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Abstract— This paper proposes a robust fault diagnosis method
for Autonomous Ground Vehicles (AGVs) modeled as a Linear
Parameter Varying (LPV) system with bounded uncertainties.
The proposed approach combines the zonotope-based Set-
Membership Approach (SMA) and Set Invariance Approach
(SIA). Firstly, an online fault detection strategy based on
zonotopic set-membership state estimation is introduced, where
the optimal observer gain is calculated offline by solving LMI
optimization problems. To characterize the Minimum Detectable
Fault (MDF) and Minimum Isolable Fault (MIF), the invariant
residual sets are first obtained for the system operated in healthy
and faulty modes. The proposed method relies on the propagation
of the zonotopic state estimation error in steady state based
on SIA. Then, MDF and MIF are characterized for several
types of faults by solving optimization problems subject to set
separation conditions. Finally, experiment validations using a
prototype vehicle are performed to illustrate the effectiveness
of the proposed approach.

Index Terms—Fault diagnosis, set invariance approach,
set-membership approach, LPV, minimum detectable fault,
minimum isolable fault, autonomous ground vehicles.

I. INTRODUCTION

UTONOMOUS Ground Vehicles (AGVs) have received

considerable attention and are widely studied because of
the significant advantages of reduction accidents, improving
traffic efficiency, energy consumption, etc. To improve driving
comfort and safety, in-vehicle Advanced Driver Assistance
Systems, as e.g., parking assist and collision avoidance, have
been developed a lot [1], [2]. To this end, AGVs are equipped
with various actuators, sensors and control units [3], and
become safety-critical systems. However, the actuators and
sensors of AGVs can experience faults over time, i.e., the
calibration drift of an IMU (Inertial Measurement Unit), the
mechanical wear and tear on the mechanical components of
the steering actuator, etc. Generally, faults of AGVs can be
caused by various physical phenomena, such as actuator faults
caused by freezing, loss of effectiveness or lock-in-place,
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and sensor faults resulting from bias or drift [4]. If these
actuator and/or sensor faults are not handled in time, they
may lead to catastrophic consequences. Therefore, detection
and identification of faults are quite essential in order to be
able to take corrective actions and ensure safety and reliability
of the vehicle [5].

Hereby, great efforts have been devoted to the research
on AGVs fault diagnosis. For instance, Rajamani et al. [6]
proposed a fault diagnostic system for automated vehicles
operating as a platoon. Luo et al. [7] developed an integrated
model-based and data-driven fault diagnosis method for auto-
motive antilock braking systems. Meskin and Khorasani [8]
explored the problem of Fault Detection and Isolation (FDI)
for a network of unmanned vehicles. Varrier et al. [9], [10]
investigated the FDI problem for vehicle lateral dynamics.
Arogeti et al. [11] developed an FDI framework using
global analytical redundancy relations and applied it to an
electrohydraulic vehicle steering system. Svérd et al. [12], [13]
concentrated on the residual generation for fault detection of
the engine. Pan et al. [14] detected the faults of both steering
and torque actuators of AGVs using a nonlinear observer-
based method. Existing fault diagnosis methods can be
classified into data-based methods and model-based methods.
These data-based fault diagnosis methods use hardware
redundancy, limit confirmation, frequency spectrum analysis,
among other to detect the occurred faults [15], which strongly
depend on the quality of the collected data [14]. Different
from the model-free methods, the model-based fault diagnosis
methods rely on a mathematical model to describe the system
behavior, which can be easily implemented onboard. In this
regard, model-based fault diagnosis methods have been widely
studied for AGVs [10], [13], [16], [17].

Among the tasks of fault diagnosis, Fault Detection and
Isolation (FDI) algorithms play an important role in safety-
critical systems due to their ability to detect and isolate
failing components efficiently and rapidly. Model-based fault
detection aims to check the consistency between the estimated
behaviors using the mathematical model and the observations
obtained from sensors by means of residuals. To achieve a
satisfactory fault detection performance, the designed observer
must be robust against unknown uncertainties (e.g., modeling
uncertainty, unknown noise and disturbances) [13], [18]. One
approach to model the uncertainties is based on the use
of probabilistic methods, as proposed in [19]. However,
this is not always possible unless the uncertainties are
well modelled by stationary random processes with known
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probabilistic distributions. An alternative way to achieve
robust fault detection is by using set-based approaches such
as Set-Membership Approach (SMA) and Set Invariance
Approach (SIA), in which the uncertainties are assumed to
be unknown but bounded by means of different type of
sets, e.g. intervals [3], polytopes [20], ellipsoids [21] and
zonotopes [22], [23]. SMA leads to detect the fault in both
transient and steady-state operation of the system since its
residual generation and evaluation are performed online [24].
On the other hand, SIA only works in steady-state since the
residual characterization is performed offline. As the residual
finally reaches an invariant set in each healthy or faulty
operation mode of the system, fault detection can be performed
as long as the healthy and faulty residual sets can be separated
[25], [26]. Inspired by the above features of SMA and SIA,
this paper aims to propose an FDI scheme combining an
SMA-based online fault detection and an SIA-based offline
fault characterisation of Minimum Detectable Fault (MDF) and
Minimum Isolable Fault (MIF).

Furthermore, regarding the recent studies about set-based
fault detection problems for AGVs, Ifgir et al. [3] developed
an interval observer-based fault detection scheme for actua-
tor/sensor fault of vehicle lateral dynamics. Reference [20]
developed a polytope-based SIA to compute the MDF of the
actuator/sensor fault of a practical vehicle. According to [24],
zonotopes provide a much more compact representation than
intervals, and more efficient computation compared with the
huge number of vertices of the equivalent polytopes due to the
simple matrix calculation. This motivates the proposed FDI
scheme to be implemented using zonotope sets. Moreover,
to the best of our knowledge, there is no literature on FDI
using zonotope-based SMA and SIA for autonomous ground
vehicles.

In order to conduct SIA-based FDI, it is vital to construct
healthy and faulty invariant residual sets. There are several
works on characterizing the residual invariant set with
the well-established concepts of minimal Robust Positively
Invariant (mRPI) sets [27], [28], [29] and Ultimate Bound
Invariant (UBI) sets [30], [31] for Linear Time-Invariant (LTT)
systems. However, as AGVs are complex systems and usually
modelled as LPV systems, the methods of computing invariant
sets for LPV systems are necessary. In [32] and [33], the
authors developed ellipsoidal Robust Positively Invariant (RPI)
sets by solving Linear Matrix Inequalities (LMIs) with a
predefined common quadratic Lyapunov function, which is
conservative to ensure the stability for all vertex systems of
the LPV system. To reduce the conservatism, [20] employed
a parameter-dependent Lyapunov function to guarantee the
stability of the observer, and used a sequence of convex-set
operations to compute mRPI sets.

Inspired by the aforementioned discussions, this paper
proposed a robust LPV fault diagnosis scheme using a
zonotope set-based approach for AGVs. First, a zonotope-
based SMA with the optimal observer is proposed for
the online fault detection, where the optimal observer
gain is computed offline by solving an LMI optimization
problem. Then, a zonotope-based SIA is employed to
characterise the Minimum Detectable Fault (MDF) and

Minimum Isolable Fault (MIF). Compared with the relevant
existing literature [20], [22], [24], [34], the main contributions
of this paper are:

« Different from the zonotopic observer proposed in [22],
which employed the explicit solution of [35] to compute
the optimal filter gain online, this paper generalises the
design of a zonotopic observer to the set-membership
case and calculates the optimal observer gain offline by
solving an LMI optimization problem that minimizes the
Frobenius norm. The offline solution facilitates real-time
computations, which makes it a compelling choice for
vehicle applications where computational resources are a
critical issue.

« This paper provides a SIA-based approach to characterise
MDF and MIF for the proposed SMA applied to vehicle
lateral dynamic systems by using zonotopic RPI sets,
which normally leads to a more precise MDF and MIF
magnitude, compared with interval RPI sets proposed
in [24].

« Different from the linear programming solution of the
optimization problem in [20], the MDF computation
problem in this paper is transformed into searching the
intersection point by solving several equations, which
provides a simpler solution. Moreover, this solution is
successfully extended to the computation of MIF, which
is not yet considered in the existing literature.

o The set separation theorem is extended to MIF computa-
tion for LPV systems. Note that the previous work [34]
is only for MDF computation of LTI systems.

The structure of the paper is organized as follows: The
problem formulation including a vehicle lateral dynamics
model is presented in Section II. An on-line zonotopic
set-membership based FDI is proposed in Section IIL.
In Section IV, the construction of healthy and faulty zonotopic
mRPI residual sets based on SIA and the computation of
Minimun Detectable Fault (MDF) and Minimum Isolable Fault
(MIF) through set separation are proposed. Experiment results
using an autonomous ground vehicle are given in Section V to
illustrate the effectiveness of the proposed approach. Finally,
the conclusions are drawn in Section VI.

Notation: Throughout this paper, R"” denotes the set of
n-dimensional real numbers and @ denotes the Minkowski
sum. The matrices are written using capital letter, e.g., A, the
calligraphic notation is used for denoting sets, e.g., X.

II. PROBLEM FORMULATION
A. Vehicle Lateral Dynamics Model

Vehicle lateral dynamics may be modeled using a two
degree of freedom model known as the “bicycle model” (see
Figure 1) that describes the lateral and yaw motions [36]. The
equations of this model are as follows

Lyr =1sFys — 1, Fy (1)

where m and I, are the mass and the yaw moment, v, is the
longitudinal velocity, 8 and ¥ are vehicle sideslip angle and
yaw rate, [ and [, are the distances from front and rear axle
to the center of gravity. Fys and Fy, are lateral tire force of

mux (B + V) = Fyr + Fy,,



Fig. 1. The 2-DOF bicycle vehicle model.

front and rear tires, which can be modeled by the so-called
Pacejka magic formula [37], with the assumption of small
sideslip angle variations

l Iy
FnyCf((Sf—,B_iw),FyrZCr(_ﬂ'i_EW) 2

where 6 7 is the steering angle, ¢ 7, ¢, are the cornering stiffness
of front and rear tires. Combining equations (1) and (2) and
choosing B and ¥, as state variables, the following state-space
model [38] can be derived:
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B. LPV Model

Since data from sensors is obtained in a discrete-time
manner, we will discretize the model (3) using Euler method
with a sampling period T and defining the scheduling variable
Or = [&, ﬁ]T. Then, the nonlinear vehicle model (3) can be
equivalentl§ transformed into the following discrete-time LPV
model subject to disturbances and measurement noises,

Xk+1 = A xi + B(Or)ux + Ewg (4a)
Yk = Cxi + Fuy (4b)
with
[ Br
Xk = Wk ’ U = kaa (Sa)
_I_TCf-i—Cr Tcrl,—szlf_T
Mmuy muvy
AGy) = , 5b
() TCrlr_Cflf _TCrlrz“'Cfl?f (5b)
L I, I vy
7
BO)=| 7| C=1 (50)
T J J
L Iz

where uy € R™, yp € R" and x; € R are the input, output
and state vectors, respectively. Furthermore, disturbances and

TABLE I
MODEL PARAMETER VALUE

Parameter ~ Value unit
Ly 1 m
Iy 1.44 m
m 1660 kg
cr 35468 N/rad
cr 40057 N/rad
I, 2454 kg.m?

non-modelled effects are added to the vehicle model through
additive state disturbance and measurement noise vectors
wi € R™ and v, € R™, with constant distribution matrices
E € R and F € R™ ™ _These uncertainties are assumed
to be unknown but bounded by a unit hypercube expressed as
the centered zonotopes, i.e., wy € W = (0, Inw) and v, €
V = (0, I,,), where I,, € R">*" and I, € R"*" denote
the identity matrices. A (0x) € R"™ > B (6;) € R"™*" and
C € R are the system matrices. These matrices depend
on the vector of time-varying parameters 6; € R". 6 varies
over a fixed polytope ® composed by its N = 2"¢ vertices,
ng represents the number of varying parameters. Considering
the vertices of this polytope, the following polytopic form for
the system matrices can be obtained: A(6;) = ZIN= 1 i (B A,
B = 3N, wi(6) B, where A; € R, B; e RM>Mu
for i = 1,..., N are known constant matrices. And u(-) is
known as the vertex membership function, which satisfies

N
D i) =1, i) =0, ¥o; €. ©6)
i=1

Then, the polytopic LPV form of (4) can be represented as
follows:

N
Xir1 = ) wi(0k) (Aixk + Biug) + Ewg (7)

i=1

All the related parameters for the considered vehicle are
listed in Table I.

III. SET-MEMBERSHIP BASED FDI

A. SMA for State Estimation

The monitoring of the AGVs is based on checking the
consistency between the measurements and the estimated
behaviours. This consistency check is based on the dynamic
LPV model (4) using set-membership state estimation
approach based on the prediction and correction steps through
the following procedure [39]:

1) Prediction Step: Compute the uncertain state set X at

time instant k;

2) Measurement Step: Compute the measurement consis-

tent state set X, with the measured output yj;

3) Correction Step: Compute an outer approximation Xy of

the intersection between X and Xy,.

Based on the previous research [40], [41], the zonotopic
SMA has been shown to be equivalent to a Current Zonotopic
Observer. In this context, the SMA can be regarded as an



observer with the following structure:

N

R = D wiO)(Aify + B + N (e — $1) - (8a)
i=1

Yk = Cxk (8b)

where ¥ € R"™ and y € R" represent the estimated state and
output vectors, respectively. \; € R™*"y is the observer gain.
Then, the following theorem is a practical implementation of
the state estimation of LPV systems using the SMA.

Theorem 1 (LMI-Based SMA): The zonotopic estimated
state is denoted by the bounding zonotope é?k = (cx,k, Rx,k) €
R™, where ¢y € R™ and Ry € R"™*"Rek represent the
center and shape matrix. Assume that the initial state Xg
belongs to the set AA,’() = <cx,0, Rx,o), the estimated state can
be propagated as follows:

N
Cx b =Cxk + Zm (Ok—D i (k — Cexz) (%a)
i=1
N
Ry = ZM O-D) [ = NC)Rrx  — N F] (%9b)
i=1
with
N
Cx k= Zlh’ (Ok-1)(Aicx k-1 + Biug—1) (10a)
i=1
N
Rep = [Z i O 1) Ai Ry g1 E} (10b)
i=1

where the uncertain state is ?k = (Ex,k,ﬁx,k), the optimal
parameter \; is obtained by solving the following LMI
optimization problem offline with the aim of minimizing the
Frobenius radius of the zonotope shape matrix Ry i

min y (11D
subject to :
[ v, I,
A T ] >0 (12)
B -7 TA; —W;,C TYTE W;
ATr —cTw,T -7 0 0
i <0
ETY 0 —1I 0 ’
i w;T 0 0 —RrR!

(13)
wherei=1,---,N. R=RT > 0 is the covariance matrices
of noise.

If there exist positive scalars y, Y = Y and
Wi,i = 1,---, N, the optimal parameter )\; per each vertex

of the polytopic model can be obtained by solving the previous
optimization problem:

No=T"lw; (14)
Proof: A detailed proof is available in our previous
work [42]. O

Remark 1: It is worth noting that the proposed method to
calculate the optimal observer gain is different from a similar
work [22] for Takagi-Sugeno systems, where the optimal
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Fig. 2. Graphical interpretation of actuator and sensor faults.

observer gain is obtained by minimizing F-radius of the state
bounding zonotope (cx,k, Rx,k) and given by an online explicit
solution. By minimizing the same radius, this paper aims
to compute the parameter-dependent optimal observer gain
through offline solving an LMI-based optimization problem.
Furthermore, the proposed offline LMI-based solution can
guarantee the state bounding zonotope has non-increasing size
in time.

B. SMA-Based FDI

As stated before, the FDI test consists of checking the
consistency between the estimated and observed behaviors,
where the consistency can be assessed by means of residuals
given by

15)

Then, using Theorem 1, the zonotopic residual can be
computed as

"k =Yk — Yk = Yk — Cxg

Crk =Yk — Cex i

Rr,k = _CRx,k (16)

where ¢, € R" and R, € R" ™"k represent the center and
the generator matrix of the residual zonotope. Hence, faults
can be detected by checking the satisfaction of

0¢ (Cr,ka Rr,k)- )

IV. CHARACTERIZATION OF MDF AND MIF

SIA approach is based on propagating the state estimation
error Xx, denoted by Xy = x; — X and projecting X to the
residual space, where the residual will ultimately converge to
an invariant set. Thus, the healthy and faulty invariant residual
set can be obtained by operating SIA in each healthy or faulty
operation mode of the system. Then, the MDF and MIF can
be characterized by set separation.

Remark 2: In the faulty operation mode, several types of
faults are considered according to their location as depicted
in Fig.2. These include actuator faults which affect the system
inputs, and sensor faults that affect the measurements of
system inputs and outputs.

A. Invariant Residual Set Generation

Combining (4), (7) and (8), the dynamics of state estimation
error can be defined as:

N
Bt = D i) (A — NO)i — N Fug) + Ewg - (18)

i=1



The corresponding residual is generated as:

re =Yk — Y& = CXg + Fui 19)

Here, we introduce some invariant set concepts [43] for
further analysis.

Definition 1: A set X is an RPI set of the dynamics (18),
if VO, € ©, wy € W and vy € V, for any X € )? one has
ik-i—l S .XN‘

Definition 2: The mRPI set of (18) is defined as a RPI set
contained in any closed RPI set and the mRPI set is unique
and compact.

1) Healthy Zonotopic mRPI Set: The healthy RPI set is
propagated using zonotopes when the system (4) is operated
in healthy mode. Then, the healthy mRPI set can be obtained
in the steady state by the following theorem.

Theorem 2: Consider the state estimation error dynamics
in (18), the zonotopic RPI set of the state estimation error
X = (c);k, R,;k> € R"™ can be propagated as

N
Cip = D i (Ok) (Ai = NiC) e,
i=1

N
Ry = D i 00 [(Ai —XNC)Ry, E —XF]. (20)
i=1
Then, in the steady state, when k — 0o, the zonotopic mRPI
~ ~ o0 .
set Xoo can be written as Xoo = @ A" (W), where A(-) is the
i=0

N
set mapping defined as A(W) = Conv { |J (4; — \iC) W],
i=1
W = (0,E) & A(F) represents the ulncertainties, where
N
M F) = Cony [ U A (0, —F)}.
i=1
Proof:  Suppose that Xp is an initial zonotopic RPI
set for (20), then based on [20], the sequence X} can be
propagated as follows:

k
X1 = Ay @ W = AXp @ DA~ (W)
i=1
It is also known that X} describes a monotonic sequence of
RPI set in terms of set inclusions, such as,

Xoo C Xiy1 S X C Xo.
Furthermore, considering . lim .Ak(fo) = 0, the zonotopic
—+00
mRPI set of (20) is given by
~ . ~ o0 .
Xoo = lim X = @ A(W)
i=0

k——+00
(]
Therefore, the zonotopic invariant mRPI residual set in
healthy situation is given by projecting the state estimation

error into the residual space using (19)
R =(Re,R)=CXo ® FV (21)

where R., R, are the center and shape matrix of healthy
invariant residual zonotopes R.

Remark 3: Because of the infinite iterations required to
obtain the mRPI set in Theorem 2, a (finite recursive
procedure based on an outer-approximation method with given
precision [20] is considered to generate the mRPI set.

2) Faulty Zonotopic mRPI Set: In faulty operation mode of
the system, the case of actuator and sensor faults is considered.
Including their effect, the dynamic model (4) can be rewritten
as follows:

Xkr1 = A xk + BO) (ur + Gy fo) + Ewy
Ve =Cxp + Fo + Gy fy

(22a)
(22b)

where scalars f, and f, denote the actuator and output
sensor faults with their associated known constant matrices
G, € R™>*™ and G, € R", respectively. Furthermore, input
sensor fault is also considered with its effect on the input of
the observer (8) as:

N
Rert = D i 00 (Aifk + Bi(u + Gufu) + i (i — 1))
i=1
(23)

where the scalar f, represents input sensor fault with its
associated known constant matrix G, € R™«>"u,

Then, the dynamics of state estimation error in faulty
scenario with the considered actuator, input and output sensor
faults is modeled as follows:

N
=" 1 00 (A = MO F = NiFu) + Gf + Ewg

i=1

(24)
where
N
G=> wi@)[BiGs —ANG, —BiG.]. (25)
i=l1
=t n rl- (25b)

Remark 4: It is worth mentioning that when MDF/MIF
analysis is performed, only one fault is considered at the same
time in the system (24), e.g., in the case of an actuator fault,
G =3\, 1i(O)BiGy and f = fa.

Theorem 3: The zonotopic RPI set of the faulty state
estimation error (24), denoted by )E'kfd = <Cif,d, Rj_f,d> e R,
can be decomposed into disturbance and fcfult eﬁﬁects based
on the superposition principle:

d
T = (e Re) @ (s Ryy) (26)
with
N
¢y = ; Hi (0) (Ai = \iC) ey + Gf, (27a)
N
Ry = ; i (00) (Ai = \iC) Ry, (27b)

where ¢y and Ry represent the zonotope state estimation
k+1 k+1 .
error center and generator matrix due to the fault effects.



Therefore, when k — 00, the zonotopic faulty mRPI set x/d
oo

is obtained as follows:,

XL = X o XL (28)

where é\?ojz = % A(G) denotes the mRPI set of the

dynamics (27) in ;ﬁe case of f = 1.
Proof: The proof follows the same lines as

Theorem 2. (]

In case of actuator/input sensor fault, the zonotopic invariant
mRPI residual set is obtained using the projection of
equation (19) as follows: R/ = CdeEBFV REBfCX
Besides, it is worth noting that the residual dynamics under
the case of output sensor fault is as follows:

k= Yk — Yk = Cix + Fur + Gy fy 29)

Hence, the zonotopic mRPI residual set in case of output
sensor fault is R = R & ny&f; ® {Gyfy} =
R f,(CXL & {G,)).

As under these two scenarios, the faulty mRPI residual
set can be represented by the combination of the healthy
invariant residual set R and the fault-caused invariant residual
set. In the rest of the paper, the general notation R/¢ =
<Rcf ’d, R,f ’d> =R®R is adopted, where RS represents the
invariant zonotopic set caused by faults. Therefore, it refers to
f C?Eo]; in case of actuator/input sensor fault and fy(CX~OfQ ®
{Gy}) in case of output sensor fault. For simplification of the

following computation, it is denoted by R/ = f <Rcf , er >,
where R, R are the center and shape matrix of corresponding
residual zonotopes.

B. Detectability and Isolability Conditions

As known, in the faulty scenario the residual r; will
ultimately converge to the faulty mRPI residual set R/*¢. Thus,
the detectability condition yields to check if the intersection
between the faulty and healty residual set is empty, i.e.,
RNRS =g

Following the detectability condition, the isolability condi-
tion needs to guarantee the isolation of a fault f}, from another
fault f,. Similarly, the condition is based on checking whether
the intersection between the faulty residual set R/»-¢ of fp
and the other faulty residual set R/¢¢ of fq 1s empty, ie.,
RIpdNRId =@,

C. Computation of MDF and MIF

As known, the magnitudes of MDF and MIF are important
criteria to assess the performance of fault detection. This
subsection proposes two set-separation theorems to obtain
the magnitude of MDF and MIF theoretically, instead of
performing a lot of simulation tests, as used in conventional
methods.

In order to compute the magnitude of MDF, we reformulate
the constraint R N R4 = @ to an optimization problem [20]
of the form:

min f st RNRM =9 (30)

>0

Fig. 3. Intersection point of problem (32) for the case of ny = 2,m = 4,
the orange, yellow and green polygons represent the centred zonotope Z,
whose size changes along with the majgmtude of f. The blue arrow denotes

the vector f Rg in the direction of R ;. The intersection points between the
zonotope and the vector are marked by the red x.

For simplicity, only the situation f > 0 is considered, since
f < 0 can be handled equivalently by

min—f st RNARS=y.

31
min G31)

Recalling that R = (R, R,), R'? = (R. + fRL, R},
based on Lemma 2 in the Appendix, the intersection (30) is
empty if and only if

) ® < fRL, Rf">
0¢0.R)e{-rr/ (0. rrl )@ 0. R)
& fRL ¢ 0.R)® 0. R) @ (0, FRY)

& FRL ¢ 0, H)® f(0, H)

& rRL ¢ (0. Ay)

where H = 2R, € Roy>xm [ — er € Rmyxm I:If =
[H fH] € R i = m + m. Hereby, the optimization
problem is equal to

minf st fRE ¢ (0. )

R.—R: ¢ (0, R,

(32)

Solving the above optimization problem is equivalently
transformed into searching the intersection pomt between the
vector f Rf and the zonotope Z = <() H r
Fig. 3. As f increases, there exist several intersection points
(the red x mark in Fig. 3), which correspond to different
f magnitudes (e.g., f*, f*, f D). Among them, the minimum
intersection point f* is the desired MDF. In order to compute
the intersection point, the zonotope Z has to be transformed
into the half-space representation using the following lemma.

Lemma 1: Based on the Lemma 3 given in Appendix, let
Z = (g, Hy) C R" be the the Minkowski sum of two centered
zonotopes Z1 = (g1, H1) C R", Zy = t{gy, Hy) C R", where

> as shown in



g =g +1tg H =1[H tH)] = ii],...,/:tmil e R>m,

Hy = [h1,....hw| € R, Hy = [hpy41,....hn] €
R™ ™2 m = m) 4+ my and t is a scalar. Then, the halfspace
representation H(Z) = {x e R" | Ax < B} of Z can be

written as
AT Bt
5] ]
where
nX (H -7
Af = ( ) , H=[H H],
||nX( """ n))}z
Bf =B +B5.. B, =B, +B,,

B = Afg1 + ABi,, B, = tAf g + 11| ABay,

By, = —Afgi + ABi, By, = —tAfg + |t| ABay,
nmi m
ABis =D ABy = D |Afhjl. (34
Jj=1 j=mi+1

with the same symbol notations as that of Lemma 3 in
Appendix.
Proof:

Assumlng that

Based on Lemma 3 in Appendix, A =

L Bf = Afg+ABy = Afg + 301, )A?ﬁj‘-

hi,thy, ..., t hyl
N———— —
ni np

= [hy, ...,
———

is composed by n; generators from Z; and ny generators from
Z>, where n1+ny = n—1. Then, the cross product of HTW """ m

can be given as nX (Hl<y """ ") = fmpX (H(V""’m) with
det(H "y = m2ger(HY-Mlily  As a consequence,
AF = tnan(HW,»-w))T nX(H n))T

2 [nX(H VW) [y T X (H D[]
Besides, it is easy to decompose the element B as two

parts: B = Afg + Z ’A*‘h ) and B+ Aftgr +
Zj mH_l)Ah ,Whereh = {t'hj,ml—i—lfjfm'

Therefore, B;" can be organized into (34), B, can be obtained
similarly. (]

Theorem 4: (MDF) The optimal solution f* for the MDF
optimization problem is obtained by searching

f* =min{f")

subject to

i
fszdf:/(‘Aj I —dy), 15ss(ny_1),

- T
nX (HO/ ..... n))
H

Af = . =[H H]eRw*™,
o 7-)
2
m
= > |k s = )Aﬂz D)
=1 —m+
Proof: Based on Lemma 1, we can obtain
the half-space representation of <0, H f>, that is

H(<0, Hf>) =[x e R" | Ax < d} with

c[5] el  w
where
T

Af = nX( m) . H=[H H],

" ()],
dt =df +1fldf, d =d,
di = Adls, dy = Adoy,

Adyy = ‘A+h ’ Adys =

Jj= j=m+1

Since H((0, H r)) is central symmetric, we only need
to consider the intersection point in m 4+ m half-
space zonotope H*((0, Hy)) {r € Rv | Afr <dt}.
For each hyperplane {r € R | Afr =df =d/ +1f%1d; }.
considering that the point f* Rf is in the hypet}ﬂane
{reRY | Afr =4 + |fS|d+} it follows A f*R!
dlt, + |fs|d2+S. Addltlonally, in the case of f* > 0, it can
be obtained that f° = dlt / (‘AjRJ ‘ — dzt,). Therefore, the
optimal f* could be obtained by choosing the minimum value
among the set {f*},1 <s < nm—l . O

Furthermore, in order to obtainythe isolability of two faults,
this paper proposes the following theorem to compute the MIF
by extending Theorem 4. A graphical explanation is given for
the following MIF theorem.

Theorem 5 (MIF): The MIF of a fault f, from another fault
fq can be determined by solving the following optimization
problem

min f, st RPINRI? =g (37)

Considering a similar transformation procedure as (32), this
optimization problem is equal to

min f, st fRY—fRE ¢ (0. Ay} G8)

where Hy, = [H| fyH, f;H3] € R H = 2R, €
R")’Xml, HZ_ — Rcfp c Rn}~><m27H3 — Rcfﬁ c Rnyxm3,
fp € [fpv fp]

The optimal solution for the optimization problem (38) is
given by

fp = min{f;}, fp =max{f;},

U = U RE = RE € (0. iy ). f3 € Fp) (39)
where, Hyi = [H1 fjH: oM} i = 1,....2, Fp =
{f;l} U {flﬁz} = {fl,...,flf’"} denotes the collection of
the fault magnitudes satisfying the points f;lRCf" — quZ",
I pr—fq R‘qu are in the following hyperplane:

b fldd + AF £, R (40a)
I fyldE + AT £, R, (40b)

A‘A+Rfl7_d+_’_|f
f +
FLATRI = dit 41131



Fig. 4. Intersection point of problem (38) for the case of determining
a minimum fault f, that can be isolated from a known fault f;, with
ny = 2,m = 4. The yellow, green, grey and blue polygons represent

the centred zonotope Z = <0, H foq ) whose size changes along with the

magnitude of f,. The light pink arrow denotes the vector f,,RfP and

f4R2? in the direction of 75{[' and 7’(’){'] , respectively. The vector difference

fp Rg L fq qu is represented by the yellow, green, grey and blue arrows.

The intersection points between the zonotope and the vector difference are
marked by the red x, which consist of the fault magnitude set F) in green
dashed line.

where

Al =

s

s 0

I:I=[H1 H; H3]€Rny><”~1, 1§S§(nm ),
y

-1
mi mi+my
+ _ +7 . + _ +7 .
dls - Z “AS hJ ’ d2s - Z ‘AS h] ’
j=1 j=mi+1
m
+ _ +7 .
dh= > |Arhy|.
Jj=mi+mo+1

Proof: The proof follows a similar procedure than
the one used in Theorem 4. Considering the intersection
point in each halfspace zonotope, i.e., H™ ({0, I:pr,q)) =
{r € R |Afr <d*} and H((0,Hy,) = {r €
R | A™r §d_}, we can obtain the corresponding fault
magnitude set F, = {f}, fp, fr} as shown in Fig. 4.
While there are only two magnitude-corresponding points
f;RCfp —fy R{" exactly contained in the zonotope <0, H fial
which are the optimal solution.

It is worth noting that the minimum magnitude of the fault
that represents a fault is detectable when W[l;n ¢ [—f* f*]
and isolable if fWI”.n ¢ [fp, f_p] according to Theorem 4 and
Theorem 5, respectively. Therefore, it can be written that in
the case of satisfaction of both conditions in (30) and (37), i.e.,
fp & [=F*, f*1U[fp, fp), the fault £, can be both detected
and isolated. o

Fig. 5. Test track.
0.1 20
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(d) Steering angle d.

Fig. 6. Figure of measurements.

V. ILLUSTRATIVE RESULTS AND DISCUSSIONS

In this section, the SMA-based fault detection scheme
designed in Section III and the SIA-based characterization
method proposed in Section IV are applied to the fault
detection problem of vehicle lateral dynamic system described
in Section II. The real data used in the validation process are
acquired using a prototype vehicle. The run was performed
on a test track (Fig.5) located in the city of Versailles-
Satory (France). The track is 3.5 km length with various curve
profiles allowing vehicle dynamics excitation. Several sensors
are installed in the vehicle. The yaw rate ¢ is measured
using an Inertial Measurement Unit (IMU). An odometer
is used to provide the vehicle’s longitudinal speed. The
sideslip angle B is obtained using a Correvit sensor and
the steering angle 6y is measured by an absolute optical
encoder. All the available measurements are depicted in Fig.6.
The uncertainties considered in this paper are random noise
bounded in zonotopes: w € W = (0,5) and v € V =

(0, I), with the distribution matrices E = O'%OZ 0%1] and
0.001 0
F= 0 0.03[

To perform the diagnosis scheme, an optimal observer is
obtained by solving LMIs in Theorem 1. The obtained gains
are given as follows:

\ [ 07764 0.0020 [ 07913 —0.0040
'=1-0.5485 02088 |° “27|—-0.6893 0.3038 |’
. _ [ 04870 0.0039 \, — [ 06286 0.0060
371 -0.1798  0.1884 [ 4T | —0.2292  0.2142 |
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Fig. 7. Comparison of state estimation performance with the proposed SMA
using offline observer gain and the zonotopic observer in [22] using online
observer gain.
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Fig. 8. Computation time required by each method.

To validate the estimation performance, a test scenario is
performed when the system is working in its healthy mode.
The state estimation is implemented using the proposed SMA,
where the optimal observer gain is calculated offline by
solving an LMI optimization problem, and the zonotopic
observer proposed in [22], where the optimal observer gain is
obtained online by an explicit solution. Fig. 7 shows the SMA
provides satisfactory estimation results, and the equivalence
between these two methods. Moreover, Fig. 8 reveals that the
proposed offline SMA offers a more attractive solution from
an implementation time-consumption point of view, in which
experiments were conducted using an Intel Core i7 with a
processor running at 2.8 GHz in MATLAB R2019b running
under Windows 10. In contrast, the methodology employed
by [22] involves online computation of observer gain, which
is time-consuming. This distinction underscores the efficiency
and practicality of our approach, especially in the context of
vehicle applications.

A. Validation of Fault Detection

To illustrate the effectiveness of the SMA-based fault
detection method, the following fault signals are considered for
the steering actuator and yaw rate sensor, with their introduced

matrices G, = 0.5, Gy = i| To validate actuator fault

1.3

Actuator fault
Threshold

Actuator fault
Threshold

0 500 1000 1500 2000 ) 500 1000 1500 2000

500 1000 1500 2000 ) 500 1000 1500 2000
Time step Time step

(a) SMA-based FD for fg1. (b) SMA-based FD for fq2.

Sensor fault
Threshold

o 500 1000 1500 2000 ) 500 1000 1500 2000

~o 500 1000 1500 2000 ) 500 1000 1500 2000
Time step Time step

(c) SMA-based FD for fy,, . (d) SMA-based FD for fy, .

Fig. 9. Fault detection results.

detection capability, two different faults are considered: A step
fault f,; and a time-varying fault f,, are described as:

0 k<800
k) = =
fa® =104 500 < k
1.5 — 0.5sin(0.0027k) 600 < k < 1000
far k) = 1 0.75in(0.0027k — 27) 1400 < k < 1800

0 elsewhere

For sensor fault detection test scenario, the following two
typical faults are considered, e.g., a step fault f,, and a time-
varying fault f,, are given as:

0 k<500
k) = =
F5a ) 0.7 500 <k
2 —0.6c0s(0.0027k) 1000 < k < 1600
fy[, (k) =

0 elsewhere

Therefore, based on the SMA state estimation, FDI is
performed by checking if the residuals are out of the threshold.
The detection results are depicted in Fig.9, where the red solid
line represents the upper and lower bound of the residual, and
the black dotted line is the threshold. As we can see from
the figure, both the actuator and sensor faults with different
signals are detected immediately until they disappear and this
is consistent with the theoretical analysis showing a good real-
time detection performance.

B. MDF Analysis

As stated before, the characterization of MDF lies in the
invariant set separation between healthy and faulty cases.
In the following, the invariant sets are obtained based on SIA
in different scenarios.
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Fig. 10. Healthy mRPI set generation.
TABLE II
MAGNITUDE OF MDF
fa fu f?ll f112
MDF  40.2924  40.0975 £0.3849  £0.7208

1) Healthy Operation of the System: Given the polytopic
LPV vehicle system (7), the considered states are the sideslip
angle B and yaw rate ¥. Denoting the difference between the
estimated and measured values by X and x,, the zonotopic
RPI set of the state estimation error can be propagated at each
time step using Theorem 2, depicted in Fig. 10. It can be
seen that the zonotopic RPI set ultimately converges to the
zonotopic mRPI set X4 (in blue). Then, the healthy invariant
residual set R is obtained as shown in Fig. 11 by means
of (21).

2) Faulty Operation of the System: In order to analyze
the effect of different types of faults on the system and
compute the magnitude of MDF during steady-state operation
of the system, the faulty vehicle system (22) is given subject
to actuator and sensor faults, i.e., actuator fault f,, input
sensor fault f,, sideslip angle sensor fault fy, and yaw rate
sensor fault f,,, introduced through the following matrices:
G, = 05,G, = 15, Gy, = |:O(’)4] and Gy, = [193},
respectively.

In the following, by defining unit step actuator/sensor fault
signals, the zonotopic RPI set of the state estimation error
can be propagated as (26) and ultimately convergent to the
zonotopic faulty mRPI set when the observer is becoming
steady as k — oo. Then, the MDF can be characterised using
Theorem 4. Following Section I'V-C, the set separation results
between the healthy and faulty mRPI residual sets with respect
to the MDF of f4, fu, fy,» and fy, are shown in Fig. 11. The
corresponding magnitudes of MDF are listed in Table II.

Consider the actuator fault as an example, with a greater
magnitude than the MDF, given as:

0 k <800

falky = { 045 800 < k,

We can see that the healthy mRPI set and the faulty mRPI
set are perfectly separated (see Fig. 12(b)), which indicates
that this actuator fault is well detected. Furthermore, in terms

-0.03 -0.02 -0.01 0 0.1
r(1)

(a) MDF of f,.

I
[

0 002 004 006 0.08 -0.02 0 0.02 0.04
(1) r(1)

(c) MDF of fy,. (d) MDF of fy,.

Fig. 11.
sets.

Set-separation results between healthy and faulty invariant residual

Actuator fault
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0 500 1000 1500 2000

0 500 1000 1500 2000 0.04 -003 -002 -001 0 001
Time step (1)

(a) SMA-based FD for f,. (b) SIA-based FD for f,.

Fig. 12. FD results in case of occurrence of the actuator fault f.

0.01 0.02

0.03 -0.02 -0.01 0
r(1)

Fig. 13. SIA-based FD for f, using intervals, the dashed line represents the
interval mRPI set.

of SMA-based FDI, it is conducted for the actuator fault in
both transient and steady states as shown in Fig. 12(a). It can
be observed that SMA-based FDI could provide an earlier
detection result, as it is obtained in the transient state. While
SIA-based FDI provides the MDF/MIF results only when the
system reaches the steady state. For this reason, this paper
employs the SMA to perform the on-line fault diagnosis,
and SIA to characterize the MDF and MIF. Moreover, using
zonotopes to describe mRPI set can lead to a more compact
set than using intervels [24], thus providing a more precise
MDF magnitude, as described in Fig. 13. In the case of the
same magnitude of fault, the zonotope sets are well separated,
while the interval sets overlap. It can be concluded that using
intervals normally leads to a larger MDF magnitude.
Furthermore, in order to validate the effectiveness of the
MDF for other types of faults, a time-varying actuator fault and
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Fig. 14. Description of actuator and input sensor faults with their fault
detection results.
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Fig. 15. Description of output sensor faults with their fault detection results.

drift sensor faults with slightly greater magnitudes than MDF
are injected into actuator and sensor, respectively, described
as Fig.14(a),14(b) and Fig.15(a),15(b). Notably, as drift faults
are quite common on IMU, the comparisons (see Fig.15) are
performed on drift faults with different slops. As observed
from the detection results, depicted in Fig. 14(c),14(d) and
Fig.15(c),15(d), the detection for abrupt fault is immediate,
while for drift fault, a time delay appears and is related to
the slope of the injected drift. In general, for any actuator or
sensor fault, as long as their magnitudes are larger than the
corresponding MDF, the detection can be guaranteed with the
proposed SMA-based FDI method.

C. MIF Analysis

The above magnitude obtained using Theorem 4 is only
related to detectability analysis while it is not valid in the
case of isolability analysis, see Fig. 16(a). When the faults

TABLE III
MAGNITUDE OF MIF

fa fu fy1 fyz

T — # # [0.0059, 0.4730]
T # — [0.0057,0.1708] #
I # [0.0052, 0.6468] — #
fL 10.0182,1.1505] # # —

0.2

(2)

O || I Healthy <01
A
[ —rA o || I/
0211/, [
[ I Healthy
= -0.1
-0.05 0 0.05 -0.06
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(a) Faults with slightly bigger mag- (b) Set-separation for the occurance
nitudes than MDF. of fo and fy,.
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(c) Set-separation for the occurance (d) Set-separation for all type of
of fu and fy,. faults.

Fig. 16. Set-separation results between different faults.

are slightly greater than the corresponding MDF magnitudes,
an overlap between the different faults is observed. Therefore,
for the fault isolation purpose, the isolability condition of
Theorem 5 must be satisfied.

Mainly, the implementation of MIF is done based on
the MDF magnitudes reported in Table II as all faults are
slightly bigger than the corresponding MDF magnitudes, i.e.,
Ja = 0299, f, = 0.099, fy, = 040 and f,, = 0.73.
In this regard, the corresponding MIF magnitudes are reported
on Table III, where the symbol — in the table means that
there are no corresponding cases in the considered study; the
symbol # means that the faults are always isolable if they
are larger than the MDF magnitude because these faults are
in different directions. As is shown in Fig. 16(a), f, and
fy, can always be separated from f, and f), when they are
larger than their corresponding MDF magnitudes. Moreover,
with the magnitudes in Table III, the overlap between f,
and fy,, f, and f,, can be perfectly avoided, as shown
in Fig. 16(b) and 16(c), which proves the effectiveness of
Theorem 5.

Besides, further analysis is done in the case of all types
of possible faults occurring with slightly bigger magnitudes
fa = 0.4750, f, = 0.099, fy, = 0.65 and fy, = 0.73 than
the maximum MIF obtained in Table III. Fig. 16(d) presents
the case of occurrence of the fault with the maximum value
obtained in Table III, all type of faults are perfectly separated.
This case corresponds to faults with magnitudes that are
properly detectable and isolable.

VI. CONCLUSION

This paper has proposed a robust fault diagnosis algorithm
using set-based approaches for LPV systems with application



to autonomous ground vehicles. First, a zonotope-based SMA
with the optimal observer has been proposed for online fault
detection, where the optimal observer gain is computed offline
by solving an LMI optimization problem. This offline solution
has been validated to be more time-saving facilitating the
real-time implementation in a vehicle. Then, in order to
characterise fault detectability and isolability, a zonotope-
based SIA has been developed to obtain MDF and MIF
by solving optimization problems subject to set separation
conditions. In particular, this paper provides a simpler solution
for the optimization problems by searching the intersection
point. Furthermore, since a zonotopic description is employed,
the magnitude of MDF/MIF is more precise than that of
previous work. Finally, an application to autonomous ground
vehicles is used in the case study to demonstrate the theoretical
and practical interests of the proposed FDI scheme. In future
work, authors plan to extend the proposed method for fault
estimation and fault tolerant control problems with ground
vehicle application.

APPENDIX
Lemma 2: Let Z = (a; +b;, H;) and Y = (ay + by, Hy).
Then, ZNY = @ if and only if ay—a; ¢ (b, HZ)EB(—by, Hy).
Lemma 3: The half-space representation [44] H(Z) =
{x e R" | Ax < B} of a zonotope Z = (g, H) C R" with

H =[hy,..., hy] e R js
At B+
(4] el
where
nX (Ho/,..,,n))T
A+ fd ) B+ = A+ + AB )
T X (e T AT
m
By = —Afg+AB;, AB; = |Afhj|.
j=1
where A, Bf and B; denote the s-th row of AT, B* and
B~, respectively; the index s varies from 1 to " T | and

the indices y,...,n are the m — (n — 1) indices of the
generators that are taken out of H; HY-" ¢ R¥*@=D
denotes matrix H where the columns indexed by y,...,n
are removed. The cross product operator can be defined as
nX (H) = [..., (=D detr(H), ...], and H' is defined
as the matrix H in which the i-th row is removed.

Lemma 4: A hyperplane S = {x:ch:q} is a
supporting hyperplane of a zonotope X = (p, H) if either
Ix < q,Vx € X or else cI'x > q,Yx € X with
equality occurring for some x € X. The two constants q
and q characterizing the supporting hyperplanes are easily
calculated as

e ],
2= o]

where || - ||1 is the I-norm of a vector.
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