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A SPECTRAL DECOMPOSITION APPROACH TO THE

ACCURATE CONVERSION OF 4D ROTATION MATRICES TO

DOUBLE QUATERNIONS

S. SARABANDI and F. THOMAS

Abstract. The problem of approximating dual quaternions by double quaternions
emerges when trying to approximate 3D displacements by 4D rotations to simplify
some problems arising in Robotics and Computer Graphics. This has triggered a
renewed interest in 4D rotations. While 3D rotations can be represented using ordi-
nary quaternions, 4D rotations require the use of double quaternions. Analogously
to the 3D case, the mapping from double quaternions to rotation matrices cannot be
smoothly inverted because it is a 2-to-1 mapping. This induces numerical problems
near singularities that are exacerbated when the elements of the rotation matrices
are noisy.

This paper focuses on the inversion of the mentioned mapping, including the
important case in which the rotation matrices are contaminated by noise, and
presents a new spectral decomposition approach which compares favorably with
Rosen-Elfrinkhof method both in terms of time and accuracy.

1. Introduction

In mechanics and geometry, the 4D rotation group, often denoted SO(4), is the
group of all rotations about the origin of four-dimensional Euclidean space R

4

under the operation of composition. The group SO(4) is usually identified with
the group of 4×4 orthogonal proper matrices under matrix multiplication. Thus,
although each element of SO(4) is identified with a 4×4 real matrix, its entries are
determined by only six independent parameters due to the orthogonality condition
[14, Sec. 2.7],

After a proper change in the orientation of the reference frame, an arbitrary 4D
rotation can be expressed as [3, Ch. 3] [6, Ch. 6]:






cosα1 − sinα1 0 0
sinα1 cosα1 0 0

0 0 cosα2 − sinα2

0 0 sinα2 cosα2




. (1.1)
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2 S. SARABANDI and F. THOMAS

Therefore, a 4D rotation is defined by two mutually orthogonal planes of rota-
tion with different rotation angles, each of the planes being fixed in the sense
that points in each plane stay within the planes [2]. The group of 4D rota-
tions can be expressed as the direct product of two planar rotations. That is,
SO(4) = SO(2)×SO(2).

Now, observe that matrix (1.1) can be factored into the commutative product
of 




cosβ1 − sin β1 0 0
sin β1 cos β1 0 0
0 0 cosβ1 − sin β1

0 0 sin β1 cos β1




 (1.2)

and 




cos β2 − sin β2 0 0
sin β2 cos β2 0 0
0 0 cos β2 sin β2

0 0 − sin β2 cosβ2




, (1.3)

where β1 = α1+α2

2
and β2 = α1−α2

2
. The rotation matrices above are called right-

and left-isoclinic rotation matrices, respectively. They correspond to rotations
in which the rotated angles in both invariant rotation planes have the same or
opposite signs, respectively.

In the general case, that in which the 4D rotation matrix, say R, is not ex-
pressed in a reference frame is in general orientation, the factorization into the
commutative products of left- and right-isoclinic rotations (known as Cayley’s fac-
torization) can be expressed as [1]:

R = RLRR = RRRL (1.4)

where

RL = l0I+ l1A1 + l2A2 + l3A3 =






l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0




 (1.5)

and

RR = r0I+ r1B1 + r2B2 + r3B3 =






r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0




 (1.6)

where I stands for the 4× 4 identity matrix and

A1 =

(
0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

)

, A2 =

(
0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

)

, A3 =

(
0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

)

,

B1 =

(
0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

)

, B2 =

(
0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

)

, B3 =

(
0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

)

.

In other words, left- and right-isoclinic rotations are completely determined by the
vectors

l = (l0 l1 l2 l3) (1.7)
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and

r = (r0 r1 r2 r3), (1.8)

respectively. Since (1.5) and (1.6) are rotation matrices, their rows and columns
are unit vectors. As a consequence,

lT l = 1 (1.9)

and

rT r = 1. (1.10)

Therefore, {I,A1,A2,A3} and {I,B1,B2,B3} can be seen, respectively, as bases
for left- and right-isoclinic rotations.

Now, it can be verified that

A2
1 = A2

2 = A2
3 = A1A2A3 = −I, (1.11)

and

B2
1 = B2

2 = B2
3 = B1B2B3 = −I, (1.12)

where we can recognize the quaternion definition. Moreover, it can be verified that

AiBj = BjAi. (1.13)

which is actually a consequence of the commutativity of left- and right-isoclinic
rotations.

It can be concluded that RL
i andRR

i can be seen either as 4×4 rotation matrices
or, when expressed as in (1.5) and (1.6), as unit quaternions [17]. Therefore, a 4D
rotation can be represented by a double quaternion expressible in vector form as
(l, r).

While the passage from (l, r) to R is trivial, the way round is somewhat tricky.
Indeed, by observing (1.4), it is concluded that (l, r) and (−l,−r) lead to the same
4D rotation matrix. Since this is a 2-to-1 map, it cannot be smoothly inverted.

The computation of the double quaternion corresponding to a 4D rotation ma-
trix has important applications in robotics (for recent references, see [18], where
this is used to solve the hand-eye calibration problem, and [15], where it is used
to solve the pointcloud registration problem).

The first practical method to solve the 4D rotation matrix to double quaternion
conversion is usually attributed to Rosen [10]. Unfortunately, it does not include
any optimality criterion thus leading to some inconveniences when handling noisy
rotation matrices (see [11] for a broader view of existing approaches). In this paper,
we present a new method, based on two consecutive spectral decompositions.

This paper is organized as follows. We start in Section 2 with a description of
Rosen-Elfrinkhof method. Using this method, each element of the double quater-
nion can be interpreted as the result of a squared mean root. Then, in Section
3, we propose a new method based on spectral decompositions. A performance
comparison of the two described methods is presented in Section 4. We conclude in
Section 5 with a summary of the main contributions and points deserving further
attention.
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2. Rosen-Elfrinkhof method

The development of the first effective procedure for computing Cayley’s factoriza-
tion is attributed in [8] to van Elfrinkhof [16]. Since this work, written in Dutch,
remained unnoticed, other sources (see, for example, [5]) attribute to Rosen, a
close collaborator of Einstein, the first procedure to obtain it [10]. The methods
of Elfrinkhof and Rosen are equivalent. They are based on clever manipulation of
the 16 algebraic scalar equations resulting from solving the matrix equation given
in (1.4).

Let us first define the matrix of products as:

P = lrT =







l0r0 l0r1 l0r2 l0r3
l1r0 l1r1 l1r2 l1r3
l2r0 l2r1 l2r2 l2r3
l3r0 l3r1 l3r2 l3r3







, (2.1)

and the matrix

K =
1

4







r11+r22+r33+r44 −r41+r32−r23+r14
r41+r32−r23−r14 r11−r22−r33+r44
−r31+r42+r13−r24 r21+r12−r43−r34
r21−r12+r43−r34 r31+r42+r13+r24

−r31−r42+r13+r24 r21−r12−r43+r34
r21+r12+r43+r34 r31−r42+r13−r24
−r11+r22−r33+r44 r41+r32+r23+r14
−r41+r32+r23−r14 −r11−r22+r33+r44







. (2.2)

The merit of Elfrinkhof and Rosen was to realize that equation (1.4) can be
reformulated as:

lrT = P = K. (2.3)

From which it follows that the norm of row i (column j) of K is ‖li−1‖ (‖rj−1‖).
In other words, the absolute values of the l and r components can be obtained
by computing the norms of the rows and columns of K, respectively. To assign
a consistent set of signs to them, we can take any positive entry in K, say for
example the element (i, j). Then, according to (2.1), li−1 and rj−1 are both
positive or negative. If we assume that they are both positive, then we have that:

sign(ll−1) = sign(pl,i), l ∈ {1, 2, 3, 4}\i, (2.4)

and
sign(rm−1) = sign(pj,m), m ∈ {1, 2, 3, 4}\j. (2.5)

The other set of consistent signs is obtained by assuming that l̂k−1 and r̂l−1 are
both negative, thus accounting for the double covering of the space of rotations.

3. Spectral decomposition-based method

The spectral decomposition of 4D rotations was introduced in [9], where its prac-
tical consequence was not analyzed. This decomposition results from observing
that the set of matrices {I,A1,A2,A3} form an orthogonal basis in the sense
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of Hilbert-Schmidt for the real Hilbert space of 4 × 4 real orthonormal matrices
representing left-isoclinic rotations. Then, (1.5) can be seen as a spectral decom-
position. If we left-multiply it by each of the elements of the set {I,A1,A2,A3},
to obtain the different projection coefficients, we have that

l0I = −RL + l1A1 + l2A2 + l3A3, (3.1)

l1I = −A1R
L − l0A1 + l2A3 − l3A2, (3.2)

l2I = −A2R
L − l0A2 − l1A3 + l3A1, (3.3)

l3I = −A3R
L − l0A3 + l1A2 − l2A1. (3.4)

Then, by iterative substituting and rearranging terms in (3.1)-(3.4), we conclude
that the coefficients of the spectral decomposition (1.5) can be expressed as:

l0I = −
1

4

(
−RL +A1R

LA1 +A2R
LA2 +A3R

LA3

)
, (3.5)

l1I = −
1

4

(
RLA1 +A1R

L +A3R
LA2 −A2R

LA3

)
, (3.6)

l2I = −
1

4

(
RLA2 +A2R

L +A1R
LA3 −A3R

LA1

)
, (3.7)

l3I = −
1

4

(
RLA3 +A3R

L +A2R
LA1 −A1R

LA2

)
. (3.8)

Likewise, we can consider the set of matrices {I,B1,B2,B3} as an orthogonal
basis for right-isoclinic rotations. Then, the coefficients in (1.6) could also be
obtained as above.

Now, we can define the following matrix linear operators for arbitrary 4D rota-
tion matrices:

L0(R) = −
1

4
(−R+A1RA1 +A2RA2 +A3RA3) ,

L1(R) = −
1

4
(RA1 +A1R+A3RA2 −A2RA3) ,

L2(R) = −
1

4
(RA2 +A2R+A1RA3 −A3RA1) ,

L3(R) = −
1

4
(RA3 +A3R+A2RA1 −A1RA2) . (3.9)

According to (3.5)-(3.8), Li(R
L) = liI, i = 0, . . . , 3. Then, using the commuta-

tivity property of left- and right-isoclinic rotations, it is straightforward to prove
that

Li(R) = Li(R
LRR) = Li(R

L)Li(R
R) = liR

R. (3.10)

By expanding and simplifying the right-hand side of (3.5), and identifying the
result with the entries of RR in (1.6), we obtain the following expression:

l0r
T =

1

4

(
r11+r22+r33+r44 r12−r21−r34+r43

r13+r24−r31−r42 r14−r23+r32−r41
)

(3.11)
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Repeating the same procedure for (3.6)-(3.8), and compiling all the results in
a single matrix expression, we obtain expression (2.3). Thus, the fundamental
formula used in Rosen-Elfrinkhof method can now be seen as the result of a spectral
decomposition, not as the result of a felicitous brainwave.

Now, observe that the singular value decomposition (sometimes also called spec-
tral decomposition) of P = lrT can be expressed as

P = UΣVT =
(
l Cl

)

︸ ︷︷ ︸

U

diag
(
1 0 0 0

)

︸ ︷︷ ︸

Σ

(
r Cr

)T

︸ ︷︷ ︸

VT

(3.12)

where Cl and Cr are 4×3 matrices where their three columns are unit orthogonal
vectors spanning the orthogonal complement of l and r, respectively. These two
matrices are not unique, but fully determined by l and r. Their exact expressions
are actually irrelevant in our case.

In the case in which the rotation matrix is not noisy, clearly the spectrum of K
is the set {1, 0, 0, 0} because K = P. Nevertheless, if the rotation matrix is noisy,
this is not necessarily true. Therefore, in this latter case, the equality K = P does
not hold. Clearly, the spectral decomposition of K, when it is computed from a
noisy rotation matrix, can be expressed as:

(

l̂ Ĉl
)
diag

(
σ1 σ2 σ3 σ4

) (

r̂ Ĉr
)

(3.13)

where σ1 ≥ σ2 ≥ σ3 ≥ σ4, σ1 being close to 1 and σ2, σ3 and σ4, to 0.
By comparing the spectral decompositions (3.12) and (3.13), we observe that the

equality P = K can be satisfied if the spectrum of K is normalized to {1, 0, 0, 0}.

Observe how this operation cancels the effect of the orthogonal complements of l̂
and r̂ on the result.

Finally, we can summarize the new method in two simple steps: fist compute
K from the input rotation matrix, R, according to its definition in (2.2), and
then compute the singular value decomposition of K to obtain (3.13). The double

quaternion corresponding to R is then simply given by (̂l, r̂).

4. Performance analysis

The two described methods have been implemented in MATLABr, running on an
Intelr Core™i7 with 16 GB of RAM. All comparisons have been performed using
single-precision floating-point numbers according to IEEE Standard 754.

The next presented comparison is based on a statistical analysis. To this end,
we first need to generate random double quaternions. Since this is equivalent to
generate random points uniformly distributed in S

3, we can use the algorithm
described in [7] (this problem has also recently been treated in [4]). For each
generated double quaternion, we can generate a 4D rotation matrix using (1.4),
and then recover the original double quaternions using the described methods.
The committed error is evaluated as

ε =
∥
∥
∥l− l̂

∥
∥
∥+ ‖r− r̂‖ , (4.1)
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where (l, r) and (̂l, r̂) represent the original and the recovered double quaternion,
respectively. In general, this is not a good way to compute the distance between
two 4D rotations. Nevertheless, since in our case the error is assumed to be small,
the length of the vector connecting both orientations in S

3 is going to coincide
with the value of the angle formed by them as seen from the center of S3.

Table 1. Time and error performances for the computation of double quaternions from 4D
noiseless rotation matrices using the two explained methods. When adding an increasing level of
noise to the input rotation matrices, error figures evolve quite differently for both methods (see

Fig. 1).

Average Worst-case Average Standard
Method time error error deviation

(µs) ×10−7
×10−8

×10−8

Rosen-Elfrinkhof method 11.1 1.63 5.03 5.80
New method 10.5 6.12 14.72 16.19

The time and error performances of the two described methods for 105 random
4D rotations are compiled in Table 1. The second column gives the average time
required by each method. It is interesting to observe that, although the proposed
method requires the computation of a singular value decomposition, it is a bit
faster than Rosen-Elfrinkhof method, probably because it does not require the
computation of square roots. The other three columns give the worst-case errors,
the average errors, and the error standard deviations, respectively. Since the worst-
case errors are lower than 10−6 in both cases, both methods can be considered as
appropriate for most practical applications. It remains to be seen what happens
under the presence of noise.

Now, to evaluate the performance of both methods under the presence of noise,
we can perturb the randomly generated 4D rotations with uncorrelated uniformly
distributed noise in the internal [−σ, σ] and repeat the same procedure described
above. The plots obtained for values of σ ranging in the interval [0, 0.5] appear in
Fig. 1. From these plots, it can be concluded that, when the considered rotation
matrices are contaminated by numerical or experimental noise, Rosen-Elfrinkhof
method should be avoided. In these cases, the presented spectral decomposition-
based method performs much better.

5. Conclusion

Spectral theory is an inclusive term for theories extending the eigenvector and
eigenvalue theory of a single square matrix to a much broader theory of the struc-
ture of operators in a variety of mathematical spaces. We have applied two dif-
ferent spectral decompositions to come up with a method for the computation of
the double quaternion corresponding to a given, possibly noisy, rotation matrix.
This new method has been shown to be superior in terms of computational time,
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Figure 1. Maximum (top) and mean (bottom) error as a function of the level of noise δ added
to the elements of R.
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and less sensitive to noise with respect to Rosen-Elfrinkhof method, the standard
method of choice until the present.

All the performed operations in the derivation of the new method can be seen
as orthogonal projections onto the desired solution subspaces. Thus, the obtained
solution minimize an Euclidean distance. Based on this fact, we conjecture that
the proposed method is equivalent to obtain the nearest proper rotation matrix
(in Frobenius norm) to the input noisy rotation matrix (see [12] for different ap-
proaches to solve this problem in 3D, and [13] for the extension of these approaches
to 4D), and then to obtain the double quaternion corresponding to the resulting
matrix using Rosen-Elfrinkhof method. Preliminary experiments support this con-
jecture. From our point of view, this point deserves further inquiries.
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