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ABSTRACT
In this paper, we present our focus on unraveling the intricacies of
plan negotiation in human-robot collaborative navigation (HRCN)
through a comprehensive exploration of human preferences over
robot proposals in search tasks. Via online survey data, we explore
the multidimensional landscape of diverse plan representations,
negotiation contexts and negotiation domains. Our study seeks
to identify the crucial factors that exert a significant influence
over human perception, shedding light on the dynamic interplay
between humans and robots and contributing valuable insights to
advance the understanding of effective navigation plan negotiation
strategies in human-robot teams (HRT).

CCS CONCEPTS
• Computer systems organization→ External interfaces for
robotics; • Human-centered computing→ User studies; Col-
laborative interaction; • Information systems → Collabora-
tive search; Task models .

KEYWORDS
plan negotiation; human-robot negotiation; human-robot collabora-
tive navigation; human-robot collaborative search; task allocation
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1 INTRODUCTION
Plan negotiation between humans and robots can enhance effi-
ciency, leverage teammates’ unshared knowledge, and expand po-
tential outcomes. However, this comes at the cost of heightened
complexity in plan creation and assessment. This study delves into
human preferences in negotiating plans within human-robot teams
engaged in collaborative navigation tasks, specifically search tasks,
utilizing data from online surveys. Our investigation focuses on
examining various plan representations, negotiation contexts, and
negotiation domains within the realm of robot-to-human naviga-
tion plan proposals. Our goal is to build useful knowledge to be able
to make an informed decision when choosing a plan representation
to deliver robot proposals in plan negotiation models.

Some systems handling human-robot teams include verbal com-
munication at the task planning level [1, 6, 8], contemplate robot
agents capable of requesting the usage of a resource from a hu-
man manager [2], generate plan proposals for navigation tasks
dynamically adapting to new human preferences [4] or ask for
assistance when needed [3]. Interestingly, Moon et al. [5] explore
the implicit negotiation domain of hesitation trajectories to enable
human-robot non-verbal negotiation and Porteous et al. [7] study
human understanding of robot intentions upon graphical robot
plan representations. Nevertheless, to our knowledge, none of them
confront explicit human-robot negotiation scenarios where both
humans and robots are capable of proposing and agreeing on plans.

Motivated by this gap, our study contributes to HRI knowledge,
examining nuanced human preferences in HRT navigation plan ne-
gotiation. Specifically, we investigate the influence of diverse repre-
sentations and negotiation domains in involved humans, providing
insights for designing user-centric, adaptable robotic systems.

We provide task and proposal definitions for two different navi-
gation plan negotiation domains in Section 2 and concretize this
definition applied to our use case, robot proposals in search tasks,

https://orcid.org/0000-0003-1734-7863
https://orcid.org/0000-0003-4851-0037
https://orcid.org/0000-0002-4629-0723
https://orcid.org/0000-0003-3627-4938
https://orcid.org/0000-0003-3868-9678
https://doi.org/10.1145/3610978.3640627
https://doi.org/10.1145/3610978.3640627


HRI ’24, March 11–14, 2024, Boulder, CO, USA Dalmasso, Sanchez-Anguix, Garrell, Jiménez and Sanfeliu.

in Section 3. Then, we present the data collection approach of our
study in Section 4 and discuss the obtained results in Section 5.

2 NAVIGATION PLAN PROPOSAL
Consider a human-robot team (HRT) confronted by a known col-
laborative navigation task. The team objective is to construct and
agree on a complete or partial plan to tackle this task. We define
negotiation as the plan-building process encompassing from the col-
laborative task declaration to the reachment of either an agreement
or the occurrence of a withdrawal.

The team reaches an agreement when all members accept a mu-
tually known plan proposal 𝜔 . This acceptance can be delivered
either explicitly, conveying a confirmation message, or implicitly.
The latter being considered only if all team members execute a com-
monly known plan. Taking action without a commonly known plan
or not receiving acceptance from all team members is considered a
withdrawal.

2.1 Task Definition
A collaborative navigation task 𝑇 is a task given to a set of agents
Λ = {𝑎𝑖 |𝑖 = 1...𝑚}. Generally, each agent may internally perceive𝑇
as formed by a set of subtasks. Each sub-task 𝛾 might be assigned
to a non-empty set of target agents 𝜏 ⊆ Λ. One might refer to a
sub-task as 𝛾 if it is assigned to all team members. Otherwise, it
should be referred to as 𝛾𝜏 . Thus, generally:

𝑇 = {𝛾1, ..., 𝛾𝑛}, 𝑇Λ = {𝛾𝜏11 , ..., 𝛾
𝜏𝑛
𝑛 } (1)

Note that having multiple targets (assigned agents) does not
imply they should all do the sub-task, but that any of them can fulfil
it. Also, note that sub-task granularity is not necessarily specified
with the task and, thus, it is possibly different for each agent.

Additionally, in certain scenarios sub-tasks may have time win-
dow constraints C. Any constraint 𝑐 ∈ C is defined as an interde-
pendence relation between two sub-tasks 𝑐 (𝛾𝑝 , 𝛾𝑞). All constraints
may be represented in a directed graph 𝐺𝑇 = (𝑇,𝐶).

2.2 Plan Proposal Domains
The team objective in navigation plan negotiation is to construct
and agree on a complete or partial plan proposal 𝜔 ∈ Ω to tackle a
collaborative navigation task 𝑇 , being Ω the set of possible propos-
als of the negotiation domain. From now on, we will consider two
negotiation domains in navigation task negotiations: navigation
plan negotiation and assignation plan negotiation.

2.2.1 Navigation plan proposal. Let proposal 𝜔 be a team navi-
gation plan 𝑥 ∈ X constructed by the agents’ movements 𝑥 =

{𝑥𝑎1 , ..., 𝑥𝑎𝑚 }, whereX denotes the set of feasible team plans. Then,
each agent movement 𝑥𝑎 ∈ X𝑎 can be defined as an ordered se-
quence of basic movement actions 𝑥𝑎 = {𝑥𝑎1 , 𝑥

𝑎
2 , ..., 𝑥

𝑎
𝑘
}, being X𝑎

the possible action sequences of agent 𝑎.
Basic movement actions 𝑥𝑎

𝑖
are defined by their goal, encoding

the action of moving to it. Each 𝑥𝑎
𝑖
may have an associated finish

time 𝑡𝑎
𝑖
only if it has been specified and agreed upon by the team.

2.2.2 Assignation plan proposal. Let proposal 𝜔 be an assigna-
tion plan Γ = {Γ𝜏11 , Γ𝜏22 , ..., Γ𝜏𝑁

𝑁
} where Γ

𝜏 𝑗
𝑗

= {𝛾𝜏 𝑗
𝑖 𝑗 (1) , ..., 𝛾

𝜏 𝑗

𝑖 𝑗 (𝑛 𝑗 ) },
Γ𝑗 = {𝛾𝑖 𝑗 (1) , ..., 𝛾𝑖 𝑗 (𝑛 𝑗 ) }, 𝑖 𝑗 (𝑘 𝑗 ) ∈ {1...𝑛} ∀𝑘 𝑗 ∈ {1...𝑛 𝑗 } and:

Figure 1: From left to right: a) shows two paths as the navi-
gation plan representation of a selfish plan 𝑥𝑥𝑥 . b) shows the
assignation plan representation of a balanced plan ΓΓΓ.

𝜏 𝑗 ⊆ 𝜏𝑖 ∀𝑖 ∈ {𝑖 |𝛾𝑖 ∈ Γ𝑗 } (2)⋃
𝑗∈𝑁

Γ𝑗 = 𝑇,
⋂
𝑗∈𝑁

Γ𝑗 = ∅ (3)

A proposal conveying this kind of information should both
identify the sub-task and the proposed assignation change. Subse-
quently, agents in the team should be able to establish an equiv-
alence relation between the received sub-task sets definition Γ

𝜏 𝑗
𝑗

and their own. Generally, this can even demand a change in the
receiver task internal representation.

3 USE CASE
Let us consider a HRT of agents Λ tasked with searching for a
misplaced object 𝑂 in a given and known zone. All agents are
assumed to have rotational symmetry on detection capabilities.

Regardless of the human’s understanding of the task, the robots
internally represent it as a set of searching sub-tasks 𝛾𝑠 and a task
linked to the object localization event 𝛾𝑜 . All sub-tasks are assumed
as initially assigned to both team members and all 𝛾𝑠 have a soft
precedence constraint [4] related to 𝛾𝑜 , as no 𝛾𝑠 can be fulfilled
once 𝛾𝑜 is completed. Formally, having 𝜏 = Λ:

𝑇 = {𝛾𝜏𝑠1 , ..., 𝛾
𝜏
𝑠𝑛
, 𝛾𝜏𝑜 }, 𝐺𝑇 = (𝑇, {𝑠𝑝 (𝛾𝑠𝑖 , 𝛾𝑜 ) |∀𝑖 ∈ {1...𝑛}}) (4)

From the robots perspective, the search space of the navigation
task is discretised. We define 𝛾𝑠 as the searching sub-task of the
object on a given area 𝐴𝑠 resulting from this division (Figure 1.b).
One implementation representing this task using the social reward
sources (SRS) model can be found in [4].

3.1 Robot Proposal Representation
To test the participants’ negotiation preferences, we designed three
plan representations. Following Section 2.2 taxonomy:

3.1.1 Navigation plan proposal. A visual navigation plan represen-
tation (Figure 1.a). This representation represents 𝑥 as a path plan
with actions 𝑥𝑎

𝑖
∈ {𝑥,𝑦} for each agent. No explicit 𝑡𝑎

𝑖
is defined.

3.1.2 Assignation plan proposal. Two assignation plan representa-
tions for an assignation plan Γ:

A visual representation depicting area assignation through grid
colouring where each cell 𝑗 represents Γ𝜏 𝑗

𝑗
(Figure 1.b).

A verbal description with each Γ
𝜏 𝑗
𝑗

describing broader areas
and given by text, but participants are asked to imagine the robot
delivers the information through audio. For instance, the balanced
plan for contexts 1 and 2 (Section 4) was: I’ll search in the grass and
central zones while you search in the bar, gravel and paved zones.
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Figure 2: Demography and data distributions

4 DATA COLLECTION
This study has been performed through an online questionnaire.
The questionnaire was available in three languages (Catalan, Span-
ish and English), unicity of participant responses has been ensured
and data1 has been collected from August to October of 2023.

4.1 Participants
A total of 161 volunteers have participated in the study. They were
from 20 to 77 years old (mean: 43.13, std:15.35), 91 men, 70 women
and none self-identifying otherwise. Demographic data related to
studies (finished or ongoing) and experience in robotics can be
observed in Figure 2.

4.2 Contexts
Participants in this study were asked to imagine themselves in
either a human-robot (hr) search setting or acting as a supervisor
in a robot-robot (rr) setting. They where randomly assigned one of
the following contexts during the experiment:

Context 1 (c1,hr). You have just realized that you have lost your
mobile phone. You approach a service robot working in the park
and ask for help in finding it.

Context 2 (c2,hr). While you are in the park, a service robot
working there approaches you and asks for help in finding a lost
mobile phone. Assume you have the time and agree to help.

Context 3 (c3,rr). When you arrive home, you realize that you
have lost your mobile phone at the park. You make a search request
to the assistance system, and two park service robots are assigned
to your case. Shortly afterwards, you receive a message from one
of the two robots.

Context 4 (c4,rr). When you arrive home, you realize that you
have lost your mobile phone at the park. However, you have a prior
commitment and cannot return to the park in person. So, you send
two robots that you have at home to search for it. When they arrive
at the park, you receive a message from one of the two robots.

Contexts 1 and 2 were added to study the preference changes
caused by the existence or lack of intrinsic motivation of the human,
whilst contexts 3 and 4 were proposed to study preference changes
due to the perception of property over the robots.

4.3 Plan Combination
To study the possible existence of perception variance caused by
plan quality, each participant has been presented with three plans:

Balanced plan (1). Plan where both members of the team take
care of similar workload, both in path length and search area.

Selfish plan (2). Plan where the proposing robot takes care of
significantly less workload, both in path length and area.

1https://www.iri.upc.edu/groups/mobrobotics/pref_in_hrn_plan_prop

Table 1: Robot to Human Plan Representation

Setting hr rr

Context c1 c2 c3 c4

Plans A B C A B C A B C A B C
Path 1 2 3 1 2 3 1 2 3 1 2 3
Area 3 1 2 3 1 2 3 1 2 3 1 2
Audio 2 3 1 2 3 1 2 3 1 2 3 1

Option 1 2 3 4 5 6 7 8 9 10 11 12

Selfless plan (3). Plan where the proposing robot takes care of
significantly more workload, both in path length and area.

Each participant was presented with one combination of these
three plans and three representations. The possible combinations,
shown in Table 1, are identified with the labels A, B and C. Applying
this to each of the four contexts spawns 12 different questionnaire
iterations, from now on options. Each participant only answered to
one of these options chosen randomly, though there is a surplus of
option 1 samples due to an initial labelling error (Figure 2).

4.4 Preference Data
For each of the three plan proposal scenarios presented to the par-
ticipants, they were asked to answer a number of questions related
to the quality and perception of the plan (Informative, Intuitive,
Clear, Reasonable, Efficient, Logic and Fair) and to robot percep-
tion (Leader, Intelligent, Controlling and Collaborative) following
7-item Likert scales. Moreover, at the end of the questionnaire, the
participants were asked to rank by order of preference the three
plan representation modes (Audio, Area and Path).

5 RESULTS
In the following section, a statistical analysis of the data obtained
through the online questionnaire is discussed.

5.1 Preference
Results of the participants’ ranking of the plan representation are
shown in Figure 3. Its first two graphs present preference ranking
over team structure. In the HR search there seems to be a clear
ranking preference (𝐴𝑟𝑒𝑎 > 𝑃𝑎𝑡ℎ > 𝐴𝑢𝑑𝑖𝑜), whilst in the RR case
area and path representations have no clear ranking difference.

The equality hypothesis is discarded through a Friedman test
and one-to-one differences are evaluated through post-hoc tests
(Figure 4). Ranking differences over all plan representations are
statistically significant in HR settings, whilst the RR table shows
that the difference between area and path rankings when the human
isn’t participating in the search is not statistically significant. We
obtain the same results for all contexts of each category.

https://www.iri.upc.edu/groups/mobrobotics/pref_in_hrn_plan_prop
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Figure 3: Preference ranking over plan representation

Figure 4: P-Value of the post-hoc tests applied to the plan representation ranking preference for hr (left) and rr (right) settings.

Figure 5: EFA factor loadings for the hr settings (coloring thresholds = {{{0.25,0.5,0.75}}})

The other four graphs in Figure 3 present rank preference data
over each context. All four reach the same conclusion than their
corresponding team configurations. That being said, a couple ob-
servable tendencies are worth mentioning. First, area over path
preference seems to be more pronounced in context 2 (robot asking
human) than in context 1 (human asking robot). Second, context
3 seems to present some tendency towards path preference over
area, whilst in context 4 there is no visible difference.

5.2 Factors
We studied the plan and robot subjective perceptions of the partic-
ipants through an Exploratory Factor Analysis (EFA). This study
revealed many of the questions where explainable by the same
factor and, thus, virtually asking for the same abstraction in the
participants’ judgement. As an example, the factor analysis of all
the collected data in the hr setting is displayed in Figure 5.

In all settings and contexts we can identify three factors related
to each representation format, which we labelled "plan" subjective
value (factors 1, 2 and 3 in Figure 5). For each representation, the
clarity of the plan is completely or partially characterised by an-
other independent factor we labelled "plan" clarity (factors 4 and 8).
Interestingly enough, participants valued clarity as an independent
feature in the area plan, whilst there was a partial correlation with
the subjective plan value in both audio and path representations.
This may indicate less perceived value variability due to interface
design. Also, there exists a partial correlation between the clarity
perception of the audio and the area representations.

Other interesting factors are the factors we labelled leadership
(5 and 9) and controlling (6 and 7). Some representations seem to

maintain a higher correlation between these two features than oth-
ers. Moreover, both properties correlate between representations,
so some participants were more prone to generally consider the
robot having these qualities than others. A similar proclivity, albeit
with less impact, seems to exist concerning the perception of the
collaborative factor (10).

6 CONCLUSIONS
The clearer conclusion of this study is that, when actively partici-
pating in a search task with a human-robot team, humans prefer to
receive an assignation plan over a navigation plan proposal if con-
fronted with a visual representation. Upon inspection of leadership
and controlling factor loadings, one may hypotesise that prefer-
ence stems from the excess of action restriction in navigation plans.
Whether that is the actual cause and/or such phenomena repeats
in other mediums should be studied in more detail. Similarly, while
no clear preference between the path and area representations is
provable in rr settings, the tendency observable in context 3 asks
for a deeper study of the property perception in avatar or human
as manager settings.

We remain cautious over the demonstrated preference of the
visual representations over the audio proposal. Preference over such
proposal may present a high variance due to wording or style. Also,
some participants expressed difficulty in understanding spatial and
demonstrative language in the proposed setting.
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