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This article presents an innovative optimization-based solution to the collision avoidance challenge for
autonomous vehicles. The presented approach consists in an online motion planner designed to define feasible
and efficient paths able to deal with dynamic surroundings while implicitly ensure safety in the proposed
maneuvers. The fact of considering moving obstacles inside the motion planner increases the complexity of the
problem while forces it to be executed more frequently as others. To reduce this computational complexity, the
approach presented counts with a two stages translation of the commonly used non-linear optimization-based
structure into a QP formulation which can be easily solved. The first stage is based on the use of LPV matrices
in the dynamic constraints of the vehicle. The second stage consists in performing a reachability analysis based

LPV on set propagation to obtain linear expressions of the permitted inputs and reachable states which guarantee

safety conditions.

1. Introduction

Coordination of autonomous vehicles guaranteeing safety is a wide
topic with different challenges to be solved, being collision avoidance
one of its main aspects to guarantee safety. A common way to address
the problem is through the motion planner (MP).

Many different motion planning methods have been developed and
used along the years. As explained in Paden et al. (2016), it is important
to consider the scenario where it would be used, being many of them
not tractable in dynamic surroundings. This implies that are not able
to deal with dynamic obstacles. Moreover, to deal with moving obsta-
cles it is required to use time-dependent motion planners (trajectory
planning) which generate references for the different states of the
vehicle (kinematic and dynamics) instead of planning a spatial path
time-independent with the locations the vehicle should track.

Therefore, the two main categories of motion planners compatible
with dynamic surroundings are the sampling-based solutions, hav-
ing two subcategories (graph and incremental search strategies) and
optimization-based approaches. As explained in Manzinger (2021),
other techniques based on machine learning, reinforcement learning
or end-to-end learning are becoming popular, but their scalability to
all possible scenarios and a verification of their capability to guarantee
safety is still under study, making them nowadays unsuitable.
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Considering all previous reasons, the approach presented in this
paper follows one of the predominant lanes of research, which is the
optimization-based approach. This sort of solution consists in formulat-
ing an optimization problem that includes a mathematical expression
to evaluate the considered performance index while the dynamical,
safety and physical limitations of the system are considered as a set
of constraints to accomplish.

As detailed in the survey (Paden et al., 2016), several optimization-
based approaches can be found in the literature which use model-based
movement predictions to design the motion plan. Different formula-
tions and objectives have been presented, having all in common the
difficulty of skipping complex formulations to compute the optimal so-
lution with low computational cost, able to operate in real-time. Conse-
quently, the majority of the solutions proposed are focused on present-
ing approaches to simplify the problem or to reduce the computational
complexity to make possible its real-time implementation.

A very extended way of addressing the problem of high computa-
tional costs is to design motion planners which deal with the complexity
of non-linear expressions but avoid part of the computational cost by
delegating the obstacles avoidance to the motion controller (MC). For
example, Hegediis et al. (2017) propose a non-linear formulation to
find the optimal path using a dynamical model of the vehicle, while
propose to check collision avoidance with a higher-level supervisor
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outside the optimization problem. Moreover, the authors consider that
the computational complexity is still significant and remark that the
real-time execution is not viable with nowadays technology.

Another common manner of reducing the computational complexity
is simplifying the expressions. One example of that is the MP for
racing vehicles presented in Caporale et al. (2018). This solution uses
dynamical models with a formulation based on a trade-off between the
curvature of the path (to avoid slipping) and track length (to reach the
goal as fast as possible). To reduce the computational cost, the authors
propose to study the path as a sequence of linear segments, while use
Taylor expansion to simplify the expression of the curvature. This kind
of approaches allow the implementation but sacrificing the optimality.
Additionally, this solution does not consider collision avoidance inside
the MP, leading it to a hypothetical external module which provides
the sufficient constraints to find a collision-free path.

Other approaches, such as the MP proposed in Liu et al. (2017),
avoid the complexity of the problem using kinematic models. This work
presents an interesting solution based on a mixed integer problem to
decide the most suitable maneuver selecting lanes. Once the lane is
selected, the potential field associated to the lane is computed to avoid
getting close to obstacles. Moreover, the collision problem is addressed
by approximating the vehicle and the different obstacles as polyhedra
establishing a set of constraints to exclude solutions where polyhedra
intersect. It is important to remark that many MC use dynamical
reference, thus this methodology would be incompatible, but presents
an interesting approach based on intersections of polyhedra to study
the collision avoidance challenge.

Even more interesting is the proposal presented in Scheffe et al.
(2022), where the authors remark the need of reaching high update
rates and propose approaching the non-linear expression by convex
approximations.

Meanwhile, the number of optimization-based solutions which ap-
ply set-theory are becoming more and more frequent. Between them,
different approaches using different techniques and objectives have
been presented. The approach presented in Danielson et al. (2020)
computes robust positive-invariant sets to define the subset of states
where it is safe to generate the MC reference. The solution proposes
a methodology to deal with disturbances and parametric uncertainties.
Even more interesting, the solution can cope with dynamic obstacles
by bounding the time when the vehicle can transit between sets.

Also, with set-theory, different approaches propose solutions based
on generating safety corridors or propagating the states to define
regions where safety is guaranteed for allowed every vehicle move-
ment. For example, Manzinger et al. (2021) propose a methodology
to define corridors by reachability analysis and integrate them inside
the MP. To reduce the computational complexity, some assumptions
to achieve linear expressions for the kinematics aspects of the vehicle
are done. Schéfer et al. (2023) also propose a solution with similar
objectives. The authors describe a methodology to identify collision-
free driving corridors using reachability analysis. Once developed, they
are approximated by polyhedra to reduce the complexity of the solution
by using them as constraints of the MP. The authors validated their
methodology, combining it with already existing optimization-based
MP.

Besides that, other approaches reduce the computational cost with-
out linearizing or simplifying the model by using Linear Parameter
Varying (LPV) matrices. For example, in Alcald, Puig, and Quevedo
(2020), the non-linearities are embedded inside a linear model with
time-varying terms using an LPV state-space representation. By this
way, the MP solves a problem where the dynamic constraints of the
vehicle are linear. However, the MP can only deal with static obstacles
by tightening the boundaries of the states to avoid collisions. Those
techniques can be perfectly combined with tube-based solutions as
in Alcala et al. (2020), where LPV matrices and tubes are combined
to solve a related problem associated to the MC of an autonomous
vehicle, highlighting the utility that such a combination could have in
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the field of motion planning. Other example is the approach presented
in Nezami et al. (2022) which proposes an optimization-based solution
reducing the computational cost by means of LPV matrices. However,
the approach focuses on the specific task of lane keeping and is not
oriented on dealing with moving obstacles.

Thus, optimization-based non-linear solutions are not easily imple-
mentable due to computational costs and need to be simplified or
adapted in case they are used on-line to deal with dynamic obstacles.
Inside that, the use of LPV matrices is not extended but seems to offer
interesting results while the inclusion of sets is also interesting for the
side of guaranteeing safety.

On the basis of the aforementioned aspects, the aim of this paper
is to present a novel motion planner for an autonomous vehicle able
to generate references for a dynamic motion controller in dynamic
surroundings. It consists in the generation of kinematic and dynamic
references for the MC guaranteeing the avoidance of dynamic obstacles
in real time, proposing a conversion of the non-linear optimization
problem into a QP problem combining LPV state-space representation
for the non-linear constraints associated to the dynamics of the vehicle,
and a reachability analysis of the states to obtain linear expressions of
the sets of states able to guarantee safety conditions. By this way, the
complexity of the problem is reduced enabling its implementation in
real time.

2. Problem statement

In this work, an autonomous vehicle with V2V communication
systems and a level of autonomy 5 is considered. That means that the
vehicle can drive autonomously without any human interaction and
counts with a communication system to send and receive information
from other vehicles such as their current and expected future location
or the future maneuvers planned. The objective is to design an MP
able to generate the kinematic and dynamic references for the MC
guaranteeing collision avoidance.

Generally, the proposed optimization-based motion planners are
non-linear and follow a structure based on an MPC without references,
being the aim of the motion planner to design them. The structure is
typically composed by a cost function, used to evaluate the perfor-
mance of the path designed along a prediction horizon (H,) with a
determined sampling time (7}), and a set of constraints, used to ensure
feasibility by accomplishing the physical and dynamical limitations of
the vehicle while guaranteeing not compromising safety conditions.

The aforementioned formulation of the optimization problem can
be expressed with the following expressions:

min  J(xy, uy) (€8]
UH -1

subject to the following discretized constraints:

X1 = [ up) - Ty + X 2
glxp,u) <0 3)
x, € [x.%] )
uy, € [u,ul ()
Auy, € [Au, Au] ®)

Eq. (1) is a cost function with linear and quadratic terms rewarding
or penalizing the values of the states, inputs and their slew rates. In
comparison with a pure MPC controller, the MP does not count with
references; it generates them. Expressions (4), (5) and (6) delimit the
upper and lower bounds of the states, inputs and slew rates according
to safety and physical limitations.
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The first non-linearities come from Eq. (2), which are the constraints
associated to the dynamic aspects of the vehicle. The second source of
non-linearities is the inequalities (3), which are non-linear expressions
used to ensure that there is no collision between the vehicle studied
and the obstacles nearby.

The methodology proposed in this work consists in combining the
constraints associated to upper and lower bounds (4)-(6) presented
above with the obstacles avoidance challenge by performing a reach-
ability analysis. In Althoff et al. (2021), the multiple applications that
reachability analysis of dynamic systems are discussed, and different
computational techniques are proposed, with special emphasis on the
interest of methodologies based on set propagation, which is the one
performed in the approach here presented.

Several studies have used these techniques for the specific case
of autonomous driving. An example of this is the work performed
in Sontges and Althoff (2017), where a continuous-time approach is
proposed which performs an over-approximation of the reachability
analysis, decoupling it in the different Cartesian axes. Subsequently,
those locations prohibited due to the presence of obstacles are extracted
from the generated tube. In this work, the same philosophy of perform-
ing an analysis that does not compute all the reachable states but those
that, in addition to being reachable, meet certain specifications such as
not exceeding the speed limits, being located inside the lane and not
entering the safety region of other vehicles, is followed and performed.

The reachable set at time instant k£ can be defined as the set of all
possible states (X)) that can be reached at that time instant starting
from any state belonging to the set of initial states (&) by applying
all possible valid input trajectories (u 1), excluding those trajectories
that involve states belonging to the set of forbidden states (F) over the
time interval studied (Liu et al., 2022).

R (Xo) 1= { X (x5 upo i) 3xg € Xy, VT € {0, ..., k},
Ju, € Uy @ Xoxp,upo ) € Fr}

@)

In the same manner, the set of forbidden states for a specific time
instant (F}) is defined as all the feasible states for time instant k (X})
whose location Q(x;) does not intersect with the location of other
agents or the safety region defined around them (O,) (Liu et al., 2022).

Fy 1= {x € X10(x) N O # @} ®)

By this way, the optimization problem can be reformulated as fol-
lows: Keeping the objective function (9) as in the previous formulation
and substituting the non-linear expressions of the constraints by the
expressions of the sets of all applicable inputs (12) and all reachable
safety states (11). The constraints associated to the dynamic model of
the vehicle over the prediction horizon can be discretized and expressed
in a state-space representation with the LPV matrices A(p) and B(p)
as shown in (10). More details about the non-linear dynamic model
chosen and its conversion into a linear state-space representation by
embedding the non-linearities inside time-varying parameters p of the
linear expressions and then discretizing the system will be given in the
following sections.

min  J(x;,uy) 9
UQyseesll g1
subject to:
X1 = APy - X+ B(p)y - uy, (10)
x; € Rp(Xy) C [x,X] (€8))
u, € Uk c [li,ﬁ] (12)

The objective is to convert the initial optimization problem into a
problem that can be solved by QP methods, which are popular due
to their low computational cost. This requires a quadratic objective
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expression and a set of linear constraints. Therefore, the expressions
used to define the sets have to be linear. In this work, a type of sets
called zonotopes is used, since they are defined with linear expressions,
which significantly reduces the computational cost of operating with
them. By this way, the problem is successfully redefined as a QP
problem that can be solved with significantly lower computational cost.

As a final remark, it is important to emphasize that the methodology
proposed here is designed to be used in scenarios where vehicles drive
on free-lanes roads and where there is a single road without the need
to make decisions about which road to take. In the case of situations
with multiple alternatives, such as splitting the road into two routes,
or situations where overtaking can take place on both sides of the
vehicle, other decision-making techniques will be necessary, which are
not the subject of this study. Examples of this are solutions based on
mixed logic as the methods studied in Ioan et al. (2021), or heuristic
approaches as in Schéfer et al. (2023) or Manzinger et al. (2021) to
choose a single driving corridor to evaluate.

2.1. Model of the vehicle

In this work, the vehicle has been modeled with a dynamical bicycle
model with the following states: Three first states representing the
linear, lateral and angular velocities of the vehicle (v,(?), v,(t) and
w(1)). Three additional states inspired in the curvature-based model
proposed at Verschueren et al. (2014) which are distance to the center
of the road (e, (¢)), difference between the orientation of the vehicle
and the curvature of the road (e,(#)), and the distance traveled (s(z))
measured in the projection of the vehicle over the center of the road.
The mathematical expressions of the different states are defined in
Egs. (13)-(18), while a more detailed description of the expressions and
the reasoning behind them can be consulted in Alcald, Puig, Quevedo,
and Rosolia (2020).

8(1) - sin(8(1)
m

0,() = a(®) - Cf + () - Uy(t) — 40 (1)

13)
) w(t) - l/- + Uy(t)
+ Cy - sin((1)) - W
Cr-lp-cos(6®)—C, -1,
0,(1) = (1) - oo —0,(0) - ()
N 14
.. 3(1) - cos(8(1)) o C, +C; - cos(3(1)) 14
Y m oy v (1) - m
Cr-5@t) - cos(6(n) - 1, Cy-cos(d(n) -1
a)(t) = -0 —_
1 Y v, (-1
) ) 1s)
l.-C, Cr-cos(6®)- 1,7+ C, -1,
o0 o Y 001
é; = v, (1) - sin(ey(1) + vy(t) - cos(ey(1)) (16)
6y(t) = o(t) + 5 - Uy(t) . szn(e;,(t)) — v, (1) - cos(ey(t)) a”n
—er () -k
= U, (1) - cos(eg(r)) — v,(2) - siney(1)) a8
l—e;(t) - x

As explained in Verschueren et al. (2014), the main advantage of
using a curvature-based model is the fact of obtaining spatial-dependent
expression instead of time-dependent ones. This allows simpler expres-
sions for the boundaries, especially for obstacle avoidance. Some other
aspects that make this model suitable for the MP are the computation
of the orientation of the vehicle in comparison with the curvature of
the road and the distance traveled projected over the center of the
road. In this way, it is possible to prevent the vehicle from taking
very pronounced orientations that obstruct the passage of other ve-
hicles, perform maneuvers that compromise the safety of others, or
avoid undesired circumstances such as driving directly to the limits
of the road. Even more interesting is the intrinsic computation of the
distance traveled, which is a factor commonly used in many MP for the



A. Carrizosa-Rendoén et al.

optimization criteria. In case it would not be used, it could be excluded
of the model and computed outside the optimization problem, because,
as it can be observed, its value does not infer in the other five states of
the dynamic model.

Note that in order to be able to compute the spatial states associated
with the central curve of the road, it is necessary that the distance to it
(e (1)) is less than the radius of curvature (x~') at all times, as explained
in Verschueren et al. (2014). However, this is not expected to be the
case when driving in urban environments or in conventional roads.

3. Methodology

In this section, the two stages followed to convert the non-linear
problem into a QP problem are detailed.

3.1. LPV approach

The benefits of using LPV matrices is the achievement of linear ex-
pressions to describe the non-linear reality of the vehicle model defined
by Egs. (13)—(18). This LPV representation reduces the complexity of
the problem without introducing the uncertainties associated to inac-
curate simplifications of the model or linearization around operational
points.

The key aspect of this procedure consists in embedding the non-
linearities of the system inside time-varying parameters precomputed at
each iteration for each time instant along the prediction horizon. Those
parameters are introduced inside the linear expressions as varying
terms of matrices A and B obtaining a set of linear constraints for the
MP.

As the resulting state-space representation is not fully controllable
for all state values, some adaptations and limitations have been per-
formed to obtain a fully controllable system. On one hand, it has been
considered that the MP will not be used with linear velocities around
zero. Additionally, considering that values of the orientation difference
between the vehicle and the curvature of the road (ey(r)) are expected
to be low, its sinus could be approximated by the angle e,(¢) itself, while
the cosine could be approximated by 1. In order to obtain more non-
zero terms to get a fully controllable system and make a more accurate
approximation of the sine and cosine of e,(), the approximation here
proposed is the one presented in Egs. (19) and (20) which consists in
dividing the sine or cosine in two terms which are the half of the sine or
the cosine, then approximating just one of the two terms by the angle
itself for the sine and 1 for the cosine. This simplification achieves
the addition of new terms p;; to matrices A(p) solving controllability
problems while introducing lower errors as other alternatives.

sin(ey (1)) + eg_(t)

sin(ey(t)) =~ > > (19
cos (eb.(t)) ~ w + % (20)

Applying both expressions and discretizing via the Forward Eu-
ler Method, the LPV state-space representation obtained is the one
described in (10) with the LPV matrices (21) and (22).

_TS _Cf . sin(ri(k)) . TS .
0 _Cf . CDS(:;(/C)) . Ts
If<cos(§(k))
] e A B @
0 0
0 0
L 0 0 .
[1 P2 3 0 0 O
P Pn P O 0 0
0 pyp p3 0 0 O
Ap) = - - (22)
Py P 0 1 ps O
pst P2 Ty 0 pss O
Lrst psx O 0 pgs 1
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Fig. 1. Selection of the LPV matrices for the LPV-MP.

where the different time-varying terms p;; are defined as:

sin(6(k)) 1y - sin(6(k))
p1o = T, pz=v,(k)-Tg+Cp - ——— - T
12 f Ux(k)m K 13 y s f Ux(k) “m K
BT C. +C; - cos(5(k))
po = —w(k) - T, ﬂzz——w~ s
C,-1,=Cp -1y -cos(6(k)
P23 = Ux(k) m )
Cr-ly-cos(6(k)+C,. -1, T
P == I v, (k) s
C; 1.2 cos(8(k)+C, -1
S
P33 =~ T-0.() — Ty + 1
X
sin(ey) v (k)
b= TEET g mcosteg®) T pus = T,

_ cos(eg(k)) 1 K- sin(eqy(k))
P ok PP T Y Tk
1 Kk - v, (k) cos(ey(k))
R AR = el
PS5 T r T ST mx
1 sin(eg(k)) T 1 vy (k)
=T T -k ¢ PS5 Tk *

3.1.1. Selection of the LPV matrices

A critical aspect of the methodology proposed is the selection of the
LPV matrices to obtain an accurate representation of the vehicle. In this
work, it has been assumed that the surroundings will change progres-
sively and no big changes that could happen suddenly are expected. By
this way, the proposed path computed at each execution is expected
to be similar to the path designed in the previous iteration adding a
new further step. Consequently, the LPV matrices are computed based
on the estimated location of the vehicle at each time instant extracted
from the previous designed path. This procedure can be graphically
seen in Fig. 1: The vehicle is represented as a big square while the green
curve represents the future locations of the vehicle in case it follows
the last path designed. The LPV matrices are computed according to
the estimated values of the states at each time instant.

As it can be expected, this assumption may induce some errors in
the model. Therefore, the MP should be combined with a closed-loop
MC to minimize the error when tracking the path. Additionally, the MP
has to be executed frequently in order to reduce the difference between
expectations and reality, reacting rapidly to unexpected changes in the
surroundings. In the same way, the time length of the path (H,-T,) does
not have to be excessively large as in typical off-line MP, because the
uncertainty of the model is surely higher than the supposed one, while
the dynamic surroundings do not ensure that the designed path would
be optimal or even feasible in future iterations. Including uncertainties
inside the model would also be interesting to guarantee robustness.
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3.2. Reachability analysis

As expressed in Althoff et al. (2021), performing a reachability
analysis is very useful for many aspects such as guaranteeing robustness
of model predictive control certifying the systems do not reach unsafely
regions. Therefore, at this approach a reachability analysis is performed
to define the safety regions where the motion plan can be designed
accomplishing safety conditions.

As a first step, the set of all applicable inputs U, C [u,u] for each
time instant along the prediction horizon, that is based on the last input
applied, the slew rate and the upper and lower boundaries based on the
dynamic limitations of the vehicle, is computed.

For analyzing the admissible values every state could take at each
time instant, the current and expected locations of the obstacles nearby
are analyzed and a safety region around them is defined, obtaining
F,, the set of forbidden state values for each time instant along the
prediction horizon as expressed in Eq. (8). Additionally, the states may
also remain inside the set S, , which contains the generic boundaries of
the states according to the dynamic surroundings, such as the maximum
speed allowed or the maximum orientation or distance to the center of
the road allowed taking into account the lane width and the curvature
of the road. In case of static obstacles, the computation of the forbidden
regions has to be analyzed just when the obstacle is detected and
correctly localized. In that case, taking into account the obstacles is
quite simple, for example tightening the width of the lane as has
been done in Alcala, Puig, and Quevedo (2020). However, when the
agents in the environment are in motion, the complexity of the problem
increases, as explained so far. On the one hand, it is necessary to receive
information, estimate or predict the position and future maneuvers
of the obstacles in the environment. In this example, the considered
obstacles are other intelligent vehicles that communicate their position
and future maneuvers. With these predictions, in each iteration the safe
regions have to be calculated for each time instant as well as a new
reachability analysis has to be performed, because the other agents may
have varied their intention from one iteration to another. This dynamic
reality of the environment forces the sampling period and the time
between trajectory computations to be reduced, making it necessary to
look for alternatives to reduce the computational cost of the problem
performed in the proposed methodology.

A reachability analysis of the states is then performed to define the
corridors through which the motion planner will look for the optimal
trajectory. Firstly, the current state is read and represented as a set
allowing the inclusion of uncertainties in measurements. In an iterative
manner, this set gets propagated through time using the previously
computed sets of applicable inputs S, , and the LPV matrices calculated
in advance as expressed in Eq. (23).

Xip1 = A(p)i - X + B(p), - Uy, (23)

At each propagation step the resulting set is bounded with the states
generic boundaries to exclude reachable states that exceed them. Also,
states which imply entering the forbidden area around other obstacles
are excluded from the set of reachable safety states R (X,). There-
fore, the computation of the reachable set at a time instant k can be
expressed as Eq. (24).

Ri(Xy) = X NS, NF (24)

In order to be able to propagate states in an analogous way to the
evolution of dynamical systems with the state space representation, not
all type of set representations are valid if a reduced computational
cost is desired. As discussed in Zheng et al. (2022), representing is
an excellent choice for being more accurate as other commonly used
set representations such as ellipsoids, and are more computational
efficient as other similar sets like polytopes, especially performing
the Minkowski sum which is used for propagating the states at (23).
As an aspect to be highlighted, the intersection of two zonotopes
does not result in a zonotope. In the above-mentioned article, the
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authors propose to make an external approximation for the intersection
of zonotopes that could be used as for example the one proposed
in Althoff (2015b). However, performing an over-approach of the in-
tersection would compromise the security intended to be achieved by
exclusion of unsafe states at (24). This is the reason to make use at
this approach of the constrained zonotopes presented in Scott et al.
(2016), since constrained zonotopes maintain the simplicity in the
mathematical operations for the propagation of sets, while being able
to express the exact set resulting from the intersection of zonotopes
as explained at Raghuraman and Koeln (2022). Additionally, in that
same work, different methods are presented to eliminate redundancies
in the generators, thus simplifying the expressions. Different internal
and external approaches are also proposed, which will be considered
in the implementation of the approach here presented. Last but not
least, the article concludes with a practical example of a reachability
analysis, reinforcing the idea of making use of constrained zonotopes
for the approach proposed in this work.

With all this, the methodology proposed here is defined, with which
it is possible to merge the constraints of both boundaries and collision
avoidance into linear expressions. In Algorithm 1, a pseudocode with
the different steps that have to be followed to compute the reach-
able set (R(X,)) from the current states with the uncertainty of the
measurements (&), the LPV matrices (A(p), B(p)) computed for each
step k and the location of the obstacles nearby (O;(k)) at every time-
instant along the prediction horizon, is presented. Once described with
Algorithm 1 the theoretical basis of performing a reachability analysis
excluding forbidden states, in the implementation section the reader
can consult two more specific algorithms showing how to implement
both the reachability analysis, Algorithm 2, and the motion planner
itself, Algorithm 3. For more detailed information, see the next sections.

Algorithm 1: Steps to perform a Reachability Analysis
Input Data: X, V. A,B, O,
Output Data: R(X,)

/* Initialization of both sets with last inputs
applied and current states with
uncertainties */

U—l “ 1f1ast;

Ro(Xy) < Xp;

/* Computation of Unsafe Sets based on obstacles
location at every time instant along the
prediction horizon */

k< 1;

while k < H, do
Fi < ComputationUnsa feRegions(O; );
k—k+1;

end

/* Sets propagation excluding forbidden regions
intersecting the reachable states, unsafe
regions and constraints along the prediction
horizon */

k < 0;

while k < H, do

Uy « (Uil + AV 0 Sy;
Xip1 < Alp)i - Ri(Xp) + Blp)y - Vs
Ri1(Xp) < X1 0 Sy g1 N F g
k—k+1;

end

In Figs. 2-5, two examples of reachability analysis are shown. On
the left side, a path is designed (green curve) after performing a
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Fig. 2. Path planned for same scenario without and with obstacles. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

reachability analysis in a scenario where no obstacle is located nearby.
On the contrary, the right images show the same scenario where the
vehicle under study (green) has to drive between two obstacles (blue
vehicles) which are driving at a constant velocity which is the half of
the maximal speed the green vehicle can reach.

In Fig. 2, the path designed for both scenarios that consists in the
motion plan for the 6 states through time projected over the Cartesian
map, can be seen. This path is represented as a green curve over the
road, while the shaded region represents for each point of the designed
path what other distance from the center of the road the vehicle could
have reached while complying with the safety criteria. The aim of this
representation is to show that the motion planner adapts appropriately
to the presence of obstacles by narrowing the feasible region, while
in situations where there are no obstacles, the feasible region of the
vehicle under study ends up converging with the entire lane.

To conclude, it is important to remark that the reachability analysis
is performed along all the dynamical states of the vehicle: longitudinal
and lateral velocity, angular velocity, distance to the center of the road,
difference in the orientation of the vehicle with respect to the curvature
of the road and distance traveled. Therefore, it is worth noting that the
reachability analysis performed provides more information by refining
all the states to ensure that safety requirements are met by complying
with road traffic regulations. In fact, the results of the analysis is not the
shadowed region presented in Fig. 2 but a set associated to every time
instant studied along the prediction horizon with as many dimensions
as states. The rectangular hulls of states (e (¢), s(t)) projected over the
road map are represented in Figs. 3-5. Each figure corresponds to three
different time instants after Fig. 2 (r =0.25s, 1 =0.40 s and ¢ = 0.50 s,
respectively).
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Fig. 3. Hull of the reachable set at t = 0.25 s without and with obstacles. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

4. Implementation

The methodology here presented has been verified implementing
it in MATLAB 2021a and evaluated through simulations in different
scenarios. For the implementation, the toolbox for rapid prototyping
optimization problems YALMIP, Lofberg (2004), and a specific toolbox
called CORA, useful for defining and dealing with set operations, have
been used. More details about the toolbox CORA can be consulted in Al-
thoff (2015a). The solvers chosen for the non-linear motion planner
have been “fmincon” included in the MATLAB version cited above,
while the motion planner with LPV matrices have been solved with
“Gurobi” (Gurobi Optimization, 2021).

The simulations have been performed in different closed maps under
different curvatures and locations of the obstacles, being the numerical
results presented posteriorly those of the simulations performed in the
map presented in Fig. 6, more details are given below. The vehicle has
been defined with the model presented in the previous section using the
parameters listed in Table 1, corresponding to a 1:10 scaled down RC
car used in other works such as in Alcala, Puig, Quevedo, and Rosolia
(2020). It is important to remark that this work introduces a new
methodology to design the path as well as the dynamic motion plan of
a vehicle with dynamic surroundings considering safety. The accuracy
of the trajectory followed, the robustness and the real performance
quality will also vary depending on the motion controller or the path
tracker used in combination with the motion planner here presented.
For simplicity and to prove the wellness of the motion plan proposed
in this work, a low-level controller has been implemented applying
the first input proposed by the motion planner with a zero-order
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Fig. 4. Hull of the reachable set at t = 0.40 s without and with obstacles. (For
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the web version of this article.)

Table 1

Parameters values of the car-like robot.
Parameters Value Parameters Value
I, 0,125 m Iy 0,125 m
C, 65 N/rad Cy 65 N/rad
H 0,05 1 0,03 kg/m’
m 1,98 kg o 1 m/s
5 —0,36 rad 5 0,36 rad
a —-2,65 m/s’ a 1 m/s*
46 —2 rad/s 25 2 rad/s
Aa —7,35 m/s’ Aa 7,35 m/s’

hold, while the vehicle has been simulated with its ODEs. The motion
planner here presented provides references to different dynamic states
in addition to a trajectory on the road. Therefore, a great advantage of
this motion planner is that it can be used in combination with multiple
path trackers or trajectory controllers, from a basic controller to more
complex techniques such as self-iterative learning methods, or MPC
controllers.

In order to verify the performance of the methodology proposed
here under different circumstances, a single complex scenario combin-
ing different challenging situations has been designed. With regard to
the profile of the road, it counts with sections where the road is straight,
sections with positive curvature, and sections with negative curvature,
all of them with greater and lesser length. Similarly, two critical points
are also considered where the change in curvature from positive to
negative is of considerable magnitude.

Control Engineering Practice 147 (2024) 105932

&
@

Position in map Y [m]
N ~ [ w w
(=2} © w N £ [=2]

N
»

22 s s s s L s
0 0.2 0.4 06 08 1 1.2 14 1.6

Position in map X [m]

3.8

© w
w N S (=]

N
@

Position in map Y [m)]

N
=
T

N
kS

22 L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Position in map X [m]

Fig. 5. Hull of the reachable set at t = 0.50 s without and with obstacles. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Position in map Y [m]

Position in map X [m]

Fig. 6. Initial state of the vehicle (green car) and the obstacles (blue cars) over the
map. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Additionally, different vehicles driving along the road, considered
as dynamic obstacles, have been added to verify the capability of the
MP to avoid them.

The motion planner here presented can deal with dynamic obsta-
cles located at both sides of it by obtaining its motion plans in case
they were other interconnected intelligent transportation agents, or by
estimating and predicting their current locations and future movements
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thanks to the sensors and perception modules. In these simulations,
it has been considered that all the agents around the vehicle are
other intelligent vehicles sharing their current location and their future
maneuvers planned with a certain accuracy. The safety region around
the vehicles depends on the accuracy of the information offered by the
agents nearby. For simplicity and to obtain a visually understandable
evolution of the obstacles, the vehicles added are four vehicles driving
at constant linear velocity (blue cars in Fig. 6) adapting their angular
velocity according to the curvature of the road. They have been placed
sufficiently far apart so that the vehicle under study encounters them
at distinct times.

Firstly, two vehicles driving parallel to each other are added. This
implies that the vehicle will have to drive between them in a narrow
corridor, maximizing safety margins. Secondly, there will be a vehicle
on the left-hand side of the road in a position where it is expected that
the motion planner would propose a path over it, so it will have to
change its trajectory to overtake it. Finally, the vehicle faces a final
situation by a vehicle traveling slowly on the right-hand side of the
road, which will not interrupt his intended path but will force the
vehicle to modify its path to increase safety. Nevertheless, in future
simulations as shown in Fig. 11 and Fig. 12, it can be observed how
the motion planner is able to manage a dynamic environment with
agents moving with different velocities and steering angles, as well as
accelerations.

If a more realistic scenario were to be realized, different uncertainty
magnitudes would have to be considered for the different vehicles in
the surroundings. For this purpose, it would be sufficient to estab-
lish larger safety perimeters around them, tightening the safe region
through which the vehicle can drive safely.

If it is desired to go a step further and work with non-intelligent
vehicles that do not share their position, or the accuracy of the in-
formation provided is excessively low, it will not only be necessary
to increase this safety margin, but also to perform a study of the
possible maneuvers and regions that these vehicles could occupy. For
this purpose, Lefkopoulos et al. (2021) and Zhou et al. (2022, 2023)
suggested the use of a technique called Interaction-Aware methods
whose objectives are to estimate the most probable positions or ma-
neuvers to be performed by the surrounding vehicles as well as the
probability of these maneuvers. Since these are probabilities, a trade-
off between safety and performance have to be found to establish
the occupancy probability threshold above which a region will be
considered unsafe. To simplify this problem, there is a tendency to
use roads with lanes, or to recreate virtual lanes on free-lane roads to
delimit the possible maneuvers that other vehicles could perform, but
this implies a regression in the optimality of the trajectory proposed by
the motion planner, by substantially limiting the region through which
the vehicle could drive safely, something that will not happen if the
surrounding vehicles are also intelligent vehicles and share information
with a certain degree of precision.

4.1. Approaches for order reduction

Analyzing the operations of constrained zonotopes, it is remarkable
the simplicity of computing the reachability analysis in a very sys-
tematic manner. The use of a transformation and an addition for the
propagation of sets as in Eq. (23) is required, which can be computed
as in Egs. (25) and (26), while the tightening of the set according
to the desired states limitation and obstacle avoidance protocol as
in Eq. (24) requires the use of sets intersections which can be computed
as in Eq. (27).

R-Z;:={R-¢,R-H;,A,;,b,;} (25)

a,i>Ya,i
el
, o (26)
Ay baj

A
Z,-+Zj={c,-+cj, LH,|H,], [3
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As can be observed, the larger the prediction horizon is, the larger
the number of generators is. The same happens with the number of
constraints used to define each reachable set.

Aa,i 0 ba,i
ZinZ;=4¢. [HI0L | 0 Ayl | by, 27)
H; —Hj ¢ —¢

By this reason, it is recommendable to apply some simplifications and
approaches to obtain sets simple enough for the motion planner to
operate with.

4.1.1. Simplification of input sets

The different inputs are linear independent, for this reason, the set
representing the applicable inputs can be studied as an interval which
grows according to Eq. (28) until converging to S, after some steps.

Uy = (U +AU)N Sy (28)

An interval can be represented as a zonotope (without constraints) in
a very simple way by making use of a matrix of diagonal generators as
in definition (29).

a(k)+a(k) a(k)—a(k)
2 2 0
v =4 - , _ (29)
S(k)+6(k) 0 6(k)—o(k)
2 2

Thus, performing the states propagation just add two new generators
and does not imply any changes in the constraints.

4.1.2. Combining states limitations and collision avoidance

Another computation for reducing the complexity of the sets is by
analyzing if the set of reachable states (X} ) is a subset of the set with
the states boundaries (S, ). If it is, no intersection is needed. The same
happens with the forbidden states, it is possible to study if the reachable
states intersect with the forbidden states, otherwise, any tightening is
needed.

In case the intersections were needed, another manner of reducing
the complexity of the sets is performing a combination of the exclusion
of unsafe and undesirable states with the avoidance of forbidden re-
gions. By this way, the calculus of Eq. (24) can be performed through
an intersection of the reachable states &, ; and a previously com-
puted zonotope Sy, ..y (or constrained zonotope) which combines
the boundaries desired for each state and the collision avoidance cri-
teria, allowing the computation of an inner-approximation over it to
reduce its complexity. This inner-approximation can be obtained before
performing the intersection with the reachable sets by applying the
techniques presented in Raghuraman and Koeln (2022). This procedure
might imply obtaining a more conservative motion plan but may imply
a significant reduction of the complexity of the optimization problem.
During the implementation here presented, the combination of both
sets has been computed modifying the set of the bounds of the states
tightening the maximal allowed lateral distance e; to avoid collisions
with the obstacles detected nearby.

The idea of performing both simplifications is to bound and reduce
the number of dimensions of the constraints and generator matrices
being translated in a reduction of the complexity of the problem. Ad-
ditionally, given the possibility of null generators, parallel generators
or overly similar generators, it is convenient to apply order reductions
as the one presented in Kopetzki et al. (2017) based on PCA or the
methods presented in Althoff (2010). Those methods are included in
CORA, being some of them and many others discussed and compared
in Scott et al. (2016).

However, it is important to not forget the content of the set to
which a reduction is being applied and what type of reduction it is. An
inner-approximation of X, excludes a feasible evolution of the system
while just as over-approximations of S, could introduce unsafe
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states in the safety reachable set. On the contrary, performing an over-
approach of X, and an inner-approach of S, ., before computing
the intersection of both to obtain the reachable set of safe states (24),
does not compromise safety aspects and reduce the complexity of the
optimization problem of the motion planner, but the computational
cost of the simplification is higher. Additionally, it is also observable
that the computation of the exact intersection between two constrained
zonotopes as in Eq. (27) may lead to redundant constraints which can
be deleted following a constraint reduction as presented in Raghuraman
and Koeln (2022) which retains the exact original set. Therefore, the
implementation of Algorithm 1 can be adapted to these simplifications
as schematically summarized in Algorithm 2.

Algorithm 2: Implementation of the Reachability Analysis

IHPUt Data: XO’ ‘U‘lasr’ A(p)., B(p), Oi

Output Data: R(X,)

/* Initialization of the sets based on last
input applied, current states and their
uncertainties */

U—l “ ‘U‘Iast;

Ro(Xy) < Xo;

//

/* Compute Safety Regions based on Obstacles
Location at every time instant along H, */

k<« 1;

while k < H, do

Fy < ComputationUnsa feRegions(O; );

if S, , NnF, then

‘ Sk.const < OrderReduction(S, ; N P_k);
else
‘ Sk.const < OrderReduction(S, ;);

end

k—k+1;

end

/* Sets propagation excluding forbidden regions
intersecting the reachable states, unsafe
regions and constraints along the prediction
horizon */

k < 0;

while k < H, do

U, < Computelnterval(U),_y, AU, Sy);

Xyt = Ap) - Ri(Xo) + By (p) - Ui

Xyy1 < OrderReduction(X ),

lf 2(k+l < Sk,const then

‘ R (Xo) < Xy
else
| Ryt (X)) <= Xiert N St consts

end

Rip1(Xy) < ConstraintsReduction(f%H1 (X));

k—k+1;

end

4.1.3. Numerical results

Finally, the resulting loop of the LPV motion planner with a reach-
ability analysis avoiding forbidden obstacles can be summarized in the
four steps described in Algorithm 3. The first step consists in obtaining
information from the vehicle and the obstacles nearby. The second
deals with computing the LPV matrices according to the previous path
designed and performing the reachability analysis using these LPV
matrices. Then, a new motion plan based in the computed LPV matrices
and reachable sets is computed, and finally the variables are updated
to execute it repetitively.

For the presentation of numerical results, two studies have been
performed. In a first study, the results of a traditional non-linear motion
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Algorithm 3: Iterative Execution of the Motion Planner

while TRUE do

/* Read sensors and estimate vehicle location
as well as obstacles location and possible
maneuvers */

Xy, O; < SensorM easurements();

OiJ—H,, « Estimate Future Location();

/* Compute LPV Matrices and Reachable Sets */
A(p),B(p) < ComputeLPV M atrices(X,), last_plan);
R(Xy), U «

Reachability Analysis(Xy, U, A(p), B(p), O/,I—H,,);

/* Execute Motion Planner */
new_motion_plan < M otionPlanner(R(Xy), U, A(p), B(p));

/* Update variables for next iteration */
Upgst < uapplied;

last_plan < new_motion_plan;

end
Table 2
Results of NL-MP and LPV-MP - computation during 100 executions.
MP H, T, [s] H,-T, [s] T, [s]
NL-MP 5 0,05 0,25 0,2155
NL-MP 7 0,05 0,35 0,2328
NL-MP 10 0,05 0,5 0,7832
NL-MP 15 0,05 0,75 2,2212
NL-MP 20 0,05 1 4,3297
NL-MP 30 0,05 1,5 8,6210
LPV-MP 5 0,05 0,25 0,0065
LPV-MP 7 0,05 0,35 0,0081
LPV-MP 10 0,05 0,5 0,0098
LPV-MP 15 0,05 0,75 0,0140
LPV-MP 20 0,05 1 0,0180
LPV-MP 30 0,05 1,5 0,0324
=€ NL Motion Planner
~©— LPV Motion Planner
6
55
E s
>
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35¢ I | L L
35 3 25 2 15
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Fig. 7. Two paths designed by the NL-MP (blue) and the LPV-MP (red) with a T, of
0,05 s and a H, of 30 steps. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

planner and the same motion planner with LPV matrices have been
compared. Those results can be consulted in Table 2.

Analyzing the results of Table 2 it can be observed that the com-
putational cost with a non-linear motion planner (NL-MP) without
any safety verification has a significant increase when the prediction
horizon gets increased. Additionally, it can be observed that when
using a small discretization period to avoid uncertainties induced by
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Fig. 8. Comparison of the mean computational cost of each iteration with a NL-MP
(blue) and an LPV-MP (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 9. Zoom of the mean computational cost of each iteration of the LPV-MP (red).

larger discrete periods, the duration of the motion plan designed is
even smaller than the time needed to compute it. On the contrary, the
computational cost of the same motion plan in the same circumstances
but using LPV matrices gets reduced two orders of magnitudes, demon-
strating the significant benefits of embedding the non-linearities of the
dynamic model into an LPV representation of the system.

This substantial difference between the non-linear method and the
novel one proposed in this work can be seen graphically in Fig. 8. Due
to the significant difference of two orders of magnitude between both
curves, an additional graph has been added in Fig. 9 to make observable
the trend of the LPV-MP when the Hp is increased. Additionally, in
Fig. 7, two motion plans designed under the same conditions using
the non-linear motion plan (blue) and an LPV motion plan (red), are
shown. As it can be observed, the trajectory proposed for a scaled-
model vehicle coming from the right side to the left direction in a
curvy-scenario is almost the same, having just a slight accumulative
error noticeable at the last steps of the trajectory. The path designed
by the NL-MP using a 7| of 0,05 s and a H, of 30 samples. While the
resulting path of the NL-MP has a length of 2,8471 m, the root mean
squared error of the trajectory is just 0,0322 m. For this comparison, the
distance between each (x,y) coordinate proposed for each time instant
along the 30 samples, has been measured.

With these two comparisons it can be concluded that the LPV-
approach allows the motion planner to obtain a valid motion plan with
a much lower computational time without introducing a significant
error in the trajectory.

Secondly, a study comparing the same non-linear MP with the LPV
MP adding the computation of the reachability analysis to increase
safety, has been performed. The results can be seen in Table 3. In
the results shown in Table 3, it is observable that performing a reach-
ability analysis through propagation and intersection of constrained
zonotopes can result in complex expressions with numerous associated
independent variables. This complexity might make it impossible to
model with YALMIP as happened for prediction horizons longer than

10
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Table 3

Results of NL-MP and R-LPV-MP - computation during 100 executions.
MP H, T, [s] H,-T; [s] Teom 1]
NL-MP 5 0,05 0,25 0,2155
NL-MP 7 0,05 0,35 0,2328
NL-MP 10 0,05 0,5 0,7832
NL-MP 15 0,05 0,75 2,2212
Z-R-MP 3 0,05 0,15 0,0193
Z-R-MP 4 0,05 0,20 0,0583
Z-R-MP 5 0,05 0,25 0,1632
Z-R-MP 6 0,05 0,30 0,4186
Z-R-MP 7 0,05 0,35 0,9116
Z-R-MP 8 0,05 0,40 Intractable
Z-R-MP 4 0,1 0,4 0,0592
Z-R-MP 5 0,2 0,8 0,1710

8 samples in the previously described scenario. The complexity lies in
the expressions used to define the problem constraints associated with
the reachability analysis, not in the optimization problem itself. Fur-
thermore, some of these constraints may be redundant or irrelevant to
the problem definition. Alternatives for simplifying these expressions to
obtain a tractable problem are discussed in later sections. Meanwhile,
analyzing the remaining obtained results, it can also be observed that
for shorter prediction horizons such as five samples, the computational
cost is still lower than that of the NL-MP, so that the combination
with LPV matrices ensures that safety criteria can be applied through a
reachability analysis and still have a lower computational cost than the
classical solution consisting of a NL-MP. Moreover, we can afford in the
MP to make use of longer discretization times obtaining motion plans
with a similar duration to those obtained with the NL-MP, but with a
slightly lower computational cost, as can be seen in the last simulation
where a motion plan is designed for 0.8 s, making use of a sampling
time of 0.2 s with a computational cost of 0.1710 s. Comparable to
the motion plan designed with the NL-MP with a duration of 0.75 s
whose computational cost was 2.2212 s; almost thirteen times higher.
However, it would be desirable to be able to make use of longer
prediction horizons and to be able to design longer trajectories, so
there is a need to explore alternatives that reduce the complexity of
the problem while still contributing to increase safety.

4.2. Approximating R(X,)) with hulls

In order to decrease the computational cost of reachability analysis
performed in combination with the LPV-MP, a trade-off between com-
putational cost, efficiency of the trajectory and safety can be studied
by simplifying the resulting reachable analysis before transmitting it to
the optimization problem. That is, compute the reachability analysis as
described in the previous section, but instead of defining the boundaries
of the optimization problem based on the mathematical formulation of
the constrained zonotope, define hulls for each constrained zonotope of
the reachability analysis in which the set is contained. As this is an over-
approach of the sets, unsafe solutions may be induced, but computing
the hulls after having performed the complete reachability analysis is
compatible with applying an extra step of safety verification in which
it is confirmed that the solution obtained from the motion planner
remains inside R(X,)). The main advantage of this simplification is the
avoidance of the excessive increase in the number of variables to define
the constrained zonotopes that appears when using high prediction
horizons, which on the other hand allow designing better optimized
motion plans for looking further ahead. The following table shows
the results having computed hulls based on computing for each k the
smallest interval that contains the constrained zonotope of the safety
reachable states associated to a particular time instant. The results are
provided in Table 4.

As can be seen in Table 4, the computational cost of the reachability
analysis with constrained zonotopes and its use inside the motion
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Table 4
Results of different R-MP with zonotopic constraints and without hull-based constraints
- computation during 500 executions of the MP.

MP H, T, [s] H,-T, [s] T.om [s]
Z-R-MP 2 0,1 0,2 0,0073
Z-R-MP 3 0,1 0,3 0,0197
Z-R-MP 4 0,1 0,4 0,0574
Z-R-MP 5 0,1 0,5 0,1625
Z-R-MP 6 0,1 0,6 0,4242
Hull-MP 2 0,1 0,2 0,0557
Hull-MP 3 0,1 0,3 0,0888
Hull-MP 4 0,1 0,4 0,1279
Hull-MP 5 0,1 0,5 0,1683
Hull-MP 6 0,1 0,6 0,2079
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Fig. 10. Comparison of the mean computational cost of each execution of the whole
process with (red) and without (blue) the hulls-approach. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

planner increases significantly when the prediction horizon increases,
making difficult the implementation with large prediction horizons.
However, if large paths are desired, larger discretization periods can
be used, finding a trade-off between accuracy, computational time and
path length. It is important to highlight that the complexity of the
problem is independent of the discretization period, but the smaller T;
it is, the less abrupt the evolutions of the references designed in the
motion plan are. Moreover, it is remarkable that with this methodology
the trajectory that the vehicle should track is designed, having a
controller at a lower level. Therefore, computation times close to the
time with which the designed trajectory is sampled (7,) are not an
impediment for its implementation. The most relevant requirement is
that the computation time is significantly lower than the duration of the
designed trajectory so that it can be updated and continued multiple
times before being concluded, adapting also to unexpected changes in
the dynamic environment.

On the contrary, as it is observable in Fig. 10, the computational
cost of the approach based in hulls increases linearly with a low slope
in comparison with the solution based in constrained zonotopes. In this
way, the usefulness of approximating sets by hulls is verified as the
computational cost is significantly lower, especially for high prediction
horizons where the first proposed method tends to very high values as
it has already been commented.

4.2.1. Example of paths in other scenarios

Finally, it has been verified the possibility of using the designed
MP over other scenarios and situations. An example of these is the
simulation shown in Figs. 11 and 12, where a vehicle driving with an
LPV-MP with reachability analysis can be observed. In this scenario,
the vehicle was challenged to drive on a road section with a change of
curvature, with a slow vehicle to be overtaken by another vehicle on
the left side traveling at a higher velocity than the one allowed for the
vehicle under study. To make matters more difficult, when the vehicle
under study tries to overtake the vehicle on its right, the latter is about
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Fig. 11. Vehicle with a Z-R-MP avoiding obstacles (H, 4 samples, T, 0,15 s).
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Fig. 12. Same simulation as Fig. 11 1,5 s later.

to be overtaken by the other vehicle on the left. As it can be consulted in
both graphics, the vehicle adapts the path successfully to keep distance
with them to ensure safety.

5. Conclusions and future work

Throughout the document, a methodology to reduce the computa-
tional cost of autonomous vehicle MP by considering the dynamics and
an additional step to verify safety has been proposed. With this aim,
the proposed approach consists in embedding the non-linearities of the
vehicle dynamics in linear expressions by means of LPV matrices and
including the performance of a reachability analysis which excludes
forbidden states associated with obstacle avoidance using sets.

This reachability analysis presents different computational difficul-
ties, being an interesting selection the use of constrained zonotopes, to
have an accurate result with a low computational cost. However, it is
evidenced that it is convenient to look for some set reduction technique
to be able to design more complex motion plans. A first test has been
made using hulls which shows that, indeed, the final computational cost
could be significantly reduced.

Finally, as future work, a more exhaustive study of the most appro-
priate techniques and sets to reduce the computational cost by finding
a balance between reducing the complexity and preserving the quality,
could be considered.
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