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Linear Quadratic Zonotopic Control of Switched
Systems: Application to Autonomous Vehicle

Path-Tracking
Shuang Zhang, Sara Ifqir and Vicenç Puig

Abstract— This letter proposes a zonotopic approach for the
state feedback control problem of a class of uncertain switched
systems subject to unknown but bounded disturbances and
measurement noises. The proposed approach is the zonotopic
analogous case of the switched Linear Quadratic Gaussian
(LQG) control, in which the feedback loop is closed using the
optimal estimates of a Switched Zonotopic Kalman Filter (SZKF)
leading to a Switched Linear Quadratic Zonotopic (SLQZ) con-
trol scheme. In this context, first, a SZKF with offline filter gains
design is proposed so that the unmeasurable system states
can be estimated. Then, to tackle the synthesis of the SZKF
and the state feedback controller, separation principle is proved
so that the computation of the optimal controller and estimator
can be done separately by finding the solutions to a finite set
of Linear Matrix Inequalities (LMIs). At last, a reference path
tracking controller of the vehicle lateral dynamics is designed
to demonstrate the validity and performance of the proposed
method.

Index Terms— Switched system, optimal control, zonotope,
autonomous vehicles, path tracking.

I. INTRODUCTION

SWitched systems are an important class of hybrid systems
and have wide practical applications in many fields, as

e.g., networked control systems, power systems, automotive
and aircraft control, among others. Therefore, important results
have been achieved dealing with stability [1], stabilization and
controllability [2], observability and estimation [3]. The goal
of the letter is to investigate a state feedback/estimation design
strategy for discrete-time switched systems affected by additive
uncertainties, such as process disturbances or measurement
noises.

Among the existing robust state estimation approaches,
one category to characterize the uncertainties relies on the
assumption of their probability distributions. However, it may
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fail in many practical situations [4]. Hence, in the remaining of
the letter, set-based approaches [5] are considered, in which
the modelling uncertainties are assumed to be unknown but
bounded by a priori known bound, requiring no assumption
about the probability distributions. In the literature, several
approaches have been proposed to address the state bounding
problem for switched systems, describing the bound by several
types of sets, such as intervals [6], [7], ellipsoids [8], and
zonotopes [9].

Regarding the research on set-based control, an interval
observer-based feedback control framework was first proposed
in [10] for solving the problem of output stabilization of a class
of nonlinear and Linear Parameter Varying (LPV) systems
subject to uncertainties. After that, it was extended to non-
linear switched systems [11] and switched LPV systems [12].
Meanwhile, this interval observer-based control scheme has
been applied to several practical scenarios, as e.g. multi-DOF
micropositioner [13] and solid oxide fuel cells stacks [14].
However, the condition of designing an interval observer could
be very restrictive, as the designed observer gain is required
to ensure not only that the observer system is robustly stable,
but also that the estimation error system matrix is Metzler
[6]. This motivates the focus of this letter on zonotopes,
which provide efficient computation, a much more compact
representation and effectively mitigate wrapping effect. To this
end, the zonotopic observer/estimator has been widely applied
to state estimation [4], [15] and fault diagnosis [5], [16].

As we know, Linear Quadratic Gaussian (LQG) control, a
synthesis of a linear-quadratic regulator (LQR) and a Kalman
Filter (KF), can provide an optimal solution in terms of
minimizing a quadratic cost function that includes both state
errors and control efforts. Inspired by the aforementioned dis-
cussions, the aim of this letter is to solve state feedback control
problems of uncertain switched systems by designing an LQG
control scheme using zonotopic approaches. In particular,
[17] proposed a linear-quadratic regulator (LQR) controller
that operates based on the estimates of a Zonotopic Kalman
Filter (ZKF) for Linear Time Invariant (LTI) system. This
letter extends these results to switched systems proving the
separation principle in the design of controller and observer. To
the best of our knowledge, there is no literature on zonotopic
LQG control for switched systems. This motivates the work
of the present letter.

To address the state feedback control problem using zono-
topes, the Switched Zonotopic Kalman Filter (SZKF) is first



developed for discrete-time switched LTI systems, in which
the switched filter gain is computed offline by solving Linear
Matrix Inequality (LMI) optimization problems instead of
calculated online using the explicit solution of [4]. Then, as
a zonotopic counterpart of the Switched Linear Quadratic
Gaussian (SLQG) scheme, the Switched Linear Quadratic
Zonotopic (SLQZ) control scheme is first proposed, which
describes uncertainties by zonotopic sets instead of Gaussian
probability distributions. The SLQZ control scheme operates
a Switched Linear Quadratic Regulator (SLQR) controller on
the estimates of the SZKF to achieve optimal state feedback
control performance. Moreover, the separation principle of
SLQZ control is proved, which allows to calculate the optimal
switched controller gain and filter gain separately. The pro-
posed SLQZ control scheme is applied to vehicle reference
path-tracking control. Effectiveness and applicability of the
proposed scheme is demonstrated through simulation by using
real collected data. Finally, it should be underlined that the use
of the zonotopic state feedback technique is a novelty in the
context of vehicle dynamics control.

Notation: In the following, R𝑛 denotes the set of 𝑛-
dimensional real numbers and ⊕ denotes the Minkowski sum.
The matrices are written using capital letter, e.g., 𝐴, the
calligraphic notation is used for denoting sets, e.g., X. For a
vector 𝑠 ∈ R𝑛, ∥𝑠∥ denotes Euclidean vector norm, ∥𝑠∥𝑃 =√
𝑠𝑇𝑃𝑠 denotes weighted Euclidean vector norm, where 𝑃 ≻ 0.

A unitary interval is a vector denoted by 𝑩 = [−1, 1]. A unitary
box in R𝑚, denoted by 𝑩𝑚, is a box composed of 𝑚 unitary
intervals. Tr[·] denotes the trace of a square matrix. 𝐴𝑇 denotes
the transpose of 𝐴. An identity matrix of dimension 𝑛 is denoted
by 𝐼𝑛. A zonotope of order𝑚 inR𝑛 is the translation by the center
𝑐 ∈ R𝑛 of the image of an unitary hypercube of dimension 𝑚 in
R𝑛 under a linear transformation 𝑅 ∈ R𝑛×𝑚, the zonotope X is
defined by: X = ⟨𝑐, 𝑅⟩ = 𝑐 ⊕ 𝑅𝑩𝑚 = {𝑐 + 𝑅𝑧 : 𝑧 ∈ 𝑩𝑚} .

II. PROBLEM FORMULATION
In this work, the following class of stable (or stabilizable)

uncertain discrete-time switched systems is considered{
𝑥(𝑘 + 1) = 𝐴𝜎 (𝑘 )𝑥(𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘) + 𝑤𝜎 (𝑘 )
𝑦(𝑘) = 𝐶𝜎 (𝑘 )𝑥(𝑘) + 𝑣𝜎 (𝑘 )

(1)

where 𝑥 ∈ R𝑛𝑥 is the state, 𝑢 ∈ R𝑛𝑢 is the control input, 𝑦 ∈ R𝑛𝑦
is the measured output. 𝜎(𝑘) : R+ → I = {1, 2, . . . , 𝐼𝜎}
is a known switching signal, satisfying the ADT switching
scheme [18], assumed to be prior unknown but online available,
where 𝐼 denotes the number of subsystems. A sequence
𝑘1, 𝑘2 . . . 𝑘𝑙 , 𝑘𝑙+1, . . . , 𝑘𝑁𝜎 (𝑘0 ,𝐾 ) is employed to represent the
switching instants on the interval [𝑘0, 𝐾), where 𝑘0 = 0 denotes
the initial time, 𝑘𝑙 denotes the 𝑙𝑡ℎ switching instant and the active
𝑖𝑡ℎ subsystem

(
𝜎(𝑘) = 𝑖

)
when 𝑘 ∈ [𝑘𝑙 , 𝑘𝑙+1). 𝐴𝜎 (𝑘 ) ∈ R𝑛𝑥×𝑛𝑥 ,

𝐵𝜎 (𝑘 ) ∈ R𝑛𝑥×𝑛𝑢 and𝐶𝜎 (𝑘 ) ∈ R𝑛𝑦×𝑛𝑥 are state, input and output
matrices. 𝑤𝜎 (𝑘 ) ∈ R𝑛𝑤 and 𝑣𝜎 (𝑘 ) ∈ R𝑛𝑣 are the process and
measurement noises, respectively, assumed to be unknown but
bounded by zonotopes, i.e., 𝑤𝜎 (𝑘 ) ∈ W𝜎 (𝑘 ) =

〈
0, 𝐸𝜎 (𝑘 )

〉
,

𝑣𝜎 (𝑘 ) ∈ V𝜎 (𝑘 ) =
〈
0, 𝐹𝜎 (𝑘 )

〉
, where 𝐸𝜎 (𝑘 ) ∈ R𝑛𝑥×𝑛𝑤 and

𝐹𝜎 (𝑘 ) ∈ R𝑛𝑦×𝑛𝑣 are known segment matrices of zonotope
describing the worse bounds of the process and measurement
noises.

In this letter, we address the optimal state feedback control
problem of the uncertain switched system (1), in which the
feedback loop is closed using the optimal estimates of a SZKF,
as depicted by Fig. 1. Since the considered system (1) is
affected by zonotopic uncertainties, a zonotopic counterpart
of switched LQG control is proposed, i.e., Switched Linear
Quadratic Zonotopic (SLQZ) control, a combination of a
Switched Zonotopic Kalman Filter (SZKF) together with a
Switched Linear Quadratic Regulator (SLQR).

In order to assess the system operation, the following
performance criteria are introduced.

Definition 1: (𝐹𝑊 -Radius). Let 𝑊 ∈ R𝑛×𝑛 be a Symmetric
Positive Definite (SPD) matrix: 𝑊 = 𝑊𝑇 ≻ 0. The weighted
Frobenius radius (𝐹𝑊 -radius) of the zonotope ⟨𝑐, 𝑅⟩ ⊂ R𝑛 is
the weighted Frobenius norm of 𝑅 : ∥⟨𝑐, 𝑅⟩∥𝐹,𝑊 = ∥𝑅∥𝐹,𝑊 .

Definition 2: (Zonotopic quadratic performance [17]): Given
an SPD matrix 𝑆 ∈ R𝑛×𝑛 and the unknown but zonotopically
bounded vector 𝑥 ∈ ⟨𝑐, 𝑅⟩ ⊂ R𝑛, the performance of 𝑥 is
evaluated according to Q

[
𝑥𝑇𝑆𝑥

]
= 𝑐𝑇𝑆𝑐 + ∥𝑅∥2

𝐹,𝑆
= 𝑐𝑇𝑆𝑐 +

Tr[𝑆𝑃], with 𝑃 = 𝑅𝑅𝑇 .

III. SWITCHED ZONOTOPIC KALMAN FILTER

In order to obtain the unmeasured states of the uncertain
switched system (1), we would like to estimate and bound the
uncertain system states 𝑥(𝑘),∀𝑘 ≥ 0 in a zonotopic set using a
SZKF. An optimal switched filter gain 𝜆𝜎 (𝑘 ) is used to reduce
the state estimation error with a measured output 𝑦(𝑘).

Theorem 1: (Estimation-type Switched Zonotopic Kalman
Filter) Consider the discrete-time switched system (1), let
X̂(𝑘) = ⟨𝑐(𝑘), 𝑅(𝑘)⟩ ∈ R𝑛𝑥 be the zonotopic estimated state,
where 𝑐(𝑘) ∈ R𝑛𝑥 and 𝑅(𝑘) ∈ R𝑛𝑥×𝑛𝑟 represent the center and
shape matrix, respectively. ↓𝑞,𝑊 𝑅(𝑘) is the reduced generator
matrix that is computed according to [4]. Assume that the initial
state 𝑥(𝑘) belongs to the set X̂(0) = ⟨𝑐(0), 𝑅(0)⟩, the estimated
state can be propagated as follows:

𝑐(𝑘 + 1) = 𝑐(𝑘 + 1) + 𝜆𝜎 (𝑘 )
(
𝑦(𝑘 + 1) − 𝐶𝜎 (𝑘 )𝑐(𝑘)

)
(2a)

𝑅(𝑘 + 1) =
[
Λ𝜎 (𝑘 )𝑅(𝑘 + 1) 𝜆𝜎 (𝑘 )𝐹𝜎 (𝑘 )

]
(2b)

𝑐(𝑘 + 1) = 𝐴𝜎 (𝑘 )𝑐(𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘) (3a)
𝑅(𝑘 + 1) =

[
𝐴𝜎 (𝑘 ) ↓𝑞,𝑊 𝑅(𝑘) 𝐸𝜎 (𝑘 )

]
(3b)

where Λ𝜎 (𝑘 )
Δ
= 𝐼𝑛𝑥 − 𝜆𝜎 (𝑘 )𝐶𝜎 (𝑘 ) ,

〈
𝑐(𝑘), 𝑅̄(𝑘)

〉
∈ R𝑛𝑥 is the

zonotopic predicted state, 𝑐(𝑘) ∈ R𝑛𝑥 and 𝑅̄(𝑘) ∈ R𝑛𝑥×𝑛𝑟
represent the predicted center and shape matrix, respectively.

Proof: Considering the inclusion 𝑥(𝑘) ∈ ⟨𝑐(𝑘), 𝑅(𝑘)⟩ and
assuming that the ↓𝑞,𝑊 preserves inclusion 𝑥(𝑘) ∈ ⟨𝑐(𝑘), ↓𝑞,𝑊
𝑅(𝑘)⟩ , the zonotopic predicted set can be computed as ⟨𝑐(𝑘 +
1), 𝑅̄(𝑘 + 1)⟩ = 𝐴𝜎 (𝑘 )

〈
𝑐(𝑘), ↓𝑞,𝑊 𝑅(𝑘)

〉
⊕ ⟨𝐵𝜎 (𝑘 )𝑢(𝑘), 0⟩ ⊕

⟨0, 𝐸𝜎 (𝑘 )⟩. Thus, the predicted state set (3a, 3b) is derived. Then,
the estimated state is updated as ⟨𝑐(𝑘 + 1), 𝑅(𝑘 + 1)⟩ = ⟨𝑐(𝑘 +
1), 𝑅̄(𝑘 + 1)⟩ ⊕ 𝜆𝜎 (𝑘 ) ⟨𝑦(𝑘 + 1), 𝐹𝜎 (𝑘 )⟩ ⊕ 𝜆𝜎 (𝑘 )𝐶𝜎 (𝑘 ) ⟨−𝑐(𝑘 +
1),−𝑅̄(𝑘 + 1)⟩. Therefore, the estimated state set (2a, 2b) is
derived.

Theorem 2: Given the switched system (1), ∀𝑖 ∈ I, the
optimal switched filter gain 𝜆𝑖 can be obtained if there exists
a matrix 𝑊𝑖 ∈ R𝑛𝑥×𝑛𝑦 , a positive definite matrix Γ ∈ R𝑛𝑥×𝑛𝑥



Fig. 1: Diagram of Switched Linear Quadratic Zonotopic control.

and a scalar 𝛾 that are obtained by solving the following LMI
optimization problem

min 𝛾, (4a)

𝑠.𝑡.,

[
𝛾𝐼𝑛𝑥 𝐼𝑛𝑥
𝐼𝑛𝑥 Γ

]
> 0 (4b)

−Γ ∗ ∗ ∗
𝐴𝑇
𝑖
(Γ −𝑊𝑖𝐶)𝑇 −Γ ∗ ∗

𝐸𝑇
𝑖
(Γ −𝑊𝑖𝐶)𝑇 0 −𝐼𝑛𝑤 ∗
𝑊𝑇
𝑖

0 0 −𝑀−1
𝑖

 ≤ 0 (4c)

where 𝜆𝑖 = Γ−1𝑊𝑖 , 𝑀𝑖 = 𝐹𝑖𝐹𝑇𝑖 .
Proof: As mentioned before, the optimal filter gain aims

to minimize the 𝐹𝑊 -radius of the state bounding zonotope, i.e.,
min 𝐽𝑒 = ∥𝑅(𝑘)∥2

𝐹,𝑊
. According to [4], the optimal observer

gain is independent of the weighting matrix 𝑊 . The optimal
observer gain is equivalently obtained through minimising the
following cost function

min 𝐽𝑒 = ∥𝑅(𝑘)∥2
𝐹 = Tr[𝑃(𝑘)] =

𝑛∑︁
𝑖=1

𝛾𝑖 (5)

where 𝑃(𝑘) = 𝑅(𝑘)𝑅𝑇 (𝑘), 𝛾1, 𝛾2, . . . , 𝛾𝑛 represent the eigen-
values of 𝑃. Therefore, a possible approach to minimize the
cost function 𝐽𝑒 is to minimize a given scalar 𝛾, s.t., 𝛾𝑖 < 𝛾. It
follows that

𝑃(𝑘) − 𝛾𝐼𝑛𝑥 < 0 (6)

Recalling that

𝑅(𝑘 + 1) = [Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )𝑅(𝑘) Λ𝜎 (𝑘 )𝐸𝜎 (𝑘 ) 𝜆𝜎 (𝑘 )𝐹𝜎 (𝑘 ) ],

it follows that

𝑃(𝑘 + 1) = Λ𝜎 (𝑘 )𝐸𝜎 (𝑘 )𝐸
𝑇
𝜎 (𝑘 )Λ

𝑇
𝜎 (𝑘 ) + 𝜆𝜎 (𝑘 )𝐹𝜎 (𝑘 )𝐹

𝑇
𝜎 (𝑘 )𝜆

𝑇
𝜎 (𝑘 )

+ Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )𝑃(𝑘)𝐴𝑇𝜎 (𝑘 )Λ
𝑇
𝜎 (𝑘 ) (7)

As LMI provides the solution for steady state, then, 𝑃(𝑘 + 1) =
𝑃(𝑘) = 𝑃𝐴𝑅𝐸 satisfies the following Algebraic Riccati Equation
(ARE)

Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )𝑃𝐴𝑅𝐸 (Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 ) )𝑇 + Λ𝜎 (𝑘 )𝐸𝜎 (𝑘 )𝐸
𝑇
𝜎 (𝑘 )Λ

𝑇
𝜎 (𝑘 )

− 𝑃𝐴𝑅𝐸 + 𝜆𝜎 (𝑘 )𝐹𝜎 (𝑘 )𝐹
𝑇
𝜎 (𝑘 )𝜆

𝑇
𝜎 (𝑘 ) = 0 (8)

According to [19], ∀𝜎(𝑘) = 𝑖 ∈ I the optimal value of the
following inequality equals the solution to the above ARE,

(𝐼 − 𝜆𝑖𝐶𝑖)𝐴𝑖𝑃((𝐼 − 𝜆𝑖𝐶𝑖)𝐴𝑖)𝑇 − 𝑃+
(𝐼 − 𝜆𝑖𝐶𝑖)𝐸𝑖𝐸𝑇𝑖 (𝐼 − 𝜆𝑖𝐶𝑖)𝑇 + 𝜆𝑖𝐹𝑖𝐹𝑇𝑖 𝜆𝑇𝑖 ≤ 0 (9)

Let Γ = 𝑃−1, 𝑊𝑖 = Γ𝜆𝑖 , 𝑀𝑖 = 𝐹𝑖𝐹
𝑇
𝑖

, and multiplying by Γ on
the left and right of equation (9) yields to

(Γ −𝑊𝑖𝐶𝑖)𝐴𝑖Γ−1𝐴𝑇𝑖 (Γ −𝑊𝑖𝐶𝑖)𝑇 − Γ+
(Γ −𝑊𝑖𝐶𝑖)𝐸𝑖𝐸𝑇𝑖 (Γ −𝑊𝑖𝐶𝑖)𝑇 +𝑊𝑖𝑀𝑖𝑊𝑇

𝑖 ≤ 0 (10)

which is equivalent to

− Γ − [(Γ −𝑊𝑖𝐶𝑖)𝐴𝑖 (Γ −𝑊𝑖𝐶𝑖)𝐸𝑖 𝑊𝑖]
−Γ−1 0 0

0 −𝐼 0
0 0 −𝑅𝑖



𝐴𝑇
𝑖
(Γ −𝑊𝑖𝐶𝑖)𝑇

𝐸𝑇
𝑖
(Γ −𝑊𝑖𝐶𝑖)𝑇
𝑊𝑇
𝑖

 ≤ 0 (11)

Now, applying Schur complement, it follows (4c). Considering
Γ = 𝑃−1, the previous condition (6) becomes 𝛾𝐼𝑛𝑥 − Γ−1 > 0,

i.e.,
[
𝛾𝐼𝑛𝑥 𝐼𝑛𝑥
𝐼𝑛𝑥 Γ

]
> 0. Then, the optimization problem (4)

should be solved by minimizing the value of 𝛾. Hence, we
complete the proof.

IV. SWITCHED LINEAR QUADRATIC ZONOTOPIC
CONTROL

The SLQZ control scheme is based on the optimal feedback of
the estimated bounding state 𝑥(𝑘) ∈ ⟨𝑐(𝑘), 𝑅(𝑘)⟩ to the system
input via the optimal controller gain 𝐾𝜎 (𝑘 ) , as depicted by Fig.
1. Now, a zonotopic quadratic cost function is given for the
proposed control scheme

𝐽 = Q
[ ∞∑︁
𝑘=0

(
𝑥𝑇 (𝑘)𝑊 𝑥

𝜎 (𝑘 )𝑥(𝑘) + 𝑢
𝑇 (𝑘)𝑊𝑢

𝜎 (𝑘 )𝑢(𝑘)
)]
. (12)

Usually, the switched weighting matrices𝑊 𝑥
𝜎 (𝑘 ) and𝑊𝑢

𝜎 (𝑘 ) are
implemented as diagonal matrices.

A. Separation Principle
In the following, it is proved that the proposed switched filter

gain 𝜆𝜎 (𝑘 ) and controller gain 𝐾𝜎 (𝑘 ) can be designed separately



for the following closed-loop system:
𝑥(𝑘 + 1)= 𝐴𝜎 (𝑘 )𝑥(𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘) + 𝑤𝜎 (𝑘 ) ,

𝑦(𝑘)= 𝐶𝜎 (𝑘 )𝑥(𝑘) + 𝑣𝜎 (𝑘 ) ,
𝑐(𝑘 + 1)= Λ𝜎 (𝑘 ) (𝐴𝜎 (𝑘 )𝑐(𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘)) + 𝜆𝜎 (𝑘 ) 𝑦(𝑘 + 1),
𝑅(𝑘 + 1)= [Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )𝑅(𝑘) Λ𝜎 (𝑘 )𝐸𝜎 (𝑘 ) 𝜆𝜎 (𝑘 )𝐹𝜎 (𝑘 ) ],

𝑢(𝑘)= −𝐾𝜎 (𝑘 )𝑐(𝑘)
In this regard, the SLQZ design is decomposed into two

independent problems: 1) the optimization of the switched LQR
control of the nominal plant; 2) the optimization of the estimated
state 𝑥 from the measurements 𝑦.

Theorem 3: The optimal control of the system (1), with the
cost functional (12), is obtained by taking the optimal control law
𝑢(𝑘) = −𝐾𝜎 (𝑘 )𝑥𝑐 (𝑘), calculated for the corresponding nominal
system,

𝑥𝑐 (𝑘 + 1) = 𝐴𝜎 (𝑘 )𝑥𝑐 (𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘), (13)

with the cost function

𝐽𝑐 =

∞∑︁
𝑘=0

(
𝑥𝑇𝑐 (𝑘)𝑊 𝑥

𝜎 (𝑘 )𝑥𝑐 (𝑘) + 𝑢
𝑇 (𝑘)𝑊𝑢

𝜎 (𝑘 )𝑢(𝑘)
)
. (14)

The nominal plant state 𝑥𝑐 (𝑘) is then replaced by its optimal
estimate 𝑐(𝑘), obtained by the SZKF (3-2) with the optimal
filter gain 𝜆𝜎 (𝑘 ) calculated using the minimization of the cost
function

𝐽𝑒 = ∥𝑅(𝑘)∥2
𝐹,𝑊 (15)

Proof: Denote the estimation error as 𝑒(𝑘 + 1) = 𝑥(𝑘 +
1) − 𝑐(𝑘 + 1), considering the estimated center

𝑐(𝑘 + 1) = Λ𝜎 (𝑘 ) (𝐴𝜎 (𝑘 )𝑐(𝑘) + 𝐵𝜎 (𝑘 )𝑢(𝑘)) + 𝜆𝜎 (𝑘 ) 𝑦(𝑘 + 1)
the error dynamics is given by

𝑒(𝑘 + 1) = Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )𝑒(𝑘) + Λ𝜎 (𝑘 )𝑤𝜎 (𝑘 ) − 𝜆𝜎 (𝑘 ) 𝑣𝜎 (𝑘 ) .

Replacing the input by 𝑢(𝑘) = −𝐾𝜎 (𝑘 )𝑐(𝑘), the system state
equation becomes 𝑥(𝑘 + 1) = 𝐴𝜎 (𝑘 )𝑥(𝑘) − 𝐵𝜎 (𝑘 )𝐾𝜎 (𝑘 )𝑐(𝑘) +
𝑤𝜎 (𝑘 ) = (𝐴𝜎 (𝑘 )−𝐵𝜎 (𝑘 )𝐾𝜎 (𝑘 ) )𝑥(𝑘)+𝐵𝜎 (𝑘 )𝐾𝜎 (𝑘 )𝑒(𝑘)+𝑤𝜎 (𝑘 ) .
Therefore, the composite system (controller+filter) is described
as follows.[
𝑥(𝑘 + 1)
𝑒(𝑘 + 1)

]
=

[
𝐴𝜎 (𝑘 ) − 𝐵𝜎 (𝑘 )𝐾𝜎 (𝑘 ) 𝐵𝜎 (𝑘 )𝐾𝜎 (𝑘 )

0 Λ𝜎 (𝑘 ) 𝐴𝜎 (𝑘 )

] [
𝑥(𝑘)
𝑒(𝑘)

]
+
[

𝐼 0
Λ𝜎 (𝑘 ) −𝜆𝜎 (𝑘 )

] [
𝑤𝜎 (𝑘 )
𝑣𝜎 (𝑘 )

]
(16)

It reveals that the dynamics of the estimation error is completely
decoupled from that of the state. It is notable that 𝑥(𝑘) =

𝑐(𝑘) + 𝑒(𝑘) ∈ ⟨𝑐(𝑘), 𝑅(𝑘)⟩. According to Definition 2, the
cost function (12) can be rewritten as

𝐽 = Q
[ ∞∑︁
𝑘=0

(
𝑥𝑇 (𝑘)𝑊 𝑥

𝜎 (𝑘 )𝑥(𝑘) + 𝑢
𝑇 (𝑘)𝑊𝑢

𝜎 (𝑘 )𝑢(𝑘)
)]

=

∞∑︁
𝑘=0

(
𝑐𝑇 (𝑘)𝑊 𝑥

𝜎 (𝑘 )𝑐(𝑘) + 𝑢
𝑇 (𝑘)𝑊𝑢

𝜎 (𝑘 )𝑢(𝑘)
)

+
∞∑︁
𝑘=0

∥𝑅(𝑘)∥2
𝐹,𝑊

𝑥
𝜎 (𝑘 ) (17)

The first part in expression (17) yields the part which will be
minimized by a suitable choice of the sequence of control signals
𝑢(𝑘). The second part will be minimized as well by selecting a
suitable filter gain 𝜆𝜎 (𝑘 ) to get the optimal estimate of 𝑥(𝑘).

B. Optimal Switched Controller Gain Design
In order to stabilize the switched system (1) for any admissible

switching signal 𝜎(𝑘), the following Theorem 4 is proposed for
computing the optimal robust controller 𝑢(𝑘) = −𝐾𝜎 (𝑘 )𝑥𝑐 (𝑘)
through minimizing the cost function (14).

Theorem 4: Given the nominal switched system (13),∀𝑖 ∈ I,
the optimal controller gain 𝐾𝑖 can be obtained if there exists a
matrix 𝑍𝑖 ∈ R𝑛𝑥×𝑛𝑢 , a positive definite matrixΥ ∈ R𝑛𝑥×𝑛𝑥 and a
scalar 𝛾 that are obtained by solving the following optimization
problem

min 𝛾 (18a)

𝑠.𝑡.,

[
𝛾𝐼𝑛𝑥 𝐼𝑛𝑥
𝐼𝑛𝑥 Υ

]
> 0 (18b)

−Υ ∗ ∗ ∗
𝐴𝑖Υ − 𝐵𝑖𝑍𝑖 −Υ ∗ ∗

𝐻𝑖Υ 0 −𝐼𝑛𝑥 ∗
𝑍𝑖 0 0 −𝑊𝑢

𝑖
−1

 < 0 (18c)

with 𝐾𝑖 = 𝑍𝑖Υ−1, 𝐻𝑇
𝑖
𝐻𝑖 = 𝑊

𝑥
𝑖

.
Proof: For all 𝜎(𝑘) = 𝑖 ∈ I, let us choose a common

Lyapunov function: 𝑉 (𝑥𝑐 (𝑘)) = 𝑥𝑇𝑐 (𝑘)𝑃𝑥𝑐 (𝑘)), 𝑃 = 𝑃𝑇 > 0,
satisfying the following conditions:

𝑉 (𝑥𝑐 (0)) < 𝛾 (19)

𝑉 (𝑥𝑐 (𝑘 + 1)) −𝑉 (𝑥𝑐 (𝑘)) + 𝑥𝑇𝑐 (𝑘)𝑊 𝑥
𝑖 𝑥𝑐 (𝑘) + 𝑢𝑇 (𝑘)𝑊𝑢

𝑖 𝑢(𝑘) < 0
(20)

Therefore,

𝑉 (𝑥𝑐 (∞)) −𝑉 (𝑥𝑐 (0))+
∞∑︁
𝑘=0

(
𝑥𝑇𝑐 (𝑘)𝑊 𝑥

𝑖 𝑥𝑐 (𝑘) + 𝑢𝑇 (𝑘)𝑊𝑢
𝑖 𝑢(𝑘)

)
< 0, (21)

which we can rewrite as 𝐽𝑐 < 𝑉 (𝑥𝑐 (0)) < 𝛾. In this context, the
cost function 𝐽𝑐 is minimized along with the objective scalar 𝛾.

Recalling that

𝑉 (𝑥𝑐 (𝑘 + 1)) = 𝑥𝑇𝑐 (𝑘 + 1)𝑃𝑥𝑐 (𝑘 + 1)
= ((𝐴𝑖 − 𝐵𝑖𝐾𝑖)𝑥𝑐 (𝑘))𝑇𝑃((𝐴𝑖 − 𝐵𝑖𝐾𝑖)𝑥𝑐 (𝑘)),

Inequality (20) is equivalent to

(𝐴𝑖 − 𝐵𝑖𝐾𝑖)𝑇𝑃(𝐴𝑖 − 𝐵𝑖𝐾𝑖) − 𝑃 +𝑊 𝑥
𝑖 + 𝐾𝑇𝑖 𝑊𝑢

𝑖 𝐾𝑖 < 0. (22)

Applying Schur complementation, (22) can be rewritten as the
following inequality:

−Υ ∗ ∗ ∗
𝐴𝑖Υ − 𝐵𝑖𝑍𝑖 −Υ ∗ ∗

𝐻𝑖Υ 0 −𝐼 ∗
𝑍𝑖 0 0 −𝑄𝑢

𝑖
−1

 < 0 (23)

where Υ = 𝑃−1, 𝑍𝑖 = 𝐾𝑖Υ. Furthermore, the condition (19)
can be rewritten as 𝛾𝐼𝑛𝑥 − Υ−1 > 0, i.e.,

[
𝛾𝐼𝑛𝑥 𝐼𝑛𝑥
𝐼𝑛𝑥 Υ

]
> 0.

Then, the switched state feedback matrix 𝐾𝑖 can be obtained by
solving the LMIs (18), by letting 𝐾𝑖 = 𝑍𝑖Υ−1.

Remark 1: It is worth noting that the optimal filter gain of
the SLQZ control scheme is calculated directly using Theorem
2, as the weighting matrix𝑊 𝑥

𝜎 (𝑘 ) is not related to the calculation
of the optimal filter gain [4].



V. CASE STUDY

In this section, a vehicle lateral dynamics nonlinear model is
given as the following state equation:[ ¤𝛽

¥𝜓

]
=


− 𝑐 𝑓 +𝑐𝑟
𝑚𝑣𝑥

𝑐𝑟 𝑙𝑟−𝑐 𝑓 𝑙 𝑓
𝑚𝑣2

𝑥
− 1

𝑐𝑟 𝑙𝑟−𝑐 𝑓 𝑙 𝑓
𝐼𝑧

−
𝑐𝑟 𝑙

2
𝑟+𝑐 𝑓 𝑙2𝑓
𝐼𝑧𝑣𝑥


[
𝛽
¤𝜓

]
+
[

𝑐 𝑓

𝑚𝑣𝑥
𝑐 𝑓 𝑙 𝑓

𝐼𝑧

]
𝛿 𝑓

(24)
where 𝛽 and ¤𝜓 are vehicle sideslip angle and yaw rate, 𝛿 𝑓 is the
steering angle, 𝑚 and 𝐼𝑧 are the mass and the yaw moment, 𝑣𝑥 is
the longitudinal velocity, 𝑙 𝑓 and 𝑙𝑟 are the distances from front
and rear axle to the center of gravity, 𝑐 𝑓 , 𝑐𝑟 are the cornering
stiffness of front and rear tires. Note that the yaw rate ¤𝜓 and
longitudinal speed 𝑣𝑥 can be measured online.

The bicycle model (24) is first discretized using the Euler’s
discretization method, with the sampling time T= 0.01s. Then,
a switched representation of the model (24) is generated where
each subsystem operates around a given constant longitudinal
velocity value (for example, three subsystems defined for
low, average and high longitudinal speed). Then, a switching
signal depending on the measured longitudinal velocity 𝑣𝑥 is
considered as follows:

𝜎(𝑘) =


1 𝑖 𝑓 10𝑚.𝑠−1 < 𝑣𝑥 ≤ 13𝑚.𝑠−1

2 𝑖 𝑓 13𝑚.𝑠−1 < 𝑣𝑥 ≤ 16𝑚.𝑠−1

3 𝑖 𝑓 16𝑚.𝑠−1 < 𝑣𝑥 ≤ 20𝑚.𝑠−1
(25)

and three local models are obtained with the considered
switching law shown in Fig.2.

0 1000 2000 3000 4000 5000 6000 7000 8000
1

2

3

Fig. 2: Switching signal 𝜎(𝑘)

Note that environmental disturbances, as well as nonmodelled
effects are added to the vehicle model through additive state
disturbance and measurement noise vectors 𝑤𝜎 (𝑘 ) and 𝑣𝜎 (𝑘 ) ,
satisfying |𝑤𝜎 (𝑘 ) | ≤ [0.002 0.01]𝑇 , |𝑣𝜎 (𝑘 ) | ≤ 0.03.

As the objective is to design a reference tracking control of
the vehicle lateral dynamics using the proposed SLQZ control.
The goal of this controller is to ensure that the vehicle tracks a
desired reference trajectory by regulating the steering angle 𝛿 𝑓 .
The desired sideslip angle and yaw rate are given as follows

𝛽ref =
𝑙𝑟 −

𝑙 𝑓𝑚𝑣
2
𝑥

𝐶𝑟 (𝑙 𝑓 +𝑙𝑟 )

ℓ 𝑓 + ℓ𝑟 +
𝑚𝑣2

𝑥 (ℓ𝑟𝐶𝑟−ℓ 𝑓𝐶 𝑓 )
𝐶 𝑓𝐶𝑟 (ℓ 𝑓 +ℓ𝑟 )

𝛿𝑟𝑒 𝑓 (26)

¤𝜓ref =
𝑣𝑥

ℓ 𝑓 + ℓ𝑟 +
𝑚𝑣2

𝑥 (ℓ𝑟𝐶𝑟−ℓ 𝑓𝐶 𝑓 )
𝐶 𝑓𝐶𝑟 (ℓ 𝑓 +ℓ𝑟 )

𝛿𝑟𝑒 𝑓 (27)

As the trajectory planner has full-state information, a full-state
feedback controller can be designed. By denoting the difference
between the desired sideslip angle, yaw rate and steering angle
(𝛽𝑟𝑒 𝑓 , ¤𝜓𝑟𝑒 𝑓 , 𝛿𝑟𝑒 𝑓 ) and the real vehicle sideslip angle, yaw rate

and steering angle (𝛽, ¤𝜓, 𝛿 𝑓 ) as 𝑥𝑒 =

[
𝛽𝑟𝑒 𝑓
¤𝜓𝑟𝑒 𝑓

]
−
[
𝛽
¤𝜓

]
, 𝑢𝑒 =

𝛿𝑟𝑒 𝑓 −𝛿 𝑓 , the nominal reference tracking model can be obtained:

𝑥𝑒 (𝑘 + 1) = 𝐴𝜎 (𝑘 )𝑥𝑒 (𝑘) + 𝐵𝜎 (𝑘 )𝑢𝑒 (𝑘) (28)

Then, the real input of the vehicle is represented as 𝑢(𝑘) =

𝐾𝜎 (𝑘 )𝑥𝑒 (𝑘) + 𝑢𝑟𝑒 𝑓 (𝑘), where 𝐾𝜎 (𝑘 ) is the switched controller
gain to be designed. As the system states are not fully available,
a SZKF is employed to obtain the optimal estimated states
bounded by a zonotope set 𝑥(𝑘) ∈ ⟨𝑐(𝑘), 𝑅(𝑘)⟩, as well as
to deal with the uncertainty problem.

By assigning 𝑊 𝑥
𝜎 (𝑘 ) =

[
0.1 0
0 0.5

]
, 𝑊𝑢

𝜎 (𝑘 ) = 0.01, and
solving the LMI optimization problem (18) and (4) by means of
YALMIP toolbox, we have

𝐾1 = [0.6276 3.2898] , 𝐾2 = [0.5988 3.3257] ,

𝐾3 = [0.5793 3.3472] , 𝜆1 = [0.0076 0.2603]𝑇 ,

𝜆2 = [0.0071 0.2661]𝑇 , 𝜆2 = [0.0068 0.2724]𝑇 .

The derived controller and observer are applied to the switched
linear system (24). The tracking control and state estimation per-
formance are presented in Fig. 3-4. Fig. 3 depicts a comparison
between the reference states and real/estimated states (center
value of the zonotopic estimated states). Fig. 4 shows that the
proposed SZKF, providing tight bounds for the estimation, is a
successful extension of [4] to switched systems. To validate
the robustness of the proposed architecture with respect to
unmodeled vehicle dynamics, the designed switched controller
and observer are tested using a high fidelity nonlinear vehicle
model employing the nonlinear Magic Formula for lateral force
modeling [20]. The results are depicted in Fig. 5. It reveals a
comparison between the reference and the vehicle trajectories
in the world coordinates, and the lateral and heading offsets.
From this figure, it is evident that the proposed algorithm can
achieve good performance in terms of trajectory tracking for
both simplified and highly nonlinear vehicle models. It is worth
noting that the lateral and heading offsets could be further
minimized by employing a multiple Lyapunov function in the
design procedure, thus mitigating the conservatism resulting
from the use of a common function for all modes.

VI. CONCLUSIONS AND FUTURE WORKS

This letter proposed a zonotope-based feedback control
scheme for uncertain switched systems. In order to obtain the
unmeasurable states and achieve robustness, a ZKF has been
employed and extended to switched systems. Moreover, the
optimal filter gain is calculated offline by solving an LMI
optimization problem. Then, an SLQZ control scheme has
been proposed, in which the optimal switched controller and
filter have been designed separately according to the separation
principle. Finally, the proposed method has been validated in
simulation via a reference tracking control of vehicle lateral
dynamics. The simulation results revealed the effectiveness of
the proposed SLQZ control scheme. Future work will explore
a switched Lyapunov function for designing the controller/filter
gain to reduce the conservativeness.
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Fig. 3: Tracking performance (a) Sideslip angle, (b) Yaw rate.
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Fig. 4: State estimation performance with the proposed ZKF. (a)
Estimated sideslip angle, (b) Estimated yaw rate.
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