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Abstract

This paper tackles the problem of human motion predic-
tion, consisting in forecasting future body poses from his-
torically observed sequences. State-of-the-art approaches
provide good results, however, they rely on deep learn-
ing architectures of arbitrary complexity, such as Recurrent
Neural Networks (RNN), Transformers or Graph Convolu-
tional Networks (GCN), typically requiring multiple train-
ing stages and more than 2 million parameters. In this pa-
per, we show that, after combining with a series of stan-
dard practices, such as applying Discrete Cosine Trans-
form (DCT), predicting residual displacement of joints and
optimizing velocity as an auxiliary loss, a light-weight net-
work based on multi-layer perceptrons (MLPs) with only
0.14 million parameters can surpass the state-of-the-art
performance. An exhaustive evaluation on the Human3.6M,
AMASS, and 3DPW datasets shows that our method, named
SIMLPE, consistently outperforms all other approaches.
We hope that our simple method could serve as a strong
baseline for the community and allow re-thinking of the hu-
man motion prediction problem. The code is publicly avail-
able at https://github.com/dulucas/siMLPe.

1. Introduction
Given a sequence of 3D body poses, the task of human

motion prediction aims to predict the follow-up of the pose
sequence. Forecasting future human motion is at the core of
a number of applications, including preventing accidents in
autonomous driving [46], tracking people [17], or human-
robot interaction [27].

Due to the spatio-temporal nature of human motion, the
common trend in the literature is to design models that are
capable of fusing spatial and temporal information. Tra-
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Figure 1. Comparison of parameter size and performance on
the Human3.6M dataset [23]. We report the MPJPE metric in
mm at 1000 ms as performance on the vertical axis. The closer to
bottom-left, the better. Our method (SIMLPE, in red) achieves the
lowest error with significantly fewer parameters. We also show
the performance of two simple methods: ‘Repeating Last-Frame’
systematically repeats the last input frame as output prediction,
and ‘One-FC’ uses only one single fully connected layer to predict
the future motion.

ditional approaches mainly relied on hidden Markov mod-
els [7] or Gaussian process latent variable models [60].
However, while these approaches performed well on sim-
ple and periodic motion patterns, they dramatically fail un-
der complex motions [42]. In recent years, with the suc-
cess of deep learning, various methods have been devel-
oped based on different types of neural networks that are
able to handle sequential data. For example, some works
use Recurrent Neural Networks (RNN) [43] to model the
human motion [12, 15, 24, 34, 43], and some more recent
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works [13, 19, 32, 33, 38, 41, 42] propose networks based on
Graph Convolutional Networks (GCN) [42], or trying with
Transformers( [2]) based method [2, 10, 41] to fuse the spa-
tial and temporal information of the motion sequence across
human joints and time. However, the architectures of these
recent methods are usually not simple and some of them
require additional priors, which makes their network dif-
ficult to analyze and modify. Thus, a question naturally
arises: “Can we tackle the human motion prediction with a
simple network?”

To answer this question, we first tried a naive solution
by just repeating the last input pose and using them as the
output prediction. As shown in Figure 1, this naive solu-
tion could already achieve reasonable results, which means
the last input pose is “close” to the future poses. Inspired
by this, we further train only one fully connected layer to
predict the residual between the future poses and the last in-
put pose and achieves better performance, which shows the
potential of a simple network for human motion prediction
built on basic layers like the fully connected layer.

Based on the above observations, we go back to the
multi-layer perceptrons (MLPs) and build a simple yet ef-
fective network named SIMLPE with only three compo-
nents: fully connected layers, layer normalization [4] and
transpose operations. The network architecture is shown
in Figure 2. Noticeably, we found that even commonly
used activation layers such as ReLU [45] are not needed,
which makes our network an entirely linear model except
for layer normalization. Despite its simplicity, SIMLPE
achieves strong performance when appropriately combined
with three simple practices: applying the Discrete Co-
sine Transform (DCT), predicting residual displacement of
joints, and optimizing velocity as an auxiliary loss.

SIMLPE yields state-of-the-art performance on sev-
eral standard benchmarks, including Human3.6M [23],
AMASS [39] and 3DPW [58]. In the meantime, SIMLPE
is lightweight and requires 20× to 60× fewer parameters
than previous state-of-the-art approaches. A comparison
between SIMLPE and previous methods can be found in
Figure 1, which shows the Mean Per Joint Position Er-
ror (MPJPE) at 1, 000ms on Human3.6M of different net-
works versus the network complexity. SIMLPE achieves
the best performance with high efficiency.

In summary, our contributions are as follows:

• We show that human motion prediction can be mod-
eled in a simple way without explicitly fusing spatial
and temporal information. As an extreme example, a
single fully connected layer can already achieve rea-
sonable performance.

• We propose SIMLPE, a simple yet effective network
for human motion prediction with only three compo-
nents: fully connected layers, layer normalization, and

transpose operation, achieving state-of-the-art perfor-
mance with far fewer parameters than existing meth-
ods on multiple benchmarks such as Human3.6M,
AMASS and 3DPW datasets.

2. Related Work
Human motion prediction is formulated as a sequence-

to-sequence task, where past observed motion is taken as
input to predict the future motion sequence. Traditional
methods explore human motion prediction with nonlinear
Markov models [30], Gaussian Process dynamical mod-
els [59], and Restricted Boltzmann Machine [51]. These
approaches have shown to be effective to predict simple
motions and eventually struggle with complex and long-
term motion prediction [15]. With the deep learning era,
human motion prediction has achieved great success with
the use of deep networks, including Recurrent Neural Net-
works (RNNs) [12,15,24,34,43], Graph Convolutional Net-
works (GCNs) [13, 19, 32, 33, 38, 41, 42] and Transform-
ers [2, 10, 41], which are the main focus of this section.

2.1. RNN-based human motion prediction

Due to the inherent sequential structure of human mo-
tion, some works address 3D human motion prediction
by recurrent models. Fragkiadaki et al. [15] propose an
encoder-decoder framework to embed human poses and an
LSTM to update the latent space and predict future motion.
Jain et al. [24] manually encode the semantic similarity be-
tween different parts of the body and forwards them via
structural RNNs. However, these two methods suffer from
discontinuity and they are only trained on action-specific
models, i.e., a single model is trained for a specific action.

Martinez et al. [43] studied multi-actions instead of
action-specific models, i.e., train one single model for mul-
tiple actions, which allows the network to exploit regulari-
ties across different actions in large-scale datasets. This is
widely adopted by most of the subsequent works. They also
introduced a residual connection to model the velocities in-
stead of the absolute value to have more smooth predictions.

Nevertheless, the above-mentioned methods suffer from
multiple inherent limitations of RNNs. First, as a sequential
model, RNNs are difficult to parallelize during training and
inference. Second, the memory constraints prevent RNNs
from exploring information from farther frames. Some
works alleviate this problem by using RNN variants [12,34],
sliding windows [8,9], convolutional models [20,31] or ad-
versarial training [18], as described in the following sec-
tions. But their networks are still complicated and have a
large number of parameters.

2.2. GCN-based human motion prediction

To better encode the spatial connectivity of human
joints, the most recent works usually build the human



Figure 2. Overview of our approach SIMLPE for human motion prediction. FC denotes a fully connected layer, LN denotes layer
normalization [4], and Trans represents the transpose operation. DCT and IDCT represent the discrete cosine transformation and inverse
discrete cosine transformations respectively. The MLP blocks (in gray), composing FC and LN, are repeated m times.

pose as a graph and adopt Graph Convolutional Net-
works (GCNs) [26, 50] for human motion prediction.

GCNs were first exploited for human motion prediction
in Mao et al. [42]. They use a stack of blocks consist-
ing of GCNs, nonlinear activation, and batch normaliza-
tion to encode the spatial dependencies, and leverage dis-
crete cosine transform (DCT) to encode temporal informa-
tion. This work inspired most of the GCN-based motion
prediction methods in recent years. Based on [42], Mao et
al. [41] further improved the temporal encoding by cutting
the past observations into several sub-sequences and adding
an attention mechanism to find similar previous motion sub-
sequences in the past with the current observations. Thus,
the future sequence is computed as a weighted sum of ob-
served sub-sequences. Then, a GCN-based predictor, the
same as in [42], is used to encode the spatial dependencies.

Instead of using DCT transformation to encode the in-
put sequence, [29] used a multi-scale temporal input em-
bedding, by applying various size convolutional layers for
different input sizes to have different receptive fields in the
temporal domain. Ma et al. [38] proposed two variants of
GCNs to extract spatial and temporal features. They built a
multi-stage structure where each stage contains an encoder
and a decoder, and during the training, the model is trained
with intermediate supervision to learn to progressively re-
fine the prediction. [13, 32, 33] extend the graph of human
pose to multi-scale version across the abstraction levels of
human pose.

2.3. Attention-based human motion prediction

With the development of transformers [57], some
works [2, 10, 41] attempted to deal with this task with an
attention mechanism. [41] used attention to find temporal
relations; [2] also used attention to map not only the tempo-
ral dependencies but also the pairwise relation of joints by
an architecture combining “spatial attention” and “temporal
attention” in parallel. [10] used a transformer-based archi-
tecture along with a progressive-decoding strategy to pre-

dict the DCT coefficients of the target joints progressively
based on the kinematic tree. In order to guide the predic-
tions, they also built a memory-based dictionary to preserve
the global motion patterns in training data.

In summary, with the development of human motion pre-
diction in recent years, the RNN/GCN/transformer-based
architectures are well explored and the results have been
significantly improved. Though these methods provide
good results, their architectures are becoming more and
more complicated and difficult to train. In this paper, we
stick to simple architectures and propose an MLP-based
network. Recently, a concurrent and independent work [6]
based on [52] also adopts an MLP based network architec-
ture for motion prediction, while our network is much sim-
pler as we do not use the squeeze-and-excitation block [22]
nor the activation layers. We hope that our simple method
would serve as a baseline and let the community rethink the
problem of human motion prediction.

3. Our Approach: SIMLPE

In this section, we formulate the problem and present
the formulation of the DCT transformation in Section 3.1,
details of the network architecture in Section 3.2 and the
losses we use for training in Section 3.3.

Given a sequence of 3D human poses in the past, our
goal is to predict the future sequence of poses. We denote
the observed 3D human poses as x1:T = [x⊤

1 , .., x
⊤
T ]

⊤ ∈
RT×C , consisting of T consecutive human poses, where the
pose at the t-th frame xt is represented by a C-dimensional
vector, i.e. xt ∈ RC . In this work, similar to previous
works [38, 41–43], xt is the 3D coordinates of joints at
t-th frame and C = 3 × K, where K is the number of
joints. Our task is to predict the future N motion frames
xT+1:T+N = [x⊤

T+1, .., x
⊤
T+N ]⊤ ∈ RN×C .

3.1. Discrete Cosine Transform (DCT)

We adopt the DCT transformation to encode temporal in-
formation, which is proven to be beneficial for human mo-



Table 1. Results on Human3.6M for different prediction time steps (ms). We report the MPJPE error in mm and number of parameters
(M) for each method. Lower is better. 256 samples are tested for each action. † indicates that the results are taken from the paper [41], ⋆
indicated that the results are taken from the paper [38]. Note that ST-DGCN [38] use two different models to evaluate their short-/long-
term performance, here we report their results of a single model which performs better on long-term for fair comparison. We also show
results of two simple baselines: ’Repeating Last-Frame’ repeats the last input frame 25 times as output, ’One FC’ uses only one single
fully connected layer for the prediction.

MPJPE (mm) ↓
# Param.(M) ↓Time (ms) 80 160 320 400 560 720 880 1000

Repeating Last-Frame 23.8 44.4 76.1 88.2 107.4 121.6 131.6 136.6 0
One FC 14.0 33.2 68.0 81.5 101.7 115.1 124.8 130.0 0.003

Res-RNN † [43] 25.0 46.2 77.0 88.3 106.3 119.4 130.0 136.6 3.44
convSeq2Seq † [31] 16.6 33.3 61.4 72.7 90.7 104.7 116.7 124.2 15.58
LTD-50-25 † [42] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4 2.56
LTD-10-10 † [42] 11.2 23.4 47.9 58.9 78.3 93.3 106.0 114.0 2.55
Hisrep † [41] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1 3.24
MSR-GCN ⋆ [13] 11.3 24.3 50.8 61.9 80.0 - - 112.9 6.30
ST-DGCN-10-25 ⋆ [38] 10.6 23.1 47.1 57.9 76.3 90.7 102.4 109.7 3.80

SIMLPE (Ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4 0.14

tion prediction [38, 41, 42]. More precisely, given an input
motion sequence of T frames, the DCT matrix D ∈ RT×T

can be calculated as:

Di,j =

√
2

T

1√
1 + δi,0

cos
( π

2T
(2j + 1)i

)
, (1)

where δi,j denotes the Kronecker delta:

δi,j =

{
1 if i = j

0 if i ̸= j .
(2)

The transformed input is D(x1:T ) = Dx1:T . We apply
the Inverse Discrete Cosine Transform (IDCT) to transform
the output of the network back to the original pose repre-
sentation, denoted as D−1 and the inverse of D.

3.2. Network architecture

Figure 2 shows the architecture of our network. Our net-
work only contains three components: fully connected lay-
ers, transpose operation, and layer normalization [4]. For
all the fully connected layers, their input dimension is equal
to their output dimension.

Formally, given an input sequence of 3D human
poses x1:T = [x⊤

1 , .., x
⊤
T ]

⊤ ∈ RT×C , our network
predicts a sequence of future poses x′

T+1:T+N =

[x′⊤
T+1, .., x

′⊤
T+N ]⊤ ∈ RN×C :

x′
T+1:T+N = D−1(F(D(x1:T ))) , (3)

where F denotes our network.
After the DCT transformation, we apply one fully con-

nected layer to operate only on the spatial dimension of the
transformed motion sequence D(x1:T ) ∈ RT×C :

z0 = D(x1:T )W0 + b0 , (4)

where z0 ∈ RT×C is the output of the fully connected layer,
W0 ∈ RC×C and b0 ∈ RC represent the learnable pa-
rameters of the fully connected layer. In practice, this is
equivalent to applying a transpose operation with a fully
connected layer, and then transposing back the output fea-
ture, as shown in Figure 2.

Then, a series of m blocks are introduced to only oper-
ate on the temporal dimension, i.e., only to merge informa-
tion across frames. Each block consists of a fully connected
layer followed by layer normalization, formally:

zi = zi−1 + LN(Wiz
i−1 + bi) , (5)

where zi ∈ RT×C , i ∈ [1, ..,m] denotes the output of the
i-th MLP block, LN denotes the layer normalization opera-
tion, and Wi ∈ RT×T and bi ∈ RT are the learnable pa-
rameters of the fully connected layer in the i-th MLP block.

Finally, similar to the first fully connected layer, we add
another fully connected layer after the MLP blocks to op-
erate only on the spatial dimension of the feature, and then
apply IDCT transformation to obtain the prediction:

x′
T+1:T+N = D−1(z′Wm+1 + bm+1) , (6)

where Wm+1 and bm+1 are the learnable parameters of the
last fully connected layer.

Note that the lengths T and N do not need to be equal.
When T > N , we only take the N first frames of the predic-
tion, and in the case of T < N , we could pad our input se-
quence to N by repeating the last frame, as done in [41,42].

3.3. Losses

As mention in the Section 1 and shown in the Figure 1,
the last input pose is “close” to the future poses. Inspired



Table 2. Action-wise results on Human3.6M for different prediction time steps (ms). Lower is better. 256 samples are tested for each
action. † indicates that the results are taken from the paper [41], ⋆ indicates that the results are taken from the paper [38].

Action walking eating smoking discussion

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [43] 23.2 66.1 71.6 79.1 16.8 61.7 74.9 98.0 18.9 65.4 78.1 102.1 25.7 91.3 109.5 131.8
convSeq2Seq † [31] 17.7 63.6 72.2 82.3 11.0 48.4 61.3 87.1 11.6 48.9 60.0 81.7 17.1 77.6 98.1 129.3
LTD-50-25 † [42] 12.3 44.4 50.7 60.3 7.8 38.6 51.5 75.8 8.2 39.5 50.5 72.1 11.9 68.1 88.9 118.5
LTD-10-10 † [42] 11.1 42.9 53.1 70.7 7.0 37.3 51.1 78.6 7.5 37.5 49.4 71.8 10.8 65.8 88.1 121.6
Hisrep † [41] 10.0 39.8 47.4 58.1 6.4 36.2 50.0 75.7 7.0 36.4 47.6 69.5 10.2 65.4 86.6 119.8
MSR-GCN ⋆ [13] 10.8 42.4 53.3 63.7 6.9 36.0 50.8 75.4 7.5 37.5 50.5 72.1 10.4 65.0 87.0 116.8
ST-DGCN-10-25 ⋆ [38] 11.2 42.8 49.6 58.9 6.5 36.8 50.0 74.9 7.3 37.5 48.8 69.9 10.2 64.4 86.1 116.9

SIMLPE (Ours) 9.9 39.6 46.8 55.7 5.9 36.1 49.6 74.5 6.5 36.3 47.2 69.3 9.4 64.3 85.7 116.3

Action directions greeting phoning posing

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [43] 21.6 84.1 101.1 129.1 31.2 108.8 126.1 153.9 21.1 76.4 94.0 126.4 29.3 114.3 140.3 183.2
convSeq2Seq † [31] 13.5 69.7 86.6 115.8 22.0 96.0 116.9 147.3 13.5 59.9 77.1 114.0 16.9 92.9 122.5 187.4
LTD-50-25 † [42] 8.8 58.0 74.2 105.5 16.2 82.6 104.8 136.8 9.8 50.8 68.8 105.1 12.2 79.9 110.2 174.8
LTD-10-10 † [42] 8.0 54.9 76.1 108.8 14.8 79.7 104.3 140.2 9.3 49.7 68.7 105.1 10.9 75.9 109.9 171.7
Hisrep † [41] 7.4 56.5 73.9 106.5 13.7 78.1 101.9 138.8 8.6 49.2 67.4 105.0 10.2 75.8 107.6 178.2
MSR-GCN ⋆ [13] 7.7 56.2 75.8 105.9 15.1 85.4 106.3 136.3 9.1 49.8 67.9 104.7 10.3 75.9 112.5 176.5
ST-DGCN-10-25 ⋆ [38] 7.5 56.0 73.3 105.9 14.0 77.3 100.2 136.4 8.7 48.8 66.5 102.7 10.2 73.3 102.8 167.0

SIMLPE (Ours) 6.5 55.8 73.1 106.7 12.4 77.3 99.8 137.5 8.1 48.6 66.3 103.3 8.8 73.8 103.4 168.7

Action purchases sitting sittingdown takingphoto

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [43] 28.7 100.7 122.1 154.0 23.8 91.2 113.7 152.6 31.7 112.0 138.8 187.4 21.9 87.6 110.6 153.9
convSeq2Seq † [31] 20.3 89.9 111.3 151.5 13.5 63.1 82.4 120.7 20.7 82.7 106.5 150.3 12.7 63.6 84.4 128.1
LTD-50-25 † [42] 15.2 78.1 99.2 134.9 10.4 58.3 79.2 118.7 17.1 76.4 100.2 143.8 9.6 54.3 75.3 118.8
LTD-10-10 † [42] 13.9 75.9 99.4 135.9 9.8 55.9 78.5 118.8 15.6 71.7 96.2 142.2 8.9 51.7 72.5 116.3
Hisrep † [41] 13.0 73.9 95.6 134.2 9.3 56.0 76.4 115.9 14.9 72.0 97.0 143.6 8.3 51.5 72.1 115.9
MSR-GCN ⋆ [13] 13.3 77.8 99.2 134.5 9.8 55.5 77.6 115.9 15.4 73.8 102.4 149.4 8.9 54.4 77.7 121.9
ST-DGCN-10-25 ⋆ [38] 13.2 74.0 95.7 132.1 9.1 54.6 75.1 114.8 14.7 70.0 94.4 139.0 8.2 50.2 70.5 112.9

SIMLPE (Ours) 11.7 72.4 93.8 132.5 8.6 55.2 75.4 114.1 13.6 70.8 95.7 142.4 7.8 50.8 71.0 112.8

Action waiting walkingdog walkingtogether average

Time (ms) 80 400 560 1000 80 400 560 1000 80 400 560 1000 80 400 560 1000

Res-RNN † [43] 23.8 87.7 105.4 135.4 36.4 110.6 128.7 164.5 20.4 67.3 80.2 98.2 25.0 88.3 106.3 136.6
convSeq2Seq † [31] 14.6 68.7 87.3 117.7 27.7 103.3 122.4 162.4 15.3 61.2 72.0 87.4 16.6 72.7 90.7 124.2
LTD-50-25 † [42] 10.4 59.2 77.2 108.3 22.8 88.7 107.8 156.4 10.3 46.3 56.0 65.7 12.2 61.5 79.6 112.4
LTD-10-10 † [42] 9.2 54.4 73.4 107.5 20.9 86.6 109.7 150.1 9.6 44.0 55.7 69.8 11.2 58.9 78.3 114.0
Hisrep † [41] 8.7 54.9 74.5 108.2 20.1 86.3 108.2 146.9 8.9 41.9 52.7 64.9 10.4 58.3 77.3 112.1
MSR-GCN ⋆ [13] 10.4 62.4 74.8 105.5 24.9 112.9 107.7 145.7 9.2 43.2 56.2 69.5 11.3 61.9 80.0 112.9
ST-DGCN-10-25 ⋆ [38] 8.7 53.6 71.6 103.7 20.4 84.6 105.7 145.9 8.9 43.8 54.4 64.6 10.6 57.9 76.3 109.7

SIMLPE (Ours) 7.8 53.2 71.6 104.6 18.2 83.6 105.6 141.2 8.4 41.2 50.8 61.5 9.6 57.3 75.7 109.4

by this observation, instead of predicting the absolute 3D
poses from scratch, we let our network predict the residual
between the future pose xT+t and the last input pose xT .
As we will show in Section 4.4, this eases the learning and
improves performance.

Objective function. Our objective function L includes
two terms Lre and Lv:

L = Lre + Lv . (7)

Lre aims to minimize the L2-norm between the predicted

motion x′
T+1:T+N and ground-truth one xT+1:T+N :

Lre = L2(x
′
T+1:T+N ,xT+1:T+N ) . (8)

Lv aims to minimize the L2-norm between the velocity
of the predicted motion v′

T+1:T+N and the ground truth
one vT+1:T+N :

Lv = L2(v
′
T+1:T+N ,vT+1:T+N ) , (9)

where vT+1:T+N = [v⊤T+1, .., v
⊤
T+N ]⊤ ∈ RN×C , vt rep-

resents the velocity at frame t and is computed as the time
difference: vt = xt+1 − xt. We provide a full analysis of
the loss terms in Section 4.4.



Table 3. Results on AMASS and 3DPW for different prediction time steps (ms). We report the MPJPE error in mm. Lower is better. The
model is trained on the AMASS dataset. The results of the previous methods are taken from [41].

Dataset AMASS-BMLrub 3DPW
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

convSeq2Seq [31] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD-10-10 [42] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1
LTD-10-25 [42] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
Hisrep [41] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7

SIMLPE (Ours) 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7 12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2

Table 4. Average results for different prediction time periods on Human3.6M and AMASS. These results are obtained following the
evaluation method of STS-GCN [49] and STG-GCN [61], instead of the standard evaluation protocol adopted in [38, 41, 42].

Dataset Human3.6M AMASS-BMLrub
Time (ms) 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

STS-GCN [49] 10.1 17.1 33.1 38.3 50.8 60.1 68.9 75.6 10.0 12.5 21.8 24.5 31.9 38.1 42.7 45.5
STG-GCN [61] 10.1 16.9 32.5 38.5 50.0 - - 72.9 10.0 11.9 20.1 24.0 30.4 - - 43.1

SIMLPE (Ours) 4.5 9.8 22.0 28.1 39.3 49.2 57.8 63.7 6.1 10.8 19.1 22.8 29.5 35.1 39.7 42.7

4. Experiments

In this section, we present our experimental details and
results. We introduce the datasets and evaluation metric in
Section 4.1, the implementation details in Section 4.2, and
the quantitative/qualitative results in Section 4.3. An ex-
haustive ablation analysis is provided in Section 4.4.

4.1. Datasets and evaluation metric

Human3.6M dataset [23]. Human3.6M contains 7 ac-
tors performing 15 actions, and 32 joints are labeled for
each pose. We follow the same testing protocols of [41]
and use S5 as the test set, S11 as the validation set, and the
others as the train set. Previous works use different test sam-
pling strategies, including 8 samples per action [42,43], 256
samples per action [41] or all samples in the test set [13].
As 8 samples are too little and taking all testing samples
could not balance different actions with different sequence
lengths, we thus take 256 samples per action for testing, and
evaluate on 22 joints as in [38, 41–43].

AMASS dataset [39]. AMASS is a collection of multi-
ple Mocap datasets [1, 3, 5, 11, 14, 16, 21, 28, 35, 37, 39, 40,
44, 48, 53–56] unified by SMPL parameterization [36]. We
follow [41] to use AMASS-BMLrub [53] as the test set and
split the rest of the AMASS dataset into training and vali-
dation sets. The model is evaluated on 18 joints as in [41].

3DPW dataset [58]. 3DPW is a dataset including in-
door and outdoor scenes. A pose is represented by 26 joints,
but we follow [41] and evaluate 18 joints using the model
trained on AMASS to evaluate generalization.

Evaluation metric. We report the Mean Per Joint Po-
sition Error (MPJPE) on 3D joint coordinates, which is

the most widely used metric for evaluating 3D pose errors.
This metric calculates the average L2-norm across different
joints between the prediction and ground-truth. Similar to
previous works [13,38,41,42], we ignore the global rotation
and translation of the poses and keep the sampling rate as
25 frames per second (FPS) for all datasets.

4.2. Implementation details

In practice, we set the input length T = 50, the output
length N = 10 on Human3.6M dataset and N = 25 on
AMASS dataset and 3DPW dataset. During testing, we ap-
ply our model in an auto-regressive manner to generate mo-
tion for longer periods. The feature dimension C = 3×K,
where K is the number of joints, K = 22 for Human3.6M
and K = 18 for AMASS and 3DPW.

To train our network, we set the batch size to 256 and use
the Adam optimizer [25]. The memory consumed by our
network is about 1.5GB during the training. All our exper-
iments are conducted using the Pytorch [47] framework on
a single NVIDIA RTX 2080Ti graphics card. We train our
network on the Human3.6M dataset for 35k iterations, the
learning rate starts from 0.0003 at the beginning and drops
to 0.00001 after 30k steps. The training takes ∼30 minutes.
For AMASS dataset, we train our network for 115k itera-
tions. The learning rate starts from 0.0003 at the beginning
and drops to 0.00001 after 100k steps. The training takes
∼2 hours. During training, we only use the front-back flip
as data augmentation, which randomly inverts the motion
sequence during the training.

4.3. Quantitative and qualitative results

In this section, we compare our approach to existing
state-of-the-art methods on different datasets. We report



Table 5. Ablation of the number of MLP blocks on Human3.6M.

Nb. Blocks # Param.(M) ↓ MPJPE (mm) ↓
80 160 320 400 560 720 880 1000

1 0.012 12.7 28.5 59.7 72.1 93.6 107.0 116.8 123.6
2 0.014 10.9 24.9 52.3 64.0 83.2 97.3 108.4 115.4
6 0.025 10.2 23.1 48.8 60.1 79.0 93.3 105.1 112.6
12 0.041 9.9 22.4 47.2 58.3 77.1 91.5 103.3 110.9
24 0.073 9.7 22.0 46.8 57.7 76.4 90.8 102.6 110.3
48 (Ours) 0.138 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4
64 0.180 9.6 21.8 46.5 57.5 76.0 90.1 101.9 109.7
96 0.266 9.7 21.9 46.7 57.8 76.3 90.5 102.1 109.8

Table 6. Ablation of different components of our network on
Human3.6M. ’LN’ denotes the layer normalization. ’DCT’ de-
notes the DCT transformation. ’Spa. only’ means that all FC
layers are on spatial dimensions (w/o transpose operations be-
fore/after MLP blocs). ’Temp. only’ means that all FC layers are
on temporal dimensions (w/o any transpose operations).

Ablation 80 160 320 400 560 720 880 1000

Spa. only, w/o LN 23.7 44.0 75.5 87.6 106.3 120.4 130.5 135.6
Spa. only 23.8 43.0 73.4 85.2 102.0 116.3 125.3 131.9
Temp. only 9.9 22.4 47.2 58.4 77.2 91.1 102.8 110.5
w/o LN 12.7 29.0 62.3 76.2 97.4 111.6 121.6 127.3
w/o DCT 9.9 22.4 47.3 58.4 76.9 91.2 102.8 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 7. Ablation of data augmentation on Human3.6M. We
only use front-back flip as our data augmentation, i.e., we ran-
domly invert the motion sequence during the training.

80 160 320 400 560 720 880 1000

w/o aug 10.0 22.6 48.3 59.7 78.2 92.0 103.4 110.8
w aug 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

MPJPE in mm at different prediction time steps up to
1000ms.

Human3.6M dataset. In Table 1, we compare our
method with other state-of-the-art methods on the Hu-
man3.6M dataset. Our method outperforms all previous
methods on every frame with much fewer parameters.
As explained in Section 4.1, some different methods have
taken different test sampling strategies. Following [41], we
choose to test with 256 samples on 22 joints. To make
a fair comparison, we evaluate all the methods using the
same testing protocol. Our method outperforms all previ-
ous methods on every frame with a much less number of
parameters. Besides, previous works usually report short-
term (0 ∼ 500ms) and long-term (500 ∼ 1000ms) predic-
tions separately, and [38] reports short-/long- term results
using two different models. In our tables, all the results
from 0 ∼ 1000ms are predicted by a single model, and
for [38], we report the results of their model which achieves
the best performance on long-term prediction. In addition,
we also evaluate the two simple approaches mentioned in
Section 1 on the Human3.6M dataset in Table 1: ‘Repeat-

ing Last-frame’ takes the last input pose and repeats it N
times to serve as output, and ‘One FC’ uses only one single
fully connected layer trained on Human3.6m. These results
show that the task of human motion prediction could be po-
tentially modeled in a completely different and simple way
without explicitly fusing spatial and temporal information.
Furthermore, similar to all the previous works, we also de-
tail the action-wise results in Table 2.

AMASS and 3DPW datasets. In Table 3, we report the
performance of the model trained on AMASS and tested
on the AMASS-BMLrub and 3DPW datasets, following the
evaluation protocol of [41]. Different from the Human3.6M
dataset where the training and testing data are from the same
types of actions performed by different actors, the differ-
ence between training and testing data under this protocol
is much larger, which makes the task more challenging in
terms of generalization. As shown in the table, our approach
performs consistently better on long-term prediction. More-
over, our model is much lighter. For example, the parameter
size of our model is ∼ 4% of Hisrep [41].

While the commonly used evaluation protocol is to
consider the predicted error at different time steps, some
works [49, 61] report their result by taking the average er-
ror from the first time step to a certain time step. We report
the predicted error at different time steps in all the tables,
except in Table 4, where we report the average error for
comparison with [49, 61]. Our approach also achieves bet-
ter performance than these two methods.

Qualitative results. In addition to the quantitative re-
sults, we provide some qualitative results of our method
in Figure 3, showing some testing examples on the Hu-
man3.6M dataset. We could find that the predictions of our
method perfectly match the ground-truth on short-term pre-
diction, and globally fits the ground-truth on long-term pre-
diction. The error becomes larger when looking into longer
predictions, which is a common problem for all the motion
prediction methods as shown in Table 1 and Table 3. This
is because most of the current methods use auto-regression
for predicting a longer future, which will make the error ac-
cumulate. Moreover, uncertainty grows very quickly with
time when predicting human motions.



Figure 3. Qualitative results of our method SIMLPE. The skele-
tons in light colors are the input (before 0ms) and the ground-truth
(after 0ms). Those with dark colors represent the predicted mo-
tions. Our prediction results are close to the ground-truth.

4.4. Ablation study

We evaluate below the influence of the different compo-
nents of our approach on the Human3.6M dataset.

Number of MLP blocks. We ablate the of the number
of MLP blocks m in Table 5. Our proposed architecture al-
ready achieves good performance using only 2 MLP blocks
with 0.014M parameters. The network achieves its best
performance with 48 MLP blocks.

Network architecture. In Table 6, we ablate the differ-
ent components of our network. As the table shows, the
temporal feature fusion and layer normalization are both of
vital importance to our network. If the network just operates
along the spatial dimension of the motion sequence without
merging any information across different frames, it will lead
to degraded results. However, if the network just operates
along the temporal dimension, the network will still achieve
comparable performance. Besides, the use of DCT transfor-
mation can further improve the performance slightly.

Data augmentation. In Table 7, we ablate the use of
front-back flip data augmentation and find that the data aug-
mentation slightly improves the performance.

Loss. In Table 8, we evaluate the importance of different
loss terms used during training. As shown in the table, with
the help of the velocity loss Lv , the network achieves bet-
ter performance on long-term predictions while maintaining
the same performance on the short-term.

Learning residual displacement. In Table 9, we ana-
lyze the importance of the proposed residual displacement
and compare it to other types of residual used in previous

Table 8. Ablation of different loss terms on Human3.6M.

Lre Lv 80 160 320 400 560 720 880 1000

✓ 9.6 21.8 46.5 57.5 76.7 91.5 103.5 111.3
✓ ✓ 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

Table 9. Analysis of different types of residual displacement
on Human3.6M. SIMLPE predicts the differences of each future
frame with the last observation (after IDCT). ’Before IDCT’ learns
the residual before applying the IDCT transformation. ’Consecu-
tive’ learns the velocity between consecutive frames. ’w/o resid-
ual’ predicts directly the absolute 3D poses.

Residual 80 160 320 400 560 720 880 1000

w/o residual 12.4 25.1 50.7 61.6 80.1 93.9 105.5 113.0
Consecutive 9.7 22.0 46.8 57.8 76.5 90.7 102.4 110.1
Before IDCT 10.4 23.0 48.2 59.1 77.9 91.8 103.2 110.5

SIMLPE (ours) 9.6 21.7 46.3 57.3 75.7 90.1 101.8 109.4

works [42, 43]. Our method aims to predict the differences
between each future pose and the last observed pose, af-
ter the IDCT transformation. When predicting directly the
absolute 3D pose (‘w/o residual’), the performance drops
dramatically. We also test other types of residual by either
learning the residual in the DCT space, before applying the
IDCT transformation (‘Before IDCT’) following [42], or
learning the velocity of the motion (‘consecutive’) follow-
ing [43], and both achieve inferior performance compared
to our proposed residual displacement.

5. Conclusion

In this paper, we present SIMLPE, a simple-yet-effective
network for human motion prediction. SIMLPE is com-
posed of only fully connected layers, layer normalization,
and transpose operations. The only non-linear operation
is thus the layer normalization. While using much fewer
parameters, SIMLPE achieves state-of-the-art performance
on various benchmarks. The reported ablation study also
demonstrates the interest of various design choices, high-
lighting the importance of temporal information fusion in
this task. We hope the simplicity of SIMLPE will help the
community to rethink the task of human motion prediction.
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