Finding the Common Tangents to Four Spheres
via Dimensionality Reduction
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Abstract One of the advantages of formulating position analysis problems in terms
of distances is that the dimension of the problem can be reduced by projecting the
problem onto a subspace. Although, in general, this operation does not provide a
significant advantage, when parallelism or alignment constraints must be enforced,
a proper projection results in an important simplification. This is the case when
computing the common tangents to four spheres in R>. In this paper, we first show
how this problem can be formulated in terms of just five points in R? thanks to
projection, and then this is applied to solve the forward kinematics of the 4-SPC
parallel robot.

1 Introduction

The problem of finding the common tangent lines to four spheres is an elementary
geometric problem —at least in its wording— that apparently was first posed in
1990 by Larman [1], and later discussed by Karger [2] and Verschelde [3]. Mac-
donald er al. [4] proved that four equal-radius spheres in R3 can have at most 12
common tangents, and that this bound is tight. They paid particular attention to the
case in which the spheres are centered at the vertices of a regular tetrahedron. If
the spheres overlap pairwise, but no three have a common point, then there will be
exactly 12 common real tangents. Almost contemporaneously, Megyesi [5] showed
that this result remains true if the spheres have coplanar centers, but that there can
only be eight common real tangents if the spheres have the same radii. The general
case was established soon after by Sottile and Theobald in [6]. They proved that
2n — 2 general spheres in R” (n > 3) have 3-2"~! complex common tangent lines,
and there are 2n—2 such spheres with all common tangent lines real.
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Porta et al. presented a coordinate-free formulation specially tailored to be solved
using a branch-and-prune method [7]. Herein, we use a similar formulation with the
important simplification of reducing the problem to that of embedding five points,
whose pairwise distances depend on three variables, on a plane. This simplification
is accomplished by projecting the problem onto a plane perpendicular to the sought
tangents. The projection and backprojections of problems formulated in terms of
distances was first introduced in [8], extended in [9], and it has been recently applied
to deal with revolute axis parallelism in 6R serial robots [10].

The described problem arises in several computer graphics and computational ge-
ometry applications, including visibility computations with moving viewpoints [11],
computing the smallest enclosing cylinders of point sets [12], and placement prob-
lems in geometric modeling [13]. We show here that it also arises when solving the
forward kinematics of the 4-SPC parallel robot which is of particular interest as a
pointing device.

This paper is structured as follows. While Section 2 explains the standard ap-
proach, Section 3 presents the new coordinate-free approach consisting in reducing
the dimension of the problem by projection. Section 4 applies the obtained results
to the forward kinematics of the tetrapod 4-SPC. Finally, Section 5 summarizes the
main contributions and enumerates points deserving further attention.

2 The standard approach

Let us assume that we have four spheres of radii ry, .. ., r4, with their centers located
at Pj,..., Py, as shown in Fig. 1. The vector position of P, in the world reference
frame will be denoted by p;. The problem of finding the common tangent lines
to these four spheres can be fully expressed in terms of four lines orthogonally
traversing the tangent line .Z’. This line will be represented by its nearest point to
the origin (with location vector q) and a unit vector u along it. Therefore,

u-u=1, @)) q-u=0. 2)
Then, for each sphere we have that

2

(pi—q)- (pi—q)—(u- (pi—q))>—r? = pi - pi—2p;-q+q-q—(u-p;)>—? =0. (3)

If we assume, without loss of generality, that p; = (0,0,0)7, then
aq=ri, @ pipi—2pi-q— (u-p;)>—rf+r =0, 5)

for i = 2,3,4. From (5), we can express ( in terms of u as

P2 p2—(u-p)’—r3+r3
q=M"|ps-ps—(ups)>—ri+r7 |, (6)

ps-ps— (w-ps)>—rj+r
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Fig. 1 Four spheres are centered at P,...,P;. The pairwise distances between these points are
constant (shown in blue). The line . (in red) is a common tangent to the four spheres of radii
r1,...,rs. The segments in green connect the centers of the spheres and the points of contact be-
tween the line and the corresponding sphere which are denoted by Ly, ..., Ls.

with M =2 (py,p3,p4) " . Finally, equation (1) and the equations resulting from sub-
stituting (6) in (2) and (4) form a system of three equations of degree 2, 3, and 4
in the components of u. This system yields up to 24 real solutions that corresponds
to 12 tangent lines, since each tangent is obtained with the two possible orientations
of its director vector u. Thus, two important disadvantages of this approach are that
the three resulting equations involve the three variables, and that the obtained solu-
tions are actually duplicated because of the used representation for the tangent line.
These two issues are addressed in the next section.

3 A coordinate-free approach

Points P, P>, P; and P, define a tetrahedron in R3 whose edge lengths will be de-
noted by d; j = PP, and s; j = dl-2j fori,j=1,...4,i < j. These edges appear in blue
in Fig. 1. In the same figure, the segments in green connect the centers of the spheres
and the points of contact between the line and the corresponding sphere which are
denoted by L1,...,Ls. Let us also denote d; = L;L;1, fori=1,2,3.
Coordinate-free formulations using distance geometry not only involve distances
but also orientations of simplices. These orientations are defined with respect to
one simplex whose orientation is arbitrarily chosen so that all other orientations are
given with respect to it. Since, in our case, we only have a simplex in R3 (the one
defined by {Py, P, P3, P4}), its orientation is irrelevant. Nevertheless, we have three
simplices in R! (those defined by L,L,, L, L3, and L3, L4). In what follows, we will
assign positive orientation to the simplex L;,L3, and the other two simplices will
have either negative, or positive, orientations whether they overlap, or not, Ly, Ls.
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@ (0)

Fig. 2 II is the normal plane to . that contains P;. Then, L, is the point of intersection of IT
and .Z. If P; is the projection of P, onto IT, then d; = /d%2 - d,2 (a). Analogously, if P§ is the

projection of P3 onto IT, then d; 3 = dlz’3 —(di +d2)* (b).

Pé S3—03 P

Fig. 3 Planar distance graph involving five points obtained by projecting the eight points in Fig. 1
onto the plane perpendicular to .. The value attached to each edge stands for the square distance
between the corresponding points.

Using the distance-based formulation detailed in this section, the problem will
be stated as follows: given the distances between the sphere centers and a set of
values for 71, ..., r4, the problem consists in obtaining d;, d», and d3. For the reason
given above, we will assign positive sign to dp, while d; and dz will be positive
or negative. We will next see how this sign convention avoids the duplication of
solutions intrinsic to the standard formulation.

As shown in the previous section, the standard formulation requires considering
eight points. Nevertheless, observe that we can project the problem onto a plane or-
thogonal to .Z so that the problem is reduced to consider five points in R? instead of
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eight points in R3. Indeed, if P} denotes the projection of P» onto the plane orthogo-
—2 —
nal to . that contains P (see Fig. 2a), then L; P, =r3 and PPy =51, —d;. Like-
—
wise, if P; denotes the projection of P3 onto the same plane (see Fig. 2b), L| P} = r%,

TPf =s13—(di + d>)?* and @2 =s523— d%. A similar result is obtained for the
projection of P4. Then, after computing all distances between the projected points,
we can depict the planar distance graph in Fig. 3.

Now, since all subsets of four points in Fig. 3 are coplanar, their pairwise dis-
tances are not independent. Their dependency can be easily formulated using the
theory of Cayley-Menger determinants [14]. For example, the pairwise distances
between the points in the two sets {Li,P,P5, P} and {L;,P;,P;,P,} must satisfy
the equations

0 1 1 1 1
1 0 r% r% r%
fild,dy) i |1 7} 0 siz—di si3—(di+d2)? =0, (N
1 r% S12— d12 0 23— d%
1 r§ S13— (d] +d2)2 $23— d% 0
0 1 1 1 1
1 0 r% r% rf
fz(dz, d3) 1 i’% 0 523 7d% 24— (dz +d3)2 =0. (8)
1 r% §23 — d% 0 534 — d%
1 rﬁ S04 — (d2 + d3)2 534 — d32 0

These two equations are important because they involve only two variables, which is
advantageous when performing eliminations. Unfortunately, the equations derived
for the other three sets of four points involve the three variables. For example, for
the sets {L, P, P}, P;} and {L;,P|,P},P;}, we obtain the equations

0 1 1 1 1
1 0 rl2 r% ri
f3(d],dz,d3)2 1 72 0 s13—(d1+d2)?  s14—(di+dr+d3)?| =0, )
1 r% S])}-(dl-‘rdz)z 0 S374—d§
1 ri 51‘47(d1+d2+d3)2 S3.47d§ 0
0 1 1 1 1
1 0 r% r% r%
f4<d1,d27d3)1 1 r% 0 sl‘zfd% s1,47(d1+d2+d3)2 =0. (10)
1 r% S1,2—d12 0 S274—(d2+d3)2
1 73 sia—(di+datds)?  spa—(dat+dz)? 0

Equations (7), (8), (9), and (10) form a redundant system of equations, but it is
advantageous to use them all in the elimination process schematized in Fig. 4. As a
result of this process, we obtain a 12-order polynomial in d22. Since we decided to
to take the simplex L,L3 in R! as a reference, the roots of this polynomial yield up
to 12 real positive solutions for d. To obtain the corresponding value of d3 for each
value of d,, we can substitute dy in ri(dy,d3) =0 and f>(d>,d3) = 0 (see Fig. 4).
Therefore, the common root of the resulting two polynomials in d3 is the sought
value. Analogously, to obtain the corresponding value for di, we can substitute d;
in ry(dy,d>) =0 and fi(d;,d>) = 0 to obtain their common root. Observe that the
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‘fl(dl,dz):o‘ ‘fg(dl,dg,dg):o‘ \fz(dz,dg):o\ \f1<d1.d2):0\ ‘f4(d1,dz,d3):0‘ ‘fg(dg,dg):o‘

T, v
J
v

v

v
0 8)=0] > Camnaes > oot > [rz(d )0
ra(dz)=0 ra(dz)=0
\/
r(d3)=0

Fig. 4 As an alternative to multivariate elimination, we have exploited the redundancy of the de-
rived set of equations to obtain a 12-degree polynomial equation in d% by applying four elimina-
tions of a single variable and the computation of a greatest common divisor.

signs of d; and ds indicate the location of L; and L4 with respect to L, and L,

respectively.
As an example, let us consider the case in which we locate the sphere centers at
the vertices of a regular tetrahedron. To this end, consider the cube whose vertices

are located at ﬁ (+1,41,41). The inscribed regular tetrahedron whose edges are
alternate face diagonals of the cube have edge length 1. Then, if the squared radii are
2 =0.2750, r3 = 0.2500, r = 0.2625, and 7 = 0.2875, the resulting polynomial
equation in d5 is

d'?—4.333d" +8.0994'°—8.6284° +5.836d4% —2.641d" +0.821d°—0.177d°
+2.618-1072d*—2.617-10 4> +1.68-107%d>—6.245-10"%d+1.02-10~ = 0,

where d = d%. This polynomial has 12 real solutions. Each value of d yields one
value for d, due to our assumption for its sign. Then, following the procedure
sketched above, we can obtain the corresponding values for d; and d3. The 12 re-
sulting solutions are shown in Fig. 5.

4 The forward kinematics of the 4-SPS robot

There are many industrial tasks —laser-engraving, spray-based painting, or water-
jet cutting— that require controlling the orientation of an end-effector to be per-
pendicular to a 3D free-from surface along a given trajectory no matter its axial
orientation. This kind of tasks can be automated using, for example, pentapods con-
sisting of five SPU legs where the centers of the universal joints are aligned [15,16].
Nevertheless, when the translation along the axis of the end-effector becomes irrel-
evant, as is the case in most pointing devices, the pentapod can be substituted with
a tetrapod. One possible implementation for such a device consists in using a 4-SPP
parallel robot where the non-actuated prismatic joint axes are aligned. The location
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sol. 1 2 3 4 5 6 7 8 9 10 11 12

dy 03745 0.6194 -0.6725 -0.9533 -0.6653 0.2707 0.2999 -0.9543 -0.3729 -0.3299 -0.3703 -0.6166
dr 03054 0.3194 0.3362 0.3528 0.4038 0.4042 0.6399 0.6399 0.6628 0.6651 0.9677 0.9679
d3 -0.9263 -0.6624 0.6043 0.2997 -0.6533 0.2395 -0.2980 -0.2984 -0.9277 0.2762 -0.3461 -0.6024

(a)

(b) (c)

Fig. 5 Example with 12 common tangents to four spheres of radii 77 = 0.2750 (red), 3 = 0.2500
(green), r% =0.2625 (blue), and ri = 0.2875 (yellow) centered at the vertices of a regular tetrahe-
dron of unitary edge length. The obtained numerical solutions in (a) are depicted in (b). If this is
applied to solve the forward kinematics of a 4-SPC parallel manipulator with the same dimensions
whose end-effector attachments are ordered L1, L,, L3 and L4 only one solution is valid (c).

of this axis is what is actually controlled. Since it is tangent to the four spheres
centered at the spherical joints, with radius equal to the length of the corresponding
legs, solving the forward kinematics of this parallel robot is partially equivalent to
finding all tangent lines to four spheres. This equivalence is not absolute because
the order of the attachments on end-effector cannot be altered without disassem-
bling the robot itself. In other words, this order must be preserved. For example,
following with the same example in the previous section, let us assume that the or-
der of the attachments in the end-effector is L, L, L3 and L4. Then, d; and d3 must
be positive. Observe that, in the example of the previous section, there is only only
solution satisfying these conditions. The corresponding robot configuration appears
in Fig. 5(c).

5 Conclusion

Despite the apparent simplicity of obtaining all tangents to four spheres, it seems
that there are still some questions associated with it that remain unanswered. For
example, the question whether it is possible for four disjoint unit spheres to have 12
common tangents remains still open [17, p. 113]. This is a point that we are currently
trying to elucidate using the approach presented in this paper.
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The proposed distance-based approach has allowed us to gain a new insight into

the forward kinematics of a tetrapod used as a pointing device. The use of a tetrapod
instead of a pentapod not only reduces the number of actuators and the risk of leg
collisions, but also the number of forward kinematic solutions. If the ordering of the
moving platform attachments is also taken into account, we have shown how this
number might be reduced to just one.
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