al., [21] meticulously crafted objects with unconventional
shapes alter a car’s appearance, rendering it invisible to deep
networks; b) Semantic Segmentation Confusion: Zhu et al.,
[10] strategically place small elements within the environment
to confound semantic segmentation systems. These elements
cause misclassification of vehicles as ground points, leading
to their disappearance; and c) GNSS-Based Backdoor Attacks:
Li et al., [22] reveal a potential backdoor in point cloud
rectification using GNSS information. This common prepro-
cessing strategy, employed to mitigate point cloud deforma-
tions during high-speed sensor movement, can inadvertently
serve as a gateway for adversarial attacks. Spoofing tech-
niques contaminate the GNSS signal, effectively evading the
perception system’s detection of pedestrians, cars, and other
critical obstacles. In light of these studies, we contend that
diversifying obstacle detection methods beyond deep learning
is critical for ensuring redundancy and robustness in safety-
critical processes. This motivation drove the development of
our method and remains a key focus for our future research.

Numerous methods have been proposed in the literature to
address real-time pointwise ground segmentation without the
need for Deep Learning techniques. Initial algorithms utilized
elevation maps to detect obstacles in point clouds, assigning
height information to each occupied cell, such as the mean
height of all contained points or the difference between the
maximum and minimum heights [23]. Some methods modeled
the ground plane as a set of concentric lines, estimating their
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slope and intercept using least squares [24], albeit with the
inherent limitation of having a single equation for each angular
zone. More contemporary works have employed probabilistic
approaches for ground segmentation, as demonstrated in [25],
where the ground is modeled as a Markov Random Field, and
the maximum-belief ground height is sought using a polar grid
representation. Reymann et al. [26] introduced a hierarchical
classification method based on Random Forests. This method
uses geometric features to differentiate flat surfaces, vegeta-
tion, and obstacles. Intensity features and multi-echo data are
then used to further refine the classification into grass, small
rocks, and asphalt. Inspired by this approach, we incorporate a
second classification stage in our method, employing a shallow
neural network to distinguish between traversable and non-
traversable ground. A highly efficient ground segmentation
method is presented in [27]. Rather than operating in 3D space,
this method employs a projection in spherical coordinates to
generate Range Images. The data in these images is processed
column-wise, with each column encoding the elevation angles,
thereby facilitating the analysis of the ground’s slope. Zermas
et al. [28] divided LiDAR scans into planes along the front-
back (x) axis, using Singular Value Decomposition based
on the lowest detected points. This method classifies points
using a simple point-to-plane Euclidean distance threshold.
While fast, this approach struggles in the presence of noise
and outliers. A more robust variant is presented by Luo et
al. [29], which divides the environment into inner, forward, and
backward regions and estimates slope and intercept parameters
for the best-fitting line using RANSAC [30] and Iteratively
Reweighted Least Squares. Although effective in structured
roads, it is less suitable for complex, unstructured scenarios.
Another RANSAC-based method is presented in [31], where
a two-step algorithm is employed. Initially, the more apparent
non-ground points are discarded using the sensor’s geometry
and the distance between consecutive rings in the scan. Sub-
sequently, a multi-region RANSAC plane fitting is used to
finalize the refinement of the ground segmentation.

All these works faced the challenge of lacking point-wise
annotated datasets for performance evaluation. This changed in
2019 when the SemanticKitti dataset was released, providing
labels for over four billion points classified into twenty-eight
classes. This dataset has become a standard benchmark for
ground segmentation, and we use it in this paper to compare
our results with the state of the art (see Section IV). In
the latest literature on ground segmentation, Huang et al. [8]
present a coarse-to-fine method that divides the segmentation
process into three stages. The first two are purely geometric
analyses, using a ring-based elevation map and spherical coor-
dinates representation to produce a coarse segmentation, which
serves as initialization for the third stage. This final stage
employs a graph-based approach with a min-cut algorithm
to separate ground and non-ground points. Qian et al. [7]
describe a ground modeling algorithm that creates a polar grid
containing only points with the minimum z-coordinate. It then
applies the method described in [32] to remove obstacles and
performs RANSAC-based second-order polynomial fitting.
This process generates a ground model used for point cloud
classification based on an Euclidean error threshold. Lim et

al. [33] use a variable cell size polar grid, called the Concentric
Zone Model (CZM), to accommodate data sparsity. Principal
Component Analysis is used to find local planes in the CZM
representation. These local planes are combined using three
different features (Uprightness, Elevation, and Flatness) to
perform the final segmentation. Notably, all these methods are
sensor-specific and make assumptions about the point cloud’s
distribution or projection. Popular methods that also include
graph structures for LiDAR segmentation include Zhu and
Liu’s method for the segmentation of traversable areas in
rough terrain [34] that divides LiDAR line scans into line
segments by least squares linear regression and uses graph-
cut to classify line segments into ground and non-ground;
and Oh et al. [35] that builds a graph from a constant-
resolution triangular grid and employs PCA within each cell
to find the normal vector to each surface. Cells are classified
as terrain, obstacle, or unknown based on the number of
points in the cell and the normal vector. Traversability analysis
is performed by encoding central points of terrain cells as
nodes within the graph. A search is conducted to analyze the
edges between neighboring nodes, marking non-traversable
nodes as unreachable. Point cloud segmentation is achieved
by thresholding the Euclidean distance between points and
model planes. Similar to our approach, Oh et al. is sensor-
agnostic and also encodes the ground model in a graph, but
has no means to estimate the model’s uncertainty. In contrast,
our approach allows for probability distribution prediction in
the Z-axis and uses Mahalanobis distance checks for better
treatment of noisy data. Additionally, we use a shallow neural
network to distinguish between different types of ground,
providing vital traversability information, as certain areas, like
grass or unpaved terrain, may present similar traversability
features.

III. METHOD

A. Problem Statement

The problem we aim to address involves a ground robot
equipped with one or more LiDAR sensors, with known
mounting points through calibration. Despite having limited
processing power, this robot must navigate outdoor environ-
ments, necessitating the detection of obstacles at extended
ranges in complex, non-flat terrains for tracking, localiza-
tion, and mapping tasks. Additionally, it must differentiate
between traversable and non-traversable surfaces to support
planning. Specifically, we need to determine which points in
a given point cloud belong to obstacles and which belong to
the ground. Among the ground points, we must distinguish
between traversable and non-traversable areas. Furthermore,
this method should run in real-time without requiring GPUs.

For obstacle detection, we build a representation of the
ground in which height is modeled with a Gaussian dis-
tribution for any desired coordinate in the XY plane. This
ground model provides the foundation for obstacle detection,
effectively treating it as an outlier rejection task. We use
a Mahalanobis threshold to differentiate obstacles from the
ground. For the traversability classification of ground points,
we utilize a supervised learning approach. We train a shallow
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Fig. 2. Two-stage segmentation scheme. First, stochastic estimation is used to update parameters of the height and slope of the ground plane and to discard
points belonging to obstacles. In the second step, a shallow neural network is used to classify traversable and non-traversable ground.

neural network (as discussed in Section III-J) to classify
ground points as either traversable or non-traversable. This
classification is based on a feature vector extracted from the
point cloud and the ground model.

A schematic representation of the proposed segmentation
pipeline is provided in Figure 2, with two sequential mod-
ules, one for ground segmentation, and the second one for
traversability analysis. An algorithmic representation of the
pipeline is given in Algorithm 1. The more relevant variables,
referred to as Config Params in Algorithm 1, are thoroughly
elucidated in Section IV-A.

B. Ground segmentation

In our specific problem, the objective is to compute the
parameters, height, and slope, of a supporting plane of the
ground local to a given robot position. As the robot traverses
the environment, these parameters change smoothly and we
update them using stochastic state estimation. The approach
is computationally efficient, robust, and, unlike some other
methods in the state of the art, considers uncertainty, which
is valuable for the identification of obstacles as outliers to the
plane.

To implement this approach, we locally explore the point
cloud as if a virtual rover navigates through it while estimating
the supporting plane. The exploration starts from the point
cloud’s origin, where a solid prior of the ground plane is
available thanks to sensor extrinsic parameter calibration. The
exploration is then propagated to nearby points, with a linear
propagation of uncertainty of ground plane parameters as
the exploration proceeds away from the point cloud origin,
and using point cloud data to revise the ground parameter
estimates. This process repeats until the entire point cloud is
analyzed.

1) Inputs: The algorithm operates with a minimal set of
inputs:

Algorithm 1: Probabilistic real-time ground segmen-
tation and traversability analysis
input : point cloud (P ), config params (c)
output: ground model (G), segmented point cloud (P̂ )
L← generateCloudOfReferences(P, c);
vo ← setRootV ertexPrior(c);
G ← v0;
k ← 0;
while k < G.numberOfV ertices() do

vk ← G.getV ertex(k);
ROIk ← extractReferencesInROI(vk, L, c);
ROIk ← vk.filterROIWithPrior(ROIk, c);
vk ← vk.computePosterior(ROIk, c);
G ← vk.generateNewV ertices(ROIk, c);
k ← k + 1;

end
k ← 0;
while k < L.size() do

[P̂ , f ]← detectObstacles(P,L(k),G);
if c.use neural net then

P̂ ← predictTraversability(P̂ , f);
end
k ← k + 1;

end

• A 3D Point Cloud: This can be a single shot or an
accumulation of point clouds. It may originate from a
single sensor or be generated by multiple sensors, as
long as all the points within the cloud share a common
reference frame.

• Ground Plane Prior: To initiate the algorithm, a prior
estimation of the ground plane at the robot’s position is
required. This estimation is used to distinguish between
ground and obstacles in the robot’s immediate vicinity.
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Typically, this information is obtained through extrinsic
parameter calibration. It’s important to note that this is
a prior estimation and doesn’t need to be perfect, as the
method will refine the estimation based on sensory data.
This flexibility makes it possible to use the algorithm with
various robots without the need for a complex calibration
process.

• Sensor Uncertainty: Two parameters are needed to model
sensor uncertainty, one to propagate ground parameter
estimates away from the sensor, and one to revise these
estimates with measured data.

• Resolution Parameters: Three resolution parameters are
required, including the grid cell size, the region of interest
size, and the angular exploration resolution.

• Thresholds: Two thresholds are utilized in the algorithm.
The first is the Mahalanobis distance, used to identify
point outliers, and the second is a score threshold, which
determines whether a point is classified as ground or an
obstacle.

2) Outputs: The algorithm provides two primary outputs:
a Segmented Point Cloud and a Ground Model.

• Segmented Point Cloud. The Segmented Point Cloud is
derived from the original point cloud and is enhanced
with labels and colors that convey the segmentation
results. It includes five distinct classes, each repre-
sented by a specific color: Unlabeled (grey), Traversable
Ground (blue), Non-Traversable Ground (magenta), Ob-
stacle (green), and Above-Obstacles (cyan). The “Above-
Obstacles” class includes points that are associated with
obstacles but do not pose a direct collision risk, such as
overhanging tree branches.

• Ground Model. The Ground Model encapsulates the
results of terrain analysis and is used to generate the point
cloud segmentation while providing crucial traversability
information. The Ground Model can be described as a
graph G, comprising vertices V and edges E. Each vertex
vk ∈ V contains the following information:

vk = [x, y, z, a, b, σz, σa, σb] (1)

In this definition, the x and y coordinates are considered
deterministic, while the z coordinate and the slopes in
the x and y directions are modeled as Gaussian random
variables with respective means of z, a, and b, along
with standard deviations σz , σa, and σb. These random
variables are iteratively refined in our method. It’s impor-
tant to note that, for efficiency, the method assumes the
slopes and the z coordinate are independent variables,
simplifying the Mahalanobis distance computation for
point segmentation. This simplification significantly en-
hances the method’s speed while having minimal impact
on performance.
The graph has its root node located at the reference
frame’s origin (at ground level) and can be used for tasks
like path planning, representing a promising direction for
future research (see Fig. 5).

C. Cloud of References

To achieve efficient real-time performance, we devised a
reduction technique that we call “cloud of references.” Instead
of processing the entire point cloud, we divide it into smaller
partial clouds by employing a grid with cells of size s × s
(see Table I) in the XY plane. Each cell that contains at
least one point forms a partial point cloud. For each of
these partial point clouds, we generate a “reference” that
includes the point with the lowest z coordinate in the cell.
Additionally, a vector stores the indices of the remaining
points in the same cell, which is later used to expedite the
segmentation process. A flag is also employed to indicate
whether the reference has already been utilized to create a
vertex or not. The exploration process halts when no new
vertices are generated. These references are collectively stored
in a reference point cloud denoted as L (for Lowest), and the
subsequent ground modeling is performed using this reduced
dataset. This approach offers several advantages. Firstly, the
regular grid structure ensures the algorithm’s independence
from the data acquisition method, eliminating assumptions
like concentric circles or specific point distributions related to
LiDAR sensors. Secondly, it mitigates the impact of varying
LiDAR point density, which often occurs as the distance from
the sensor increases. Lastly, it significantly reduces the volume
of data that requires processing.

D. Root vertex prior

The initial step in generating the “Ground Model” involves
creating the root vertex. This step necessitates selecting ap-
propriate values for all the parameters specified in Equation
1, which together form the initial estimation of the ground
plane at the origin of coordinates within the reference frame.
While it may seem like a meticulous task, determining suitable
values is actually quite straightforward. Typically, x and y are
set to zero, representing the origin of the reference frame. The
parameter z denotes its distance to the ground, while the slopes
a and b are initially set to zero. This is because the Z axis is
typically aligned vertically with the robot’s axis, ensuring that
the reference frame remains orthogonal to the ground plane.

The remaining parameters (σz , σa, and σb), which capture
uncertainties and play a crucial role in outlier rejection, can be
fine-tuned as follows. Begin with very small values and grad-
ually increase them until no ground points are misclassified
as obstacles. This iterative approach helps strike a balance
between effectively identifying ground points and avoiding
misclassifications.

E. Extracting references in the Region of Interest

In line with our core concept of local data analysis for
real-time performance, we treat each vertex, denoted as vk,
as a unique point of view from which we estimate a ground
plane. This estimation solely relies on the data within a defined
vicinity around the vertex, termed the “references” within
a Region of Interest (ROI). The appropriate size for this
area is contingent on the density of the point cloud and the
intricacy of the environment under examination. To allow for
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flexible adjustment, we introduce a parameter ∆ that governs
the dimensions of a square ROI, measuring 2∆ × 2∆, with
its center aligned at the vertex’s position. The choice of ∆
allows users to tailor the ROI size to suit the characteristics
of the data, accommodating varying point cloud densities and
environmental complexities.

F. Filtering the ROI using the prior

In our approach, even though we exclusively use the lowest
point within each grid cell to establish references, it is common
to find points within a Region of Interest (ROI) that pertain to
obstacles. Such occurrences often result from occlusions and
a lack of vertical resolution in the LiDAR data. Therefore, it
is imperative to filter out these points before proceeding with
ground plane estimation.

Leveraging the “prior” information stored in the vertex vk,
along with a first-order error propagation operation, we can
predict both the z value and its associated uncertainty for any
given x and y coordinates:

ẑ = zvk + (x− xvk
) avk + (y − yvk) bvk (2)

σ̂z2 = σz
2vk + (x− xvk)

2
σa

2
vk

+ (y − yvk
)
2
σb

2
vk

(3)

Subsequently, for each point within ROIk, we calculate
its Mahalanobis distance by dividing the magnitude of the
prediction error by the standard deviation of the prediction
d = |z − ẑ| /σ̂z and, using a specified threshold value, denoted
as τ (see Table I), we determine which of these points should
be included as “observations” for computing the “posterior”
estimation of the ground plane at the vertex’s position.

From an implementation perspective, it’s noteworthy that,
since references can belong to multiple Regions of Interest,
we store the ID of the vertex that yielded the most accurate
prediction for each reference. This approach enables us to
identify the vertex to use during the segmentation step without
the need for time-consuming searches, consequently enhancing
the algorithm’s efficiency.

G. Computing the posterior estimation

To compute the posterior estimation, we adopt a sequential
innovation approach [36], which offers an efficient imple-
mentation, particularly because the matrix inversion required
for calculating the posterior covariance simplifies to a scalar
division, given that our measurements consist of scalar values
z. Here, we detail the procedure:

We first organize the vertex prior estimation (which stems
from either the spatial propagation of its parent or the initial-
ization process for the root vertex v0) into a state vector and
covariance matrix. For notation simplicity, we will omit the
subscript vk, as all values pertain to the node under update:

x⊖ = [z, a, b]
T (4)

P⊖ = diag
(
σz

2, σa
2, σb

2
)

(5)

Next, we express the measurement model from Equa-
tion 2 in vector form z(i) = H(i)x, with H(i) =[
1,
(
x(i) − x

)
,
(
y(i) − y

)]
. We initialize x⊕,0 = x⊖ and

P⊕,0 = P⊖ to initiate the sequential innovation scheme

Fig. 3. Dense reconstruction of the ground using the predictions of the Ground
Model. Predicted points are colored following their z value from red (low) to
purple (high).

that runs for the n ground measurements within each ROIk,
denoted as p(i) =

[
x(i), y(i), z(i)

]
.

K(i) = P⊕,i−1H(i)T
(
H(i)P⊕,i−1H(i)T + r

)−1

(6)

x⊕,i = x⊕,i−1 +K(i)
(
z(i) −H(i)x⊕,i−1

)
(7)

P⊕,i = P⊕,i−1 −K(i)H(i)P⊕,i−1 (8)

In the equations above, the scalar r represents the variance
of the additive measurement noise, which we consider to be
constant and identical for every measurement (as indicated in
Table I). Following these computations, we store in vertex vk

(as defined in Equation 1) the means and standard deviations
of the last update, effectively representing the final posterior
distribution.

Figure 3 shows height estimates for the point cloud of the
highway shown in Figure 4. In addition to the estimation
for each point in the point cloud, we showcase a dense
reconstruction of the ground computed using the posterior
estimation of the Ground Model. The color code represents
z coordinate values, ranging from red (low) to purple (high).
To create this reconstruction, we instruct the Ground Model
to generate z predictions for pairs of x and y coordinates. All
predictions displayed in the figure have a maximum standard
deviation of one-third of a meter, thus indicating that the
reconstructed area has a maximum uncertainty of one meter
within the 3σ region. By examining the colors, one can observe
how the Ground Model’s predictions closely match the colors
of the point cloud.

H. Generating new vertices

To create new vertices, we utilize the references within the
filtered ROIk that remain unexplored. These references are
grouped into azimuthal regions, each spanning ∆ϕ degrees
(see Table I) around the current vertex. New vertices are then
created at positions corresponding to the median azimuthal
angles within each region. Once these new vertices are estab-
lished, the used references are marked as explored to prevent
redundant processing.
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Fig. 4. Point cloud segmentation and Traversability graph in a highway
with more than thirteen meters of altitude difference between the road
and the lowest point in the cloud. Color code: Traversable ground (blue),
non-traversable ground (magenta), navigation obstacles (green), overhanging
obstacles (cyan), and not analyzed (gray).

To set the prior estimation for the newly created vertices,
we propagate the parent vertex’s state to the new positions
using the following equations:

xvk+1
= Fkxvk (9)

Pvk+1
= FkPvkFk

T +Qk (10)

Fk =

1 xvk+1
− xvk

yvk+1
− yvk

0 1 0
0 0 1

 , (11)

Qk denotes a zero-mean Gaussian additive noise scaled by
the squared Euclidean distance between the parent and child
vertices (d2):

Qk = d2

q2z 0 0
0 q2a 0
0 0 q2b

 (12)

The parameter standard deviations (qz, qa, qb) are fine-tuned
through experimentation, the chosen values are given in Table
I. Finally, we establish edges to connect the current vertex vk
with each newly created child vertex, adding them to the edges
vector E of the graph G.

I. Detecting obstacles using the ground model

Once all new vertices have been created, and no further
vertices appear, the Ground Model is considered complete
and ready for use in point cloud segmentation. To perform
this segmentation efficiently, we use the cloud of references,
denoted as L, which guides the process. Each reference within
L provides us with the ID of the vertex that yielded the
best prediction, along with a vector of indices pointing to the
remaining points within its respective grid cell.

To segment the point cloud, we iterate over the vector
of indices and, for each point, request the corresponding
vertex in the Ground Model to generate a Gaussian probability
distribution for z based on the x and y coordinates of the point.
We then compute the Mahalanobis distance (d) and compute
the score:

η = 1− d

τ
(13)

Points are considered as ground if their score exceeds a
specific threshold, denoted as ν in Table I. Points that fail to
reach this threshold are classified as non-ground. However, this
classification does not necessarily imply that they are obstacles
to navigation. Whether they pose a collision risk depends
on three factors: the z coordinate of the ground (predicted
or observed), the z coordinate of the point, and the robot’s
height (h as defined in Table I). Given these considerations,
we categorize non-ground points into two classes: obstacle and
above-obstacle.

Furthermore, points associated with references in L that
remain labeled as unexplored after the ground modeling pro-
cess is completed are classified as unlabeled. This typically
occurs when the size of the Region of Interest is insufficient
to analyze certain parts of the point cloud. This may be due to
large occluded areas or the limited vertical resolution of the
LiDAR sensor, resulting in undetected ground in those regions.

J. Predicting traversability

The algorithm, as described thus far, excels at efficiently
detecting obstacles, with the ability to process a full Velodyne
HDL-64 point cloud in just around eleven milliseconds on
a standard laptop. This efficiency is crucial for tasks such
as moving object tracking and localization. However, the
information it provides alone may be insufficient for path
planning, as whether the ground is considered traversable or
non-traversable depends on various factors such as surface
material and specific application requirements. For instance,
a robot may or may not be allowed to navigate on grass.

To address this limitation without compromising real-time
performance or necessitating GPU usage, we incorporate a
Shallow Neural Network that operates in a supervised manner.
This small neural network has dimensions of 13 × 39 × 2,
with thirteen features as input, thirty-nine neurons in the
hidden layer, and two outputs, enabling binary classification
(traversable / non-traversable) in real-time.

To create the input vector, we gather thirteen features for
each point classified as ground by the Ground Model. These
features encompass both point-level and cell-level characteris-
tics, calculated by computing statistics on the points indexed
by the references in L. Specifically, these features consist of:

• Point-level features: Squared ranges (point-to-sensor and
point-to-reference), incidence angle (relative to the local
plane estimated by the ground model), point intensity,
prediction error (Euclidean distance between the pre-
dicted z value by the model and the point’s z coordinate,
which can be negative or positive), and score (as defined
in 13).

• Cell-level features: The ratio between the number of
ground and obstacle points in the cell, as well as the
mean and variances of intensities, prediction errors, and
scores.

It is important to note that we intentionally excluded cer-
tain available information from this set of features. While
this information could have potentially improved quantitative
results, such as the 3D coordinates of the points, we made this
decision to prevent the network from overly focusing on the
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Fig. 5. Traversability graph in an urban environment. Each node contains
a local plane estimation and vertices encode the traversability by connecting
neighboring nodes whose plane estimations are geometrically compatible. In
yellow we show the traversable edges, whereas in red we show connections
discarded by the neural network.

structural details of the environment. For instance, sidewalks
typically appear to the left or right of the vehicle, while the
road is generally ahead or behind. While this information is
valuable, relying too heavily on it could lead to undesirable
outcomes, like failing to detect sidewalks in front of the robot,
potentially hindering the integration of the method into an
autonomous navigation system.

Using these feature vectors, the Shallow Neural Network is
trained to classify points as traversable or not. Figure 5 shows
the resulting traversability graph, with traversable edges shown
in yellow and non-traversable ones in red.

IV. EXPERIMENTS

The algorithm’s performance is evaluated in two distinct
settings: First, for quantitative comparison with other state-of-
the-art methods, we employ the SemanticKITTI Dataset [1].
This dataset provides pointwise LiDAR ground truth and
is widely regarded as one of the primary benchmarks for
assessing the accuracy of ground segmentation algorithms.
Secondly, we conduct a series of experiments with a last-mile
delivery robot in the context of the Logismile project 1. The
experiments included a variety of scenarios, with tests in the
Barcelona Robot Lab, a complex outdoor environment located
in the Universitat Politècnica de Catalunya campus [37], and
demonstrations in urban settings in Esplugues de Llobregat
(Spain) and Debrecen (Hungary). We provide detailed descrip-
tions of both evaluation setups in the following sections.

A. Configuration Parameters

For both evaluations, we maintained the same configuration
parameters, as detailed in Table I. They play a crucial role in
determining the algorithm’s performance. Here’s an overview
of the key parameters and their influence on the algorithm:

• Cell Size:
Description: The cell size represents the size of the
cells in the regular grid used to generate the cloud of
references.
Effects: The density of the Cloud of References is
primarily determined by the size of the cells. Smaller

1LOGISMILE - www.eiturbanmobility.eu/projects/logismile

TABLE I
PARAMETER SETUP IN KITTI EXPERIMENTS

parameter value units

cell size s× s 2.1 × 2.1 m2

root node x0, y0 0.0, 0.0 m, m
prior z0, σz0 -1.73, 0.05 m, m

a0, σa0 0.0, 1.5 deg, deg
b0, σb0 0.0, 1.5 deg, deg

ROI sizes ∆root 7.0 m
∆ 3.0 m

Mah. thres. τ 3.0 -
Score thres. (no NN) ν 0.475 -

Score thres. (with NN) ν 0.0 -
standard r 0.3 m

deviations qz 0.01 -
qa, qb 0.4 deg / m

exploration resolution ∆ϕ 40.0 deg.
robot height h 2.0 m

TABLE II
SHALLOW NEURAL NETWORK HYPERPARAMETERS

hyperparameter value
Input size 13

Hidden Layers 1
Neurons 39

Output size 2
Activation Hyperbolic Tangent Sigmoid

Optimization Bayesian Regularization
Loss Function Sum of Squared Errors

Training sequences 0, 1, 2, 3, and 4
Training Samples ≈ 500K
Training Epochs 200
Training Time ≈ 5 min.

cells yield a higher number of nodes in the Ground
Model, which is beneficial for complex environments.
However, this increased complexity slows down the al-
gorithm and provides less context for the neural network,
as some input features are derived from cell-level statis-
tics. Conversely, larger cells generate sparser reference
clouds, simplifying the Ground Model. This reduction in
complexity decreases computational costs and provides
more context to the neural network. However, if the cell
size is excessively large, errors due to cells containing
simultaneously different surface materials (e.g., grass and
asphalt) will affect a significant number of points.
Given that the Cloud of References is used for model
fitting and exploration, the cell size is a critical factor
when adjusting the Region of Interest (ROI) size and the
Exploration Resolution. This is essential as we require
observations within the ROIs to maintain active explo-
ration and to accurately correct the prior estimation.
Typical Values: Cell sizes ranging from 0.5 to 3.0 meters
are considered appropriate. The optimal selection depends
on the complexity of the environment and the available
computational resources.

• Root Node Prior:
Description: These parameters control the creation of the
root node in the graph, representing the initial estimation
of the ground.
Effects: Setting x0 and y0 can help position the root
node at the center of the shadow area beneath the robot’s

www.eiturbanmobility.eu/projects/logismile
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sensors. An appropriate value for z0 should be based
on the expected z coordinate of the ground from the
reference frame. Standard deviations for x0, y0, z0, a0,
and b0 should be as small as possible without causing
false negatives.
Recommendations: Tune these values based on the
robot’s shadow area and the ground’s expected z coor-
dinate.

• ROI Sizes:
Description: Two different ROI sizes are defined: one for
the root node (∆root) and another for the rest of the graph
(∆).
Effects: ROI sizes determine the area around each vertex
in the graph, influencing the exploration process. These
sizes need to be large enough to ensure full coverage
of the point cloud. When processing single-shot point
clouds, a larger ROI may be necessary to accommodate
the increased distance between ground points captured
by different LiDAR layers. The ROI size should not
be excessively large to maintain the local data analysis
approach.
Recommendations: Ensure the ROI sizes are appropriate
for the environment and sensor characteristics.

• Mahalanobis Threshold:
Description: The Mahalanobis threshold is used for out-
lier rejection during Ground Model creation and score
computation during segmentation.
Recommendations: The threshold value is typically kept
fixed at 3 sigmas. Adjust the variances (prior, propaga-
tion, and observation) to achieve the desired behavior.

• Score Threshold:
Description: The score threshold is used in the first seg-
mentation stage to classify points as ground or obstacle.
Effects: The threshold can be used to balance precision
and recall in cases where the neural network is not used.
A higher threshold reduces false positives but may lead
to more false negatives.
Recommendations: When the neural network is applied,
a threshold of zero is recommended to let the network
correct false positives from the initial segmentation.

• Standard deviations:
Description: Parameter standard deviations (qa, qb, and
qz) are used to induce uncertainty into the prior esti-
mation of new vertices. They are linearly scaled by the
distance from the parent to the child node.
Effects: Properly tuned standard deviations are essential
for accurate results. Small values may lead to over-
confidence and hence misclassification of ground points
as obstacles, while large values may lead to a much
permissive classification setting, misidentifying obstacles
as ground.

• Exploration Resolution:
Description: This value determines the resolution used for
generating new vertices.
Effects: Exploration resolution, in conjunction with the
ROI size, controls the number of vertices created in the
Ground Model. Optimal tuning ensures sufficient vertices
to describe the environment without redundancy.

• Robot Height:
Description: This parameter sets the threshold for declar-
ing high obstacles as non-collidable, based on the height
above the ground level predicted by the Ground Model.

Careful tuning of the presented parameters is essential to
ensure that the algorithm performs well and provides accurate
traversability analysis results in various environments and use
cases. The specific values for these parameters may vary
depending on the robot’s characteristics and the characteristics
of the environment in which it operates.

B. Shallow Neural Network training details

The process of training the Shallow Neural Network in-
volves several key steps. Here’s an overview of the training
details:

• Dataset Preparation:
A dataset was generated by running the GATA algorithm
in ROS using SemanticKITTI data. The features extracted
from GATA were saved into files for further processing.

• Choice of Supervised Learning Algorithm:
Matlab’s Classification Learner App was employed to
explore and evaluate different supervised learning al-
gorithms. Various algorithms, including Decision Trees,
Random Forests, and Support Vector Machines, were
experimented with. The goal was to find an algorithm that
struck the right balance between classification accuracy
and speed, as real-time processing was a requirement.

• Selection of Shallow Neural Network:
After conducting experiments, a Shallow Neural Network
showed promise, achieving similar results to Random
Forest but with faster processing. Bayesian Regularization
with the Sum of Squared Errors as a loss function was
chosen to optimize the hyperparameters.

• Dataset Size and Optimization:
The size of the training dataset was observed to have
a limited impact on classification performance. There
was a point at which adding more training examples
did not result in further improvements. The dataset was
decimated to strike a balance between training speed and
classification accuracy.

• Validation and Training Subset:
The training dataset was divided into a training subset and
a validation subset. The first five sequences (representing
49 percent of the data) were used for training, while the
remaining six sequences (51 percent of the data) were
reserved for validation. The training subset was further
reduced by randomly selecting one point (classified as
“ground” by the Ground Model) from each reference in
L and discarding nine out of ten of these points.

• Final Training Subset:
The final training subset consisted of approximately
500,000 feature vectors, representing less than 0.02 per-
cent of the entire dataset. Given the large volume of data,
this decimated subset was deemed sufficient for training.

• Training of Shallow Neural Network:
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The Shallow Neural Network was trained for 200 epochs.
The training was completed in less than five minutes on
a standard laptop.

• Uniform Performance:
It was observed that there were no substantial differences
in performance between the sequences used for training
and the remaining sequences. Therefore, the results were
not separated into training and validation sets.

The training and selection process for the Shallow Neural
Network was made taking into account the need to optimize
accuracy and speed while working with large LiDAR datasets.
The final selected hyperparameters are given in Table II.

C. Evaluation in the SemanticKITTI Dataset

The SemanticKITTI dataset, an extension of the KITTI
dataset [38], is an ideal benchmark for assessing methods
related to high-level scene understanding. It comprises a total
of 28 classes, making it particularly suited for deep learning-
based approaches. However, for the specific task of traversabil-
ity analysis, only two classes are relevant: “traversable”
(indicating safe ground surfaces for navigation) and “not
traversable” (encompassing obstacles, overhanging objects,
and ground surfaces unsuitable for navigation). The dataset’s
abundance of classes presents a challenge for evaluating
traversability analysis methods due to several factors:

Practicality: SemanticKITTI does not provide tools to con-
solidate classes, making it impractical for traversability anal-
ysis evaluations, especially since the evaluation process is
conducted on a remote server.

Non-uniform Evaluation: The dataset leaves the decision
of which classes should be considered as traversable and
non-traversable up to the researcher. This subjectivity can
lead to non-uniform evaluations of methods, making direct
comparisons challenging.

For experimental comparison with the state-of-the-art,
we selected two contemporary papers that detail high-
performance, real-time methodologies that operate indepen-
dently of GPU acceleration: Hy-Seg [7], and TRAVEL [35].
Among these, only TRAVEL’s implementation is publicly
accessible via a repository. Consequently, we designed two
distinct experiments: We first replicated the experiments de-
lineated in the Hy-Seg paper, employing both GATA and
TRAVEL. This allowed us to perform a quantitative com-
parison against all the methods enumerated in the Hy-Seg
paper. Then, we conduct an experiment to compare GATA and
TRAVEL in a context similar to the Logismile project where
the robot is allowed to navigate by sidewalks, parking areas,
and roads but not through vegetation or unpaved terrain. The
comprehensive descriptions of these experiments are presented
in Sections IV-C1 and IV-C2 respectively.

1) First Evaluation, only Road is traversable: For this
evaluation, we conducted experiments and employed metrics
outlined in the Hy-Seg paper by Qian et al. [7]. Specifically,
we measured Intersection over Union (IoU) and Recall using
the following equations:

IoU =
TP

TP + FP + FN
(14)

Recall =
TP

TP + FN
(15)

These metrics were calculated for each driving sequence
within the SemanticKITTI training dataset, and we reported
the mean values in Tables III and IV. Our evaluation consid-
ered three different versions of our method:

• GATA Without Neural Network (Score Threshold of
0.475):
This version of the method does not incorporate a neural
network. It utilizes a minimum score threshold of 0.475
(see Eq. 13) to classify points as traversable. The results
demonstrated similarity to state-of-the-art methods, with
slightly better performance in the Intersection over Union
(IoU) metric and slightly lower scores in Recall. This
was attributed to fewer false positives due to the score
threshold, albeit at the cost of an increase in false
negatives.

• GATA with Neural Network (VEGETATION and TER-
RAIN Non-Traversable, Score Threshold of 0.0):
This version integrates a neural network trained to clas-
sify VEGETATION and TERRAIN as non-traversable
classes. It employs a score threshold of 0.0. This config-
uration resulted in a significant increase of approximately
ten points in the IoU metric, with no adverse impact
on Recall. The neural network effectively reduced false
positives and slightly decreased false negatives, indicating
improved classification of ROAD points without confu-
sion with VEGETATION or TERRAIN.

• GATA with Neural Network (Only ROAD Traversable):
In this version, the neural network is trained exclusively
to classify ROAD points as traversable. It achieved the
highest IoU results, with an increase of approximately
twenty-five points compared to state-of-the-art methods
and other configurations. However, this came at the
expense of a reduction of approximately ten points in
Recall. The reduction in False Positives –which is the
key factor in the IoU improvement– was due to the
inclusion of SIDEWALK and PARKING in the non-
traversable class (the GATA VEG+TER classifies them
as traversable), but this increased False Negatives causing
the degradation in the Recall metric as some ROAD
points were misclassified as non-traversable.

Notably, the inclusion of SIDEWALK and PARKING
classes in the non-traversable category raised challenges, as
they exhibited similarities within the feature space with the
ROAD class, making it more difficult for the neural network
to distinguish between them.

2) Vegetation and Terrain are not traversable: For this eval-
uation, we have prioritized the use case that holds particular
significance for our research: the integration of the algorithm
into a mid-sized autonomous delivery robot designed for
operation in urban environments, encompassing pedestrian
areas and roads with vehicular traffic. In this context, we
define traversable classes as ROAD, SIDEWALK, PARKING,
and LANE MARKING, while categorizing TERRAIN and
VEGETATION as non-traversable. Given the availability of
only the TRAVEL method in a public repository, we compare
three methods: TRAVEL, GATA without a neural network
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TABLE III
IOU - ONLY ROAD IS TRAVERSABLE

Method Mean S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Douillard [23] 44.12 40.20 63.76 41.06 40.77 60.27 40.68 33.62 43.82 37.17 42.09 41.86

Bogoslavsky [27] 44.98 41.51 64.85 41.47 39.63 61.48 40.13 34.05 44.86 39.20 44.04 43.59
Himmelsbach [24] 44.90 41.24 63.71 40.39 40.74 61.73 39.83 33.71 44.38 40.38 43.84 43.97

Zhang [25] 41.18 36.92 62.40 38.43 37.50 60.39 33.83 32.09 39.84 34.84 40.05 36.66
Huang [8] 47.15 43.71 68.84 43.23 43.09 63.40 39.52 34.18 47.50 41.63 46.19 47.33
Hy-Seg [7] 47.40 44.09 67.94 44.82 43.77 61.07 41.40 35.49 46.76 42.99 46.84 46.19

TRAVEL [35] 44.56 42.39 65.04 41.15 39.40 61.81 37.69 35.10 44.92 38.62 42.67 41.40
GATA w/o NN 47.58 44.16 68.05 44.14 45.00 66.00 39.92 36.42 46.17 41.58 46.13 45.77

GATA VEG + TER 57.12 50.20 79.00 49.42 56.97 75.38 46.17 55.84 52.97 53.88 54.09 54.44
GATA ROAD 72.53 70.72 84.05 72.68 68.80 76.09 68.81 74.41 73.45 73.08 71.31 64.45

TABLE IV
RECALL - ONLY ROAD IS TRAVERSABLE

Method Mean S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Douillard [23] 96.25 96.70 94.82 97.44 95.49 94.92 96.25 96.87 95.86 97.18 96.51 96.67

Bogoslavsky [27] 97.00 96.87 95.44 97.90 96.77 98.67 97.78 95.91 96.47 96.61 97.89 96.67
Himmelsbach [24] 96.91 95.76 96.30 98.72 95.79 96.70 97.80 97.18 95.72 97.30 96.93 97.83

Zhang [25] 98.11 97.90 98.93 98.10 98.12 99.06 97.76 97.69 97.94 97.84 98.31 97.54
Huang [8] 98.93 99.42 97.05 99.29 99.54 99.47 99.53 98.80 98.93 99.33 98.72 98.18
Hy-Seg [7] 98.89 99.65 98.55 98.76 98.47 99.24 98.79 99.10 98.94 98.74 98.63 98.94

TRAVEL [35] 99.12 99.08 98.49 99.52 98.93 99.92 99.65 99.47 98.05 99.24 99.31 98.65
GATA w/o NN 98.26 97.82 95.23 99.21 98.68 99.76 98.82 98.64 96.88 98.36 99.30 98.17

GATA VEG + TER 98.38 98.77 98.08 98.82 98.39 97.63 99.28 97.09 98.81 98.60 98.18 98.50
GATA ROAD 87.49 91.90 90.64 88.25 84.59 87.25 88.47 87.09 90.39 88.47 86.61 78.75

(with a score threshold of 0.475), and GATA with a neural
network trained to exclude VEGETATION and TERRAIN
from the traversable class set (score threshold set to 0.0).

The results of these experiments are presented in tables V
(mean values) and VI (standard deviations). In addition to
the Intersection over Union (IoU) and Recall metrics defined
earlier, we introduce the following indicators:

• Precision (P ): Precision is calculated as P = TP
TP+FP ,

providing insight into the accuracy of positive predictions.
• F1 Score (F1): The F1 score, defined as F1 = 2∗P∗R

P+R ,
represents the balance between precision and recall and
offers a single metric to gauge performance.

• Accuracy (Acc): Accuracy is computed as Acc =
TP+TN

TP+TN+FP+FN , reflecting the overall correct classifi-
cation rate.

We also include two additional metrics:
• Execution Time (T ): Measured in milliseconds, this met-

ric signifies the time required to run the algorithms.
• Key Obstacle Recall (KOR): As defined in [8], this

metric calculates Recall based on points belonging to po-
tential dynamic obstacles like pedestrians, cars, bicycles,
and more.

Upon analysis of the tabulated results, a pattern emerges
that aligns with our previous evaluation. GATA outperforms
TRAVEL in Precision, F1, Accuracy, Intersection over Union,
and Key Obstacles Recall, while TRAVEL shows superior
Recall. As a numerical example, GATA exhibits an approx-
imate two-point advantage in Intersection over Union (IoU)
without the use of a neural network, and a significant fourteen-
point enhancement when employing the network. Turning our
attention to execution time, GATA emerges as the fastest
method when it operates without the neural network. However,
its performance experiences a slowdown when the network

is utilized. Notably, all experiments were conducted within a
Virtual Box on a laptop. Despite this constraint, the version
of GATA that incorporates the neural network still meets
real-time requirements as it consumes a mean of about 70
milliseconds to process a point cloud while the Velodyne
sensor produces them at a rate of 10Hz. It is of great interest,
in order to fairly assess the significance of this experiment, to
consider that in its original paper, TRAVEL was compared to
RANSAC[30], Zermas et al.[28], Narksri et al.[31], and Lim
et al. [33], achieving the best results in terms of F1 score and
Accuracy, while also being the fastest method among those
evaluated.

3) Quantitative Results Analysis: Analyzing globally the
quantitative experimental results, we can observe that when
our system operates without the Neural Network, it delivers
results that are competitive with top-performing state-of-the-
art methods. Our approach, however, offers superior speed,
efficiency, and adaptability, primarily due to the probabilis-
tic score threshold that balances Precision and Recall. As
demonstrated in Table V, thanks to the score threshold (ex-
perimentally adjusted to 0.475 to maximize the Intersection
over Union results) our system (GATA w/o NN) outperforms
TRAVEL in every metric (Precision, F1, Accuracy, IoU,
Key Obstacles Recall, and Execution Time) except Recall.
Importantly, if Recall is of particular importance, it can be
enhanced by simply lowering the score required to classify
points as traversable.

When our method makes use of the shallow neural network,
it significantly outperforms the state-of-the-art. This improve-
ment becomes more pronounced as the number of primarily
flat surfaces included in the non-traversable class increases, as
competing methods struggle to distinguish between different
textures. Our experimental results demonstrate that our shallow
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Fig. 6. Point cloud captured with the ONA robot in the Barcelona Robot
Lab. The method adequately classifies traversable and non-traversable regions
even for this very different sensor configuration.

neural network is proficient at road detection. However, this
comes with a slight trade-off in the recall metric, attributable
to the texture similarity in the feature space among structured
surfaces. Despite this, our neural network excels in detecting
natural textures, such as those found in vegetation or unpaved
terrain. This capability is crucial for urban robot navigation,
underscoring the practical relevance and potential of our
method.

D. Real tests with the ONA robot

The ONA robot, developed as part of the Logismile project,
is a mid-sized delivery robot engineered for autonomous
operation in urban settings. This includes traversing pedestrian
areas such as sidewalks and squares, as well as navigating on
urban roads alongside other vehicles like cars and motorcycles.
Notably, our initial tests with ONA were conducted before our
algorithm incorporated the Neural Network. These early tests
played a pivotal role in motivating us to develop a method to
distinguish between different ground surfaces.

In ONA, the LiDAR placement was engineered to minimize
shadow areas by lowering its mounting height. Unlike the
KITTI setup, which employs a single 360◦ sensor atop the
vehicle, we equipped ONA with two 360◦ sensors placed at
opposing corners near the ground (see Figure 8). Note also
that the four small cylinders atop the robot are not LiDARs
but rather light signals used for indicating maneuvers and
conveying information about the robot’s operational state.

ONA’s LiDAR sensors are Robosense RS-Lidar-16 models,
featuring 16 layers, a horizontal resolution of 0.2◦ at 10
Hz, and a vertical resolution of 2.0◦. While this setup and
specifications significantly differ from KITTI, our algorithm’s
general approach allows for seamless integration without re-
quiring any special processing. A sample point cloud captured
with the ONA robot is presented in Fig. 6. This image
illustrates how the shadow area around the robot takes on a
non-circular shape due to the dual sensor placement, along
with a significantly lower vertical resolution.

The specific environment for conducting experiments was
the Barcelona Robot Lab, chosen for its challenging terrain
featuring strong slopes and multi-level areas. This environment

Fig. 7. ONA robot during the Logismile demo in Esplugues de Llobregat

Fig. 8. ONA robot navigating in Debrecen.

provided valuable insights and served as a testing ground
preceding two Logismile demonstrations: one in Esplugues
de Llobregat near Barcelona (Fig. 7) and the other in the
Hungarian city of Debrecen (Fig. 8).

Throughout these experiments, our method for terrain clas-
sification consistently demonstrated robust performance, suc-
cessfully navigating complex urban landscapes and covering
several kilometers without encountering issues in obstacle
detection. However, we observed a significant challenge stem-
ming from the sensor’s low vertical resolution and extensive
range. In situations with negative slopes, the ground points
reflected in the LiDAR data became progressively distant,
making it challenging for the algorithm to continue data
exploration. This occurred because the Region of Interest
(ROI) size was insufficient to reach these distant points, and
expanding the ROI indefinitely was not a feasible solution as
it would undermine the local data analysis approach. Conse-
quently, some remote obstacles remained unlabeled and were
subsequently discarded, which adversely affected localization
algorithms.

To address this issue and given our limited sensor resolution,
we adopted an approach that classified the lowest point in each
unanalyzed cell as the ground and categorized the remaining
points in the cell based on a simple height threshold relative
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TABLE V
MEAN VALUES - TERRAIN AND VEGETATION ARE NOT TRAVERSABLE

Method P µ R µ F1 µ Acc µ IoU µ KOR µ T µ
TRAVEL [35] 73.64 98.15 83.92 85.60 72.63 97.37 16.08
GATA w/o NN 77.70 94.33 85.03 87.33 74.26 97.78 11.65

GATA VEG + TER 91.92 94.21 92.99 94.65 86.98 98.66 71.39

TABLE VI
STANDARD DEVIATIONS - TERRAIN AND VEGETATION ARE NOT TRAVERSABLE

Method P σ R σ F1 σ Acc σ IoU σ KOR σ T σ
TRAVEL [35] 07.59 00.68 05.15 05.94 07.43 00.48 00.91
GATA w/o NN 07.50 01.79 04.84 05.29 07.04 00.30 02.21

GATA VEG + TER 03.17 02.72 02.21 01.96 03.67 00.28 10.85

to this lowest point. This modification enabled us to utilize
the sensor’s full range without contaminating the data used
for localization with ground points and without sacrificing too
much information about distant obstacles.

Another issue we encountered in urban environments in-
volved surfaces that, while not classified as obstacles, were
unsuitable for traversal in the context of our autonomous
delivery application. These included areas like grass or un-
paved terrain. This observation spurred the development of
traversability analysis using the Shallow Neural Network that
is detailed in this paper.

V. CONCLUSIONS AND FUTURE WORK

In this study, we presented GATA, a probabilistic, graph-
based algorithm for real-time terrain analysis. GATA processes
3D point cloud data to generate a probabilistic Ground Model,
enabling rapid and reliable obstacle detection. For applications
requiring a more detailed representation of ground surfaces, we
integrated a shallow neural network to classify ground points
based on traversability, using features derived from the Ground
Model.

Our quantitative evaluation on the SemanticKitti dataset
demonstrated the superiority of our method over existing
approaches. In its simplest implementation, our method out-
performed the competition in all evaluated metrics (Precision,
F1, Accuracy, IoU, Key Obstacles Recall, and execution time),
except for Recall. When the shallow neural network was
employed, the system kept meeting the real-time requirements
and the improvements were even more significant, reaching an
IoU increase of 14 points when TERRAIN and VEGETATION
classes were deemed non-traversable, and 25 IoU points when
only ROAD class was considered traversable.

Furthermore, we seamlessly integrated GATA into a real-
world last-mile delivery robot and conducted a series of exper-
iments and demonstrations. Regardless of the sensor resolution
or configuration, GATA consistently demonstrated robust per-
formance across diverse environments. This highlights GATA’s
value as a user-friendly, real-time terrain analysis solution,
particularly for robots with limited processing capabilities.

Looking ahead, we plan to explore the integration of our
method with Deep Learning techniques to develop seman-
tically rich and adversarial-resistant point cloud segmenta-
tion systems. We also aim to harness the Ground Model

produced by GATA, which inherently encodes traversabil-
ity relationships between nodes, for trajectory planning in
dynamic environments. These research directions open up
exciting opportunities for further advancements in the field
of Intelligent Vehicles.
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[6] À. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-
Cetto, “Terrain classification in complex three-dimensional outdoor
environments,” J. Field Robotics, vol. 32, no. 1, pp. 42–60, 2015.

[7] Y. Qian, X. Wang, Z. Chen, C. Wang, and M. Yang, “Hy-Seg: A hybrid
method for ground segmentation using point clouds,” IEEE Trans. Intell.
Veh., vol. 8, no. 2, pp. 1597–1606, 2023.

[8] W. Huang, H. Liang, L. Lin, Z. Wang, S. Wang, B. Yu, and R. Niu,
“A fast point cloud ground segmentation approach based on coarse-to-
fine Markov random field,” IEEE Trans. Intell. Transport. Syst., vol. 23,
no. 7, pp. 7841–7854, 2022.

[9] J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu, “RPVNet: A deep
and efficient range-point-voxel fusion network for LiDAR point cloud
segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., Montreal, 2021,
pp. 16 024–16 033.

[10] Y. Zhu, C. Miao, F. Hajiaghajani, M. Huai, L. Su, and C. Qiao, “Ad-
versarial attacks against LiDAR semantic segmentation in autonomous
driving,” in Proc. ACM Conf. Embed. Networked Sens. Syst., Coimbra,
2021, pp. 329–342.

[11] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V.
Hernandez, L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning
vs. traditional computer vision,” in Proc. 2019 Comp. Vis. Conf. (CVC),
Volume 1 1. Springer, 2020, pp. 128–144.

[12] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems,” IEEE Signal Processing Mag., vol. 37, no. 4, pp. 50–61, 2020.

[13] V. Vaquero, I. del Pino, F. Moreno-Noguer, J. Solà, A. Sanfeliu, and
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formàtica Industrial, CSIC-UPC. He is the PI of
UPC’s Robotics and Artificial Intelligence (RAIG)
Research Group. Juan holds a BSEE from CE-
TYS Univ, an MSEE from Purdue Univ. (Fulbright
Scholar), and a PhD from UPC (EURON Georges
Giralt Best PhD Award). His research work is in the
areas of perception and state estimation for robotics.


	Introduction
	Related Work
	Method
	Problem Statement
	Ground segmentation
	Inputs
	Outputs

	Cloud of References
	Root vertex prior
	Extracting references in the Region of Interest
	Filtering the ROI using the prior
	Computing the posterior estimation
	Generating new vertices
	Detecting obstacles using the ground model
	Predicting traversability

	Experiments
	Configuration Parameters
	Shallow Neural Network training details
	Evaluation in the SemanticKITTI Dataset
	First Evaluation, only Road is traversable
	Vegetation and Terrain are not traversable
	Quantitative Results Analysis

	Real tests with the ONA robot

	Conclusions and Future Work
	References
	Biographies
	Iván del Pino
	Àngel Santamaria-Navarro
	Anaís Garrell Zulueta
	Fernando Torres
	Juan Andrade-Cetto


