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Abstract— Many research works currently focus on algo-
rithms designed to generate explanations and then evaluate
their effect on user trust and understanding of robots. Even
though some projects attempt to design understandable inter-
faces, they usually serve as extra features for solutions that
already exist. In this paper, we suggest a user-centric approach
to design explainable robot systems from the very beginning.
In particular, we provide a participatory design approach that
places emphasis on the cooperative design of an understandable
and intuitive interface between the user and the robot system.
We suggest turning the attention to the robot’s functionality
and autonomous behaviours development after this interface
has been established. We exemplify how to apply the proposed
framework in a geriatric unit at an intermediate care centre.

I. INTRODUCTION

Explainability is often seen as a mechanism to make
systems more understandable for humans [15], [25]. Many
explainability works identify the need to focus more on the
users to achieve understandable systems [7], [15], but few ad-
dress this challenge [3]. Frameworks suggesting that under-
standable systems should grant an intuitive user experience
(UX) have been proposed for general Artificial Intelligence
(AI) systems [13], but the UX understandability perspective
has not been studied in depth in the Human-Robot Interaction
(HRYI) field, where interactions are enhanced by the multi-
modal interface capabilities of robots, e.g. gestures, sound,
speech, or displays to name a few.

Participatory Design (PD) approaches are a promising way
to strongly focus on users, actively involving them in the co-
design process as integral members of the design team from
the very beginning. This way, users can shape robots that
precisely adapt to their needs, which will in turn reshape
the way users conceive robots, following a mutual shaping
process [19]. Furthermore, PD would allow the inclusion of
the explainability dimension from the start of the design
process following a transparency-by-design approach [8],
instead of being an add-on to already deployed systems.

Most works in eXplainable HRI (XHRI) focus on ways
to generate explanations [27], and then evaluate their effect
on the understanding and trust among users. In this work,
we propose to approach XHRI from the opposite direction:
through PD, we suggest first to co-design the interface with a
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Fig. 1. Co-design workshop with the users during the proposed framework’s
implementation in a geriatric unit at an intermediate care centre.

strong focus on the user’s explainability needs. We contend
that the development of the robot’s performant behaviour
—which ought to offer the identified degrees of transparency
and explainability— should only take place once users certify
that interactions are intuitive and understandable.

We believe that transparency and explainability are mech-
anisms that can provide ‘“understandable” robots, that is,
robots whose behaviours are predictable by humans interact-
ing with them. We argue that robots need to be “understand-
able” to be “intuitive”, which along with being “performant”
and effectively executing user-relevant tasks, will become
“usable”. Such conditions will drive humans to trust and
convincingly use robots, and only then will robots truly assist
them. Fig. 2 illustrates this chain of implications, which
emphasises the necessity of integrating explainability into
the fundamental design of robotic systems to benefit society.

The main contributions of this work are twofold. On the
one hand, we present a PD framework for XHRI with a
focus on the co-design of understandable robots, which in
turn impacts the performance, intuitiveness and usability
characteristics of robots. On the other hand, we introduce
an example implementation of the framework for a robot in
an intermediate care centre geriatric unit.

The paper is organized as follows. Section II provides a
literature review. Section III details the proposed methodol-
ogy. Section IV presents an example of how to apply the
methodology in the design of a robot for a geriatric unit at
a care centre (Fig. 1). Section V discusses insights from our
experience, and Section VI concludes the paper.

II. RELATED WORK

In this section, we first review the terminology used in
the eXplainable Artificial Intelligence (XAI) field, and we
continue surveying the XHRI sub-field. We next explore lit-
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erature where PD approaches have been applied in robotics,
and we conclude by reviewing works that use PD for XAl
in non-robotic applications. To the extent of the authors’
knowledge, there are no prior works where PD is used for
XAI in HRI as proposed in this work.

A. Transparency and Explainability

The field of XAI focuses on making Al systems more
explainable. Many XAI works propose definitions of explain-
ability, which has related terms such as transparency, under-
standabilty or interpretability. In [26], the authors analyse the
terms used in the XHRI literature, being explainability and
transparency the most common ones, with variant definitions
across different publications. In [1] transparency is defined
as “the transfer of information from an autonomous system
[...] in a form meaningful to the stakeholder”, while explain-
ability is described as fransparency addressed to non-expert
users. In [25] a two-stage framework is proposed, where
transparency discloses information about a system to make
it interpretable, and explainability clarifies the information
to provide understandability.

In this work, we consider that both transparency and
explainability are mechanisms to better understand a robot,
considering that transparency discloses information and al-
lows to answer “what” questions about the robot’s decisions
and behaviour, while explainability would further clarify the
given information, and allow answering “how” and “why”
questions about those decisions and behaviours [25].

B. Explainable Human-Robot Interaction

In the field of HRI, several frameworks have been pre-
sented to structure the design of explainable robots. Theory
of mind (ToM) based frameworks have been proposed,
where the robot performs communicative actions to reduce
the mismatch between the robot’s state-of-mind and the
estimated human’s model of the robot’s state-of-mind [9].
A survey on explainable autonomous robots [20] uses the
ToM approach to group the reviewed papers based on their
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The relation between usable, performant, intuitive and understandable robots, and the outcomes of humans trusting and using robots.

main contribution: (1) to have an interpretable robot decision-
making space, (2) to estimate the plan of the user, (3) to
generate an explanation to reduce the mismatch between
the robot’s and user estimated interpretable plans, and (4)
to encode the generated explanation into specific modalities.

A literature review on explainable robots [3] reveals
that a considerable portion of the reviewed papers propose
conceptual studies without evaluations. Nevertheless, several
works do focus on user studies where explainable robots are
evaluated with various metrics [10]. One such example is
the literature review in [26], which provides an overview of
explainability’s effects on trust, interaction robustness, and
the mental model of the robot, finding that explainability
almost always positively correlates with them.

C. Farticipatory Design relevance in HRI

Since the operationalisation of most studies covers specific
tasks and domains, it has been argued that generalised design
recommendations for explainability and transparency cannot
be defined, and that they should be adapted to the user types
[7]. In light of such views, participatory design is a promising
approach that can be utilised to design explainable robotic
systems while taking into account different user needs.

Participatory Design is a term often interchanged with co-
design [21]. In PD, multiple stakeholders, such as end-users
and domain experts [4] contribute to the design process as
active co-designers. Non-roboticists can actively collaborate
in the robot design [12] by playing a critical role [23] to
iteratively construct the emerging design [24]. As such, PD
approaches are a way to achieve mutual-shaping [19] of the
interaction between robots and society.

Concretely, PD has been used in several HRI domains,
such as the co-design of social robots to improve the mental
health of teens [5] or older adults with depression [12]. These
works employ a various set of tools such as card-sorting [17],
role-playing [5] and prototyping [5], [17].
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D. Explainability through participatory design

Several works use PD methodologies in XAIL In [6]
a stage-based PD framework to improve transparency of
interfaces is defined, which is validated on a fitness coach
app. Another generic framework [11] with a focus on UX
design uses four Al-assisted decision-making tasks to eval-
uate the methodology. Other works do not propose generic
frameworks, but detail the execution of PD processes for
various applications such as a learning analytics tool [2],
a clinical decision support system [22], or a social media
recommender system [14]. However, these works do not
follow the transparency-by-design principle [8], as they seek
to add explainability or transparency to already deployed
applications by improving existing interfaces.

In the surveyed literature, there is a gap in how PD can be
used to provide explainability that improves robot systems
understanding in the HRI field. The approach that we present
in this work aims to bridge this gap.

IT1I. PROPOSED APPROACH

In this work, we propose a 3-stage PD process (Fig. 3)
to design explainable robot systems. First, a gather initial
information stage is foreseen to identify the stakeholders’
needs and evaluate if a robot is a potential solution. This
is a full process based on a variety of techniques such as
observation studies, interviews, or focus groups, that grant a
complete use case understanding. By the end of this stage,
a research team should be constituted, which will lead the
PD. In this work, we do not delve into this first stage, but
rather focus on the in-situ co-design stage, which is the core
of the explainability design. This section details its 3 sub-
steps, namely initial prototyping, multi-modal interaction and
behaviour fine-tuning. The last stage is the system evaluation
from all stakeholders’ perspectives performed by people who
have not been part of the process. It can be based on available
XAI metrics for user satisfaction, mental models, curiosity
or trust [10], and should be adapted to each particular use
case objective.
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Proposed participatory design process, where the core step is the in-situ co-design of an understandable multi-modal interaction.

A. Initial prototyping co-design

After the gather initial information stage, high-level
requirements addressing the stakeholder needs should be
drafted, with emphasis on end-users. We recommend split-
ting requirements between functional and interface require-
ments, which refer to the robot’s behaviour and interactions
respectively. Interface requirements might already incorpo-
rate explainability measures to make interactions under-
standable and intuitive. However, their specific definition
will be later refined to widely cover the understandability
perspective. Requirements should guide the development of
a low-fidelity prototype.

We propose deploying the low-fidelity prototype and in-
situ testing several potential tasks, that is, to simulate the
complete interaction flows and robot behaviours in activities
where the robot could assist the users. This way, a first rough
idea of which technologically feasible tasks are user-relevant
can be identified, as well as which interface modalities are
more appropriate.

During this step, feedback should be used to refine the
requirements and the prototype. We strongly recommend
concluding the in-situ testing with a workshop where stake-
holders clarify the design choices for functionalities and
interfaces. At the end of this step, requirements should
describe a usable robot, that is, a robot that is performant
and intuitive in relevant tasks for the stakeholders (Fig. 2).

B. Multi-modal interaction co-design

This step focuses on how stakeholders, primarily the users,
interact with the robot. We propose in-situ iterating the inter-
face while keeping a low-fidelity prototype for the behaviour,
which if needed can be teleoperated by the research team.

Situations where the robot’s interface and behaviour are
unclear should be identified in the inferaction table (Fig. 4),
which the research team should fill taking into account all
the interaction modalities and later refine with the received
feedback. This table structures the co-design of intuitive
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and understandable interactions. Moreover, it can help to
establish the user-preferred balance for the performance-
understandability trade-off, on the one hand, and on the other,
it supports integration with the P7001 standard [1]. We next
detail these three aspects.

1) The interaction table: It encapsulates potential interac-
tion issues and explainability measures to address them. For
each stakeholder defined in the gather initial information
stage, the research team should add a row for each foreseen
interaction, with the following fields:

o Stakeholder contains the stakeholder type.

e Interaction situation describes the interaction instance,
that is, what the users and robotic system are specifically
doing.

o Interaction situation probability is a value between 0
and 5 representing the probability of an interaction
to take place. Higher values indicate more frequent
situations.

e Interaction issues include aspects that stakeholders may
not understand or may not find intuitive. We recommend
formulating questions from the stakeholder’s viewpoint
to bring these ideas into tangible form.

e Interaction issues severity is a value between 0 and 5
representing the severity of a problem in an interac-
tion. Higher values indicate a higher degree of non-
understanding or non-intuitiveness.

o Critical level combines the probability and severity
fields. We recommend computing it as the mean of
probability and severity, but for certain applications,
different functions might be more adequate, such as the
maximum value.

o Explainability measures are actions that mitigate in-
teraction issues grouped in the following categories:
(1) ‘previous information’ are measures done before
the robot’s usage (e.g. documentation or training), (2)
‘legibility’ includes measures that implement under-
standability during the usage, and (3) ‘post-hoc’ are
measures providing additional clarification responding
a stakeholder’s request.

Interactionissues
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Interaction table with situations with potential intuitiveness or understandability issues, and explainability measures to mitigate those issues.

We advocate again for in-situ testing to let stakeholders
provide feedback on the different taken measures based on
real interactions with the low-fidelity robot prototype. The
research team should prepare the prototype with the neces-
sary flexible interface capabilities, and then operate the robot
to replicate the behaviours defined in the requirements, while
simulating the interactions defined in the interaction table.
Stakeholders should pinpoint interactions lacking intuitive-
ness, being difficult to understand, or proving overwhelming
or redundant. Several iterations should be conducted to refine
the interaction table and adapt the interaction issues, critical
level, and explainability measures according to the received
feedback. Moreover, additional unforeseen situations should
be included.

In many implementations, the number of interactions will
be large, and it might be unfeasible to have time to test
them all. The interaction table has a critical level to be able
to prioritize the in-situ tested interactions. Furthermore, we
recommend focusing on the stakeholders that mostly interact
with the system, which are the most frequent users.

During this step, the requirements and prototype should
be refined to include interface improvements derived from
the explainability measures. During the testing, stakeholders
will provide design choices that also affect the behaviour, so
the functional requirements should be updated accordingly.
Because the behaviour is kept as a low-fidelity prototype, it
should be fast to iterate on it, allowing to spend more time
in updating an interface that by the end of the step should
be relatively final.

2) Trade-off between performance and understandabil-
ity: In many Al systems, the interface is mainly, if not
only, a screen. However, robots extend their interfaces to
conversational abilities, gestures, sounds and movements
among others. The functionality and interaction dimensions
are often intermixed, as they can share the same interface
channel. Furthermore, there is typically a trade-off between
system performance and system understandability: higher-
performant algorithms sometimes provide lower explainabil-
ity capabilities, e.g. an Al neural network vs a decision tree.



Fig. 5.

In-situ teleoperating and testing the robot in the geriatric unit. From left to right: researcher teleoperating the robot; nurse interacting with the

robot in a delivery task; robot detecting obstacles in its path (common in the given use case); robot delivering an item to a patient in a room; and prototype
applications used in different devices to both, interact with and teleoperate the robot.

In these situations, stakeholders might prefer understanding
unexpected behaviours over systems that fail less, or the
other way around. Nevertheless, it has been shown that
when the performance is too low, adding transparency might
have a neutral or negative effect on trust [16], [18]. During
the definition and validation of explainability mitigation
strategies, this trade-off should be carefully discussed with
the stakeholders, to ensure they can provide an informed
choice. Interaction table’s row entries can be split to account
for variant implementations. One variant might have better
performance (i.e., a lower probability of having interaction
issues), but fewer explainability options (i.e., fewer capa-
bilities to mitigate a higher severity), while another variant
would provide the opposite trade-off.

3) Integration with the IEEE P7001 standard: Our ap-
proach has been designed to fit under the IEEE Standard
for Transparency of Autonomous Systems P7001 [1]. We
propose the interaction table as a methodology to perform a
P7001 System Transparency Specification (STS). According
to P7001, “an STS is the process of defining the transparency
requirements of an autonomous system, for each stakeholder
group. An STS may be written at any time during a system’s
lifecycle, though the best and expected practice would be to
specify transparency requirements prior to system design”.
On the one hand, we suggest mapping each stakeholder
in the interaction table into a stakeholder category from
P7001, such as general public, users, or the end-users,
domain-experts and superusers subcategories. On the other
hand, we propose to utilise each stakeholder category’s mean
critical level in the interaction table to determine P7001’s
transparency level.

C. Behaviour fine-tuning co-design

Before starting the behaviour fine-tuning step (the last
step in the in-situ co-design stage), the research team should
identify the user-relevant behaviour model variants and up-
date the prototype to implement them. The prototype should
also implement the automatic generation of the explainability
measures from the previous step. Then, we suggest fine-
tuning the behaviour models through an in-situ co-design
with relevant stakeholders and assessing if its performance
meets their expectations. In this stage, the focus should be
directed towards the functionality performance. Nevertheless,

the feedback might involve design changes in the interface
and the interaction table. These should be updated and
addressed accordingly.

After the in-situ iterative co-design, engineers should
update the prototype into a final version ready for evaluation
by users not involved in the co-design. In case results do
not meet expectations, the interface and functionality can
be refined in further iterations, where the requirements,
interaction table, and behaviour models will be updated.

IV. EXAMPLE USE CASE

We next describe how we have applied the proposed
framework in the SAFE-LY' project. In this paper, we only
focus on the multi-modal interaction step (Fig. 3), which
is the core contribution of this work, as it contains the
methodology to include the explainability perspective into
a PD process. The use case that we have selected is a robot
that assists the staff in a geriatric unit of an intermediate
healthcare centre (Fig. 5).

After running the gather initial information stage, where
we discussed with the management team, head nurse, a
geriatrician and the nursing staff, we proceeded to the initial
prototyping step. We developed a low-fidelity prototype
system composed of a robot and a mobile application. We
teleoperated the low-fidelity prototype 4 hours a day for 7
days in 3 shifts (morning, afternoon, and night) to assess
in which activities the robot could support the nursing staff.
We tested 4 tasks: deliveries (between staff and patients, and
between staff in the same or different units), staff-patient
video calls, remote inspection of rooms, and autonomous
patrolling to detect hazardous situations for the patients.

After the teleoperation period, we run a wrap-up session
with the main stakeholders. We prepared a role-playing
workshop to reproduce situations that we identified with a
higher potential to assist the staff, given the insights from
the in-situ testing. Then, we prepared a set of structured
questions to discuss with them a first detailed version of
the robot’s interaction flows and behaviour design. It was
decided that the patrolling task had a higher potential usage,
and requirements were refined to include all the received
feedback. It was agreed that the robot would continuously

Thttps://pal-robotics.com/collaborative-projects/safely/
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monitor the rooms configured by the staff, and it would
trigger alarms after detecting a fallen patient on the floor,
which the staff would receive and manage in a phone app.
The robot would also trigger alarms for not-in-bed patients
and closed room doors for a group of vulnerable patients.

A. Specifying the interaction table

Based on the observations and insights gathered through
the initial prototyping step, we introduced 37 entries in
the interaction table of the multi-modal interaction step
(Fig. 3) for the nursing staff stakeholder type. Although other
stakeholders such as the patients should be included in the
table as well, in this example we focus on the main users.

In Fig. 6 we provide an entry example. It comprises
interactions where the robot triggers a false alarm after the
perception module fails to detect that a person has fallen on
the floor, when the person is sitting on a chair instead. We
only defined the fields ‘previous information’ and ‘legibility’
from the explainability measures, as we considered that in
this case, the nursing staff would not be further concerned
with ‘post-hoc’ explanations. For this same situation, other
stakeholders might have different needs, so a row should be
included from each stakeholder’s perspective if needed.

B. Refining the interaction table

After filling the interaction table and selecting the most
critical situations, the prototype interface was updated to
test those interactions along with the mitigation strategies.
The robot’s behaviour remained teleoperated by engineers
who simulated the autonomous functionalities. We tested
the prototype with staff members of different ages, nurs-
ing seniority, and levels of previous explanations. Because
of the in-situ testing, it was manageable for the users to
comprehend the system’s limitations, and assess how critical
non-understandable situations were.

We confirmed that receiving in the phone an image with
information on what had been detected helped to understand
the robot’s behaviour, and allowed them to identify the actual
criticality of the situation to take action or dismiss the alarm.
They also stressed the importance of clearly recognising the
location where the alarm was triggered, which they suggested
displaying in phone notifications, in addition to keeping the
robot standing in front of that area with flashing LEDs.

Finally, they also reinforced the need to use multi-modal
signals and to employ different sounds and frequencies to
effectively assess the distinct alerting situations. This way,
it would be more intuitive to know what had been detected,
even without the need to unlock the phone.

After iterating on the interface while implementing the
modified explainability measures, we could define a final
interaction flow that they approved to be intuitive and
understandable. The next step, the behaviour fine-tuning,
would continue from this prototype version. Because this
contribution focuses on the explainability perspective, we do
not include it in this section and it will be reported elsewhere.

V. DISCUSSION

We next present insights gained during the example use
case implementation. The nursing staff are normally busy
with daily tasks, so it was especially useful to sort the infer-
action table (Fig. 4) by critical level to prioritise the most
critical interactions. It was also valuable to start focusing on
the primary user stakeholder type. Given the iterative nature
of the PD process, it is feasible to start focusing on the
principal stakeholders, and gradually incorporate secondary
stakeholders in the next iterations.

Stakeholders might have different interests and potential
discrepancies concerning design choices, even within the
same stakeholder type. In our use case, we noticed that
regarding the performance-understandability trade-off, the
management stakeholders were generally interested in having
post-hoc explainability insights (e.g., to be able to track back
incidents), while the nursing staff preferred higher perfor-
mance. As part of the research team, we limited ourselves
to informing about technological limitations, and we let the
other stakeholders make the decisions based on their existing
organizational models and hierarchies.

We confirmed the well-known mismatch between what
engineers believe the users’ needs are and what they actually
need. Furthermore, we experienced that this mismatch is also
present between secondary stakeholders, such as managers,
and primary users. Secondary stakeholders can sometimes
provide useful insights, but they are not always aware of
the users’ cognitive load and understandability needs. Even
the users themselves might not be fully aware of them.
We observed that what the staff thought would be helpful



was sometimes not usable after in-situ testing. For example,
the staff realised only after experimenting with the robot’s
delivery of items that most patients could not reach the robot
to pick up items, and that it took more time to specify
the delivery locations and wait for the robot than actually
bringing the items themselves.

Moreover, we also encountered that including a UX per-
spective in the co-design was necessary to improve the
intuitiveness of the interactions, identifying modifications
such as adjusting the app menu hierarchy to reduce the
number of actions they needed to configure the patrolling.

In general, we experienced that building trust with the
stakeholders was very important. Only after several days of
collaboration would they open and share all their ideas. We
corroborated that in-situ iterating the design allowed them
to provide fluid, informal, and specific feedback about real
situations, which was essential for designing a robot system
that fits their needs, especially in terms of understanding.

VI. CONCLUSIONS

This paper presents a participatory design methodology to
address explainability in HRI applications. We advocate that
robots must be performant and intuitive in human-relevant
tasks to truly assist people. Explainability becomes essential
in this setting as a mechanism to achieve understandable
and intuitive robots. The suggested method incorporates the
explainability component into the co-design process, assist-
ing in the identification of non-understandable circumstances
and the testing of possible solutions in the multi-modal
interaction with the system. This stands in contrast to merely
adding explainability components into pre-existing systems.
An example of the methodology’s application was carried out
in an intermediate healthcare facility, where we co-designed
a robotic system to assist the staff in daily care routines.
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