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Abstract: Recovering multi-person 3D poses from a single RGB image is an ill-conditioned problem due to the inherent
2D-3D depth ambiguity, inter-person occlusions, and body truncation. To tackle these issues, recent works
have shown promising results by simultaneously reasoning for different individuals. However, in most cases
this is done by only considering pairwise inter-person interactions or between pairs of body parts, thus hin-
dering a holistic scene representation able to capture long-range interactions. Some approaches that jointly
process all people in the scene require defining one of the individuals as a reference and a pre-defined person
ordering or limiting the number of individuals thus being sensitive to these choice. In this paper, we overcome
both these limitations, and we propose an approach for multi-person 3D pose estimation that captures long-
range interactions independently of the input order. We build a residual-like permutation-invariant network
that successfully refines potentially corrupted initial 3D poses estimated by off-the-shelf detectors. The resid-
ual function is learned via a Set Attention (Lee et al., 2019) mechanism. Despite of our model being relatively
straightforward, a thorough evaluation demonstrates that our approach is able to boost the performance of the
initially estimated 3D poses by large margins, achieving state-of-the-art results on two standardized bench-
marks.

1 Introduction

Estimating 3D human pose from RGB images is a
long-standing problem in computer vision, with broad
applications in, e.g., action recognition, AR/VR, and
human-robot interaction. With the important ad-
vancements of single person 3D pose from monocular
images (Li and Chan, 2014; Mehta et al., 2017b; Zhou
et al., 2017; Pavlakos et al., 2018; Sun et al., 2018;
Martinez et al., 2017) as inspiration, the community
has focused on extending this success to the multi-
person setting. This setting introduces additional
challenges to the single person setup due to inter-
person occlusions, truncation, and depth/size ambigu-
ity when estimating the root depth of each individual.
In order to tackle these problems, sequential (Zanfir
et al., 2018a; Cheng et al., 2021) and multi-camera
systems (Dong et al., 2019; Lin and Lee, 2021; Tu
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et al., 2020; Wu et al., 2021) have been exploited.
In contrast, in this paper we aim to address the most
constricting version of the problem: multi-people 3D
pose estimation from one single view.

On the last couple of years, important advance-
ments have been made in this area (Rogez et al.,
2017; Rogez et al., 2019; Moon et al., 2019; Zhen
et al., 2020; Wang et al., 2020; Mehta et al., 2020;
Jiang et al., 2020; Sun et al., 2021). However, while
these approaches have shown impressive results, the
problem of multi-person 3D pose estimation remains
quite challenging and not yet fully solved. So far,
two main different paradigms dominate the existing
works: top-down and bottom-up approaches. These
approaches have different benefits and strengths, and
often they exhibit a trade-off between root-relative
pose precision and scale/depth accuracy, among oth-
ers. None of these approaches fully exploit spatial
relationships among individuals which are key to im-
prove reconstructions, as we show in this work.

While it is true that bottom-up approaches are de-
signed to capture and use interactions in a given image
to produce 3D pose estimations, these interactions do
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Figure 1: Given a set of potentially noisy input 3D poses,
we leverage on the Set Transformer architecture (Lee et al.,
2019) to compute a holistic encoding of all poses. This en-
coding which can take an arbitrarily large number of poses
in any order, helps to predict a residual for each pose and
refine the initial estimates. The approach is robust to large
errors on the initial poses. Note how our refinement cor-
rects the scale and translation of person P2. Our model
also shows improvements in the root-relative pose (see main
text).

not correspond to whole poses or whole individuals.
In contrast, they refer to interactions between depths
or positions between specific joints. A interesting ex-
amples of this approach are (Mehta et al., 2020; Zhen
et al., 2020). (Mehta et al., 2020) captures interactions
between groups of joints by enforcing a 3D interme-
diate representation that follows the kinematic chain,
limiting these interactions to local regions of the body,
while (Zhen et al., 2020) only captures relative-depth
relations between joints from image cues. Further-
more, both of these approaches present refinement
steps to complete missing occluded joints, refine the
position of joints or get and estimate of the absolute
depth per individual. They do this, however, in a per-
individual basis without taking into account all the
persons at the same time. On the other hand, top-
down approaches do not take into account interactions
at all.

A reduced number of works have proposed strate-
gies to better exploit multi-person relations. For in-
stance, (Wang et al., 2020) and (Jiang et al., 2020)
try to remedy top-down approaches lack of global
context by using ordinal depth losses between indi-
viduals. However, they use only ordinal information
and reason about multiple people in a local neighbor-
hood in a strictly pairwise manner. There are other
works that acknowledge this limitation and similar to
us they exploit the spatial relation among all individ-
uals in the image. However, their applicability is lim-
ited by their design choices. For example, (Guo et al.,
2021) is sensitive to permutations in the input order as
it uses RNNs as their main architecture. (Cha et al.,
2022) limit their model to a maximum of 3 persons,
and (Fieraru et al., 2021) rely on direct supervision
for modeling close-contact human interactions which
comes from time-consuming and hard-to-obtain an-
notations.

In order to overcome the limitations of previous
approaches, we propose a novel scheme to model peo-
ple interactions in a holistic and permutation-invariant

fashion. We get inspiration from (Guo et al., 2021;
Fieraru et al., 2021; Wang et al., 2020) that show that
it is possible to exploit spatial information between
individuals. We are equally inspired by from (Cha
et al., 2022; Zhen et al., 2020; Mehta et al., 2020)
that show that capturing interactions is possible and
that refinement steps in a pose estimation pipeline are
important to overcome challenges such as occlusion,
truncation, and improved depth prediction. Further-
more, we build on top of a principled approach (Lee
et al., 2019) and take advantage of two key character-
istics of transformer attention models: their impres-
sive capability of capturing relations between its in-
puts and their permutation-invariant property (set at-
tention). This allows us to simultaneously process the
poses of all individual and exploit contextual informa-
tion in the form of intra and inter-person relationships.
Figure 1 shows how our model refines the initial pose
estimations and yields more correct ones, even under
occlusions. By capturing the interactions between in-
put poses, our model can improve the pose, transla-
tion, and scale of the people in the scene.

We thus pose our model as a refinement network
capable of exploiting the spatial relations among all
individuals. Our key insight is that people that share
a common activity often have similar or correlated
poses. We model an individual’s pose as an entity
consisting of joints and consider the whole pose of a
person to exploit global information and inter-person
relations to improve initial 3D pose estimations. The
approach is relatively straightforward, yet achieves
results that significantly outperform the latest state of
the art. Interestingly, our model runs efficiently and
works with both top-down and bottom-up approaches,
thus can be potentially used as a post-processing mod-
ule on top of any pose estimation method with negli-
gible computation overhead.

We perform extensive experiments on on
MuPoTS-3D (Mehta et al., 2018), Panoptic (Joo
et al., 2015) and show our model’s capabilities to
perform under specific scenarios on the NBA2K (Zhu
et al., 2020) dataset. We also carefully ablate the
model’s capabilities of capturing interactions and
present an extensive analysis of these interactions. In
summary, our key contributions are the following: (1)
We introduce a novel approach to capture the rela-
tionship among the 3D poses of multiple people. (2)
Our model does not depend on the input order (i.e.,
permutation-invariant) and can handle an arbitrarily
large number of people. (3) We present extensive
experiments and analysis that validate our approach.
(4) The proposed module is computationally efficient
and could potentially be used along with any 3D pose
detector.



2 Related work

Multi-person 3D Pose Estimation. We focus on
the use of monocular static images. In this area, there
exist two types of approaches. First, top-down (Ro-
gez et al., 2019; Moon et al., 2019; Lin and Lee, 2020;
Dabral et al., 2019) lead to more accurate root-relative
pose results but are more sensitive to inter-person oc-
clusions and truncation as they discard contextual in-
formation and focus individually on each person. Sec-
ond, bottom-up (Mehta et al., 2017b; Mehta et al.,
2018; Mehta et al., 2017a; Mehta et al., 2020; Zhen
et al., 2020; Zhang et al., 2022; Qiu et al., 2022; Liu
et al., 2022) which are more robust to occlusions and
truncation as they use global reasoning over image
information. However, they suffer scale variations
and pose accuracy is compromised. Recently, a new
trend to integrate both approaches has emerged (Wang
et al., 2020; Khirodkar et al., 2022; Wang et al.,
2022a; Jin et al., 2022).

Human-Human Interaction and Context. The
idea of using human-human interaction information
to improve 3D human pose estimation was first pro-
posed by (Andriluka and Sigal, 2012). However, it
was not until recently that the community shifted its
attention to exploiting this information. (Jiang et al.,
2020) and (Wang et al., 2020) exploit depth-order
relationships between people. Though it has been
shown that depth ordering losses help improve 3D hu-
man pose estimation (Pavlakos et al., 2018), they dis-
regard the magnitude. As a consequence, this type of
supervision is mostly coarse. (Cheng et al., 2021) pro-
pose a pose discriminator to capture two-person inter-
actions. However, aside from using video as input, the
discriminator captures interactions of only two people
at a time. Our model captures the interaction informa-
tion of all people in the scene at the same time. Clos-
est to our approach, (Guo et al., 2021) and (Fieraru
et al., 2021) propose interacting networks to exploit
human-to-human interaction information.

Permutation invariant models We capture the in-
teraction of people in a permutation-invariant manner,
thus the order we input each person to our model does
not matter. Therefore, we treat all the poses as ele-
ments of a set. (Santoro et al., 2017) proposes a rela-
tional network that allows capturing pairwise interac-
tions of elements in a given set. However, we want to
model higher-order interactions as the pose of a per-
son may affect (or be affected by) not one but multiple
other persons directly or indirectly. (Ma et al., 2018)
use a Transformer (Vaswani et al., 2017) to model
high-order interactions between objects. However,

they use mean-pooling to obtain aggregated features
where interaction information may be lost. More
suited to our problem, we choose (Lee et al., 2019)
as our base architecture.

3 Method

The key idea of our approach is to implicitly capture
the interaction information between all human body
poses in a scene and use it to refine an initial set of
3D pose estimations. We represent this information
with an interaction embedding. People in a scene
are usually involved in a specific interaction and this
constrains the range of possible poses. Thus, we ar-
gue that learning pose correlations can improve ini-
tial noisy estimations. Inspired by the effectiveness of
Transformers (Vaswani et al., 2017) to capture corre-
lations, we use the Set Transformer (Lee et al., 2019),
a model unaffected by the order of its inputs. In
short, we obtain an information-rich and permutation-
invariant interaction embedding that captures human-
to-human interactions and use it to refine each per-
son’s pose.

3.1 Relational Network for
Multi-person 3D Pose

Let I ∈ RH×W×3 be an input RGB image with N peo-
ple interacting in the same scene and p1:N to be the
set of 3D joints corresponding to each person where
pn ∈ RJ×3 with J number of estimated joints and n
a number in the range {1, ...,N}. These joints are ob-
tained from an initial estimation using an off-the-shelf
3D pose estimator, such as (Moon et al., 2019). All N
poses are assumed to be represented in absolute cam-
era coordinates.

Given the previous definitions, we aim to improve
each initial pose estimation pn taking into account the
pose of all the people present in the scene. These
initial estimations could be inaccurate as they are
sensitive to inter-person occlusions, self-occlusions,
scale/depth ambiguity, and truncation. Although the
latter does not originate from a lack of interaction in-
formation, we shall see that our model also deals with
these cases. This is because, aside from modeling in-
teraction information, our model also captures the er-
ror distribution of the initial estimation method.

The mapping between these initial estimations
and the refined poses takes the form q1:N = Φ(p1:N),
where q1:N refers to the set of poses {q1, ...,qn} re-
fined by exploiting the interactions, and qn ∈ RJ×3.
The function Φ materializes as a neural-network ca-
pable of extracting interaction information between
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Figure 2: Overview of our approach. Given an input image (a), we first estimate the 3D keypoints as the initialization (b).
Then, we input these initial estimations in the form of a set (hence the keys) to our interaction-based permutation-invariant
model. We obtain the interaction-based embedding ( f ) and concatenate it with another embedding for each person. This
person embedding is calculated as a projection from the input space to the same dimension as f via a feed-forward layer,
denoted FF. We use an MLP network to get the corrections of the initial estimations (b) and compute the final estimations (d)
by adding these corrections to the initial poses. We show the poses of the people with bounding boxes in the image just for
clarity. Our model inputs all the poses in the scene.

the input poses p1:N and refining them.
For this purpose, we split the problem into two

parts: First, we obtain an embedding (interaction em-
bedding) able to capture the interactions of the scene;
second, we use this to refine the initial poses. The
interaction embedding f is a d-dimensional vector
where d is a hyperparameter of our model. The em-
bedding f , obtained via Set Transformer blocks, aims
to globally capture interactions between people from
the initial estimations p1:N . Specifically,

f = G(p1:N), (1)

where G is a neural network composed of the Set
Transformer elements described in the next section.
Ideally, we are looking for a function G capable of
capturing the embedding regardless the input order
and the number of people in the scene. If we explic-
itly take into account the interaction embedding, we
can express the relation between the initial and refined
estimations as:

q1:N = Φ( f , p1:N), (2)

where Φ is our full model described in more detail in
Sec. 3.3 and depicted in Fig. 2.

3.2 Computing interaction embeddings

As stated before, our interaction embedding f should
comply with two key requirements to model the in-
teraction information: (1) being independent of the
order of the input person’s body joints and (2) being
able to process input scenes containing any number
of people. Requirement (1) comes from the fact that
we do not want the input order of our model to affect
the pose refinement. Only the information regarding
interaction between people’s body poses should affect
the refinement. Both requirements are not easily sat-
isfied by classical feed-forward neural networks, and
recursive neural networks (RNNs) are sensitive to the
input order (Vinyals et al., 2015). Thus, to get the
desired interaction embedding, we base our model in
an attention-based permutation-invariant neural net-
work. For this purpose, we take components from
the Set Transformer (Lee et al., 2019). Choosing an
attention-based architecture for our model and work-
ing with sets as inputs allows us to: compute a vari-
able number of input poses, disregard the input order,
and naturally encode interaction between these ele-
ments. In this manner, we are able to attend to any
person’s initial pose and obtain a rich permutation-
invariant embedding that captures the interactions in
the scene. We then use this feature to guide the pose



refinement process.
In our context, we treat the initial pose estima-

tions p1:N as a set ((b) in Fig. 2). Thus, our model at-
tends to each person’s joints and first generates an em-
bedding for each person using a Set Attention Block
(SAB). Later, these individual embeddings are aggre-
gated in a learned fashion using a Pooling by Multi-
head Attention (PMA) operation, providing us the in-
teraction embedding f . For a formal definition of the
SAB and PMA modules, we refer the reader to (Lee
et al., 2019).

The SAB module used here emerges as an adapta-
tion of the encoder block of the Transformer (Vaswani
et al., 2017). To build the SAB, dropout and the posi-
tional encoding are discarded. This module uses self-
attention to concurrently encode the input set. This
allows to capture pairwise and higher-order relation-
ships among instances during the encoding process.
The output of the SAB contains information about
pairwise interactions among the elements of the in-
put set X and can be stacked K times by more of the
same modules to capture higher than pairwise inter-
actions. In our context, X is composed by the set of
initial pose estimations p1:N , thus, X = {p1, ..., pn}.

To obtain a permutation-invariant feature, we use
the Pooling by Multihead Attention (PMA) operation
which aggregates the features obtained by the SAB.
This constitutes a key step to make f permutation-
invariant. The PMA operation aggregates the features
by applying multi-head attention on a learnable set
of k seed vectors S ∈ Rk×d . In our case, k = 1, as
we only have one embedding to represent the whole
scene. At the output of the PMA block, we find the
desired interaction embedding. Under the definitions
provided before, we define our embedding in the fol-
lowing manner:

f = PMA1(SAB(X)) . (3)

3.3 Pose refinement via interaction
information

Once we have the feature f , we use them to refine
the initial 3D human pose estimations. For this, we
employ an MLP that takes as input f concatenated
with a projection of each person’s joints into a d-
dimensional vector. This projection is done via a
feed-forward layer, denoted FF. Finally, the MLP out-
puts a vector (δ) containing all the correction values
needed to improve each of the initial joints locations
in 3D space. We define correction vector as:

δ
1:N = Ψ( f , p1:N), (4)

where our network Ψ is based on the SAB/PMA mod-
ules and the MLP in charge of decoding the interac-

tion embedding. The set-processing modules (SAB
and PMA) generate the interaction embedding, as
considered in Eq. ((1)). Adding this correction vec-
tor to our initial estimations, we can now compute the
refined joints by the following relation:

q1:N = p1:N +δ
1:N . (5)

To guide the learning process, we optimize the whole
network parameters by minimizing an L2 loss over the
final refined 3D joints and the ground truth joints:

L(p1:N) =
1
N

N

∑
i=1

||qi − pi
GT ||2, (6)

where pGT denotes the 3D human pose ground truth.
For more details regarding our final architecture,
please refer to the supplementary material and the
code of this paper.

4 Experiments

In this section, we present implementation details,
the evaluation of our approach in comparison with
other relevant SOTA, and an ablation study focusing
on various types of interactions. Finally, we present
an analysis of the refinement process and the com-
putational complexity of our model. Our model has
the advantage of being highly computationally effi-
cient, lightweight and fast to train. We experiment
on three datasets: MuPoTS-3D (Mehta et al., 2018),
Panoptic (Joo et al., 2015) and NBA2K (Zhu et al.,
2020). Additionally, we include qualitative results on
COCO (Lin et al., 2014). We also use standard met-
rics for evaluation such as MPJPE (Ionescu et al.,
2014) –which measures the accuracy of the 3D root-
relative pose– and 3DPCK (Mehta et al., 2016) with
a threshold of 15cm, as it is standard in the litera-
ture (Guo et al., 2021; Zhen et al., 2020; Lin and
Lee, 2020). Complementary to 3DPCK (from now on
PCK), we use AUC (area under the curve) as a more
complete metric. Additionally, PCKabs is used to
evaluate absolute camera-centered 3D human poses.

4.1 Implementation details

We optimize our model parameters using
ADAM (Kingma and Ba, 2015) with a learning
rate of 0.0001 in a single GTX 1080 Ti. To es-
timate the initial 3D human poses we use (Moon
et al., 2019). Regarding training data, although
generally used for this task, we discard the use of
MuCo-3DHP. Given its synthetic nature, it does not
contain real interactions between people. Instead,



Metric All people Matched people Datasets training
PCKrel ↑ PCKabs ↑ AUCrel ↑ PCKrel ↑ PCKabs ↑ AUCrel ↑

SMAP (Zhen et al., 2020)* 73.5 35.4 - 80.5 38.7 42.7 MuCo-3DHP + COCO
RootNet (Moon et al., 2019)* 81.2 31.4 39.5 82.5 32.0 40.2 MuCo-3DHP + COCO
PI-Net (Guo et al., 2021)(w/ RootNet (Moon et al., 2019))* 82.5 - - 83.9 - - MuCo-3DHP

Ours (w/ SMAP (Zhen et al., 2020) ) 79.3 40.8 - 86.1 44.2 44.3 MuPoTS Cross Validation
PI-Net (Guo et al., 2021)(w/ RootNet (Moon et al., 2019))† 82.8 - 43.9 84.3 - 44.7 MuPoTS Cross Validation
Ours (w/ RootNet (Moon et al., 2019)) 85.8 44.1 46.1 87.3 45.0 46.9 MuPoTS Cross Validation

Table 1: Quantitative comparison on the MuPoTS-3D (Mehta et al., 2018) dataset. Both PI-Net and our method use (Moon
et al., 2019) for initialization. Additionally, we show our model’s performance when initialized with (Zhen et al., 2020).
*Results shown for these methods are merely referential as they are not re-trained with the same data as ours. † Fine-tunned.

we use MuPoTS-3D which does contain real inter-
actions. For fair comparison, we resource to k-fold
cross-validation dividing the dataset into 10 folds,
which is an accepted practice in the machine learning
literature given a limited dataset. For evaluating on
the Panoptic studio (Joo et al., 2015) dataset, we
follow the evaluation protocol presented in (Zanfir
et al., 2018a; Zanfir et al., 2018b). Finally, even
though the NBA2K dataset is synthetic, it captures
plausible interaction between players as opposed to
MuCo-3DHP. For more details please refer to the
supplementary material.

4.2 Comparison with state-of-the-art
methods

We present a direct comparison with the method clos-
est to ours, PI-Net (Guo et al., 2021), and show as ref-
erence other SOTA methods that also deal with multi-
person 3D pose estimation (Wang et al., 2020; Lin and
Lee, 2020; Zhen et al., 2020; Zanfir et al., 2018b).
The quantitative results for MuPoTS-3D dataset are
reported in Table 1. Here, we show results with
both the initialization methods RootNet (Moon et al.,
2019) and SAMP (Zhen et al., 2020). RootNet is also
used by PI-Net (Guo et al., 2021) as initialization.
We present, two rows referencing PI-Net (Guo et al.,
2021). The first one, shows the results when train-
ing the model with MuCo-3DHP (Mehta et al., 2018)
dataset, as reported in their work. For a fair com-
parison, we fine-tune the model with the MuPoTS-
3D (Mehta et al., 2018) dataset and perform the same
cross validation. We do not present other SOTA meth-
ods in this table because they we not trained with the
same data which would lead to an unfair comparison.
However, we present a direct comparison with them
in table 2 As it can be seen, our model shows a 3.0%
improvement over PI-Net when estimating the root-
relative pose, 2.2% for AUC for all people and 2.1%
(matched people). Also, worthy of notice, we remark-
ably outperform RootNet (Moon et al., 2019) in all
metrics. Furthermore, we also show improvements

when using SMAP as initialization. While this ver-
sion of our model improves notably w.r.t. SMAP, we
note that the best results come from using RootNet for
initialization. We argue that this is due that top-down
approaches benefit more from additional global inter-
person context as they do not originally exploit this
information. In contrast, bottom-up approaches bene-
fit in a less degree as the already incorporate different
forms of contextual information.

The results for the CMU Panoptic dataset are
shown in Table 2. We evaluate our method un-
der MPJPE after root alignment following previous
works (Zanfir et al., 2018a; Zanfir et al., 2018b). The
dataset presents a challenging scenario as the majority
of images contain several people at a time in a closed
environment, severely affected by occlusion and trun-
cation. Our method successfully reduces the interfer-
ence of occlusions and truncation and improves by a
large amount the initial estimations (fine-tuned Root-
Net (Moon et al., 2019)). To show how our model
is able to deal with truncation, results of the metric
calculated over all joints in the dataset are presented
in Table 2, including those that are out of the image
and are not visible. Most of these non-visible joint
constitute cases of either truncation or occlusion. Our
method improves over 30 mm. in average over the ini-
tial method when initialized with RootNet. Note that
we also have a significant improvement (14.1 mm.)
over both RootNet and 8.6mm over SMAP a the ini-
tial method if we account only for visible joints which
is the standard practice. With regards to the SOTA
in this dataset (HMOR (Wang et al., 2020)), we out-
perform the method by an overall of 5.3 mm. and
4mm. over DAS (Wang et al., 2022b) when initializ-
ing with RootNet and have a consistent improvement
over all the actions. When we initialize with SMAP,
we have an overall improvement 1mm. over HMOR
and 0.6mm. over DAS. For qualitative comparisons
on the Panoptic (Joo et al., 2015) dataset and using
SMAP as initialization, please refer to Fig. 5 and the
supplementary material.

For evaluating on the NBA2K dataset, we use
the MPJPE without and with Procrustes Alignment



Method Haggling Mafia Ultim. Pizza Mean ↓
RootNet (w/ all joints) 83.3 107.9 106.0 118.4 103.9
Ours (w/ all joints) 59.4 68.9 67.2 86.4 70.5

Zanfir et al. (Zanfir et al., 2018b)* 72.4 78.8 66.8 94.3 78.1
RootNet (Moon et al., 2019) 52.1 65.3 58.0 80.4 63.9
SMAP (Zhen et al., 2020) 63.1 60.3 56.6 67.1 61.8
HMOR (Wang et al., 2020)* 50.9 50.5 50.7 68.2 55.1
Liu et al. (Liu et al., 2022) 55.2 55.0 50.4 61.4 55.0
Jin et al. (Jin et al., 2022) 63.7 58.5 52.3 69.1 60.9
DAS (Wang et al., 2022a) 53.3 51.2 49.1 61.5 53.8
Pi-Net (w/ RootNet (Moon et al., 2019)) 51.3 66.3 56.2 76.1 62.5
Ours (w/ SMAP (Zhen et al., 2020)) 49.3 53.7 48.7 61.2 53.2
Ours (w/ RootNet (Moon et al., 2019)) 42.0 50.3 47.3 59.4 49.8

Table 2: Evaluation on the Panoptic (Joo et al., 2015)
dataset. RootNet (Moon et al., 2019) model was fine-tuned
with CMU Panoptic data to provide a better initialization.
The reported metric is MPJPE relative to the root joint and
results are reported in mm. *The average of (Zanfir et al.,
2018b) and (Wang et al., 2020) are recalculated following
the standard practice in (Zanfir et al., 2018a) and (Zhen
et al., 2020) (i.e. average over activities) for a more direct
comparison.

(MPJPE-PA) as shown in Table 3. See how both
methods that use interaction information from the
scene (PI-Net and ours) are able to improve the results
over the initial estimations (RootNet (Moon et al.,
2019)).

4.3 Interaction vs. no interaction

Having shown the effectiveness of our method at re-
fining 3D poses, we continue with a careful analysis
of our interaction component. Table 4 shows how the
level at which we enforce the interaction to be learned
affects the performance in comparison to the initial
estimations. We define three different levels of inter-
action: (1) no interaction, (2) scene interaction, and
(3) people interaction. The latter corresponds to our
final method. For all the cases, we use the same archi-
tecture. However, we change the interaction levels by
changing what we input to our method. To eliminate
learning interactions (no interaction), we input each
person’s pose individually as a unique and different
set and not together. In this manner, it is impossible
for the model to build an interaction-based embed-
ding. At most, the model remains restricted to cap-
ture self-joint interactions. To enforce learning what
we refer to as scene interaction, we make each joint
in the scene a set by itself. Having each joint as set el-
ement instead of the whole person’s pose, we enforce
a representation that can learn interactions between
joints but without knowing which joint corresponds
to which person. Thus, loosing the sense of person as
an ”entity”. The results from Table 4 show that our
method based on people’s interaction clearly outper-
forms other degrees of interaction consistently over
both datasets. We report the results on the MuPoTS-
3D and Panoptic datasets and use the MPJPE metric

only for simplicity.
Figure 3 gives us insight on what happens with

the refinement on each level of interaction. Here,
we present two images containing three persons each:
high interaction between individuals (top image), low
interaction (bottom image). Additionally, for each
image we show three matrices, each regarding an in-
teraction type presented above. Each matrix depicts
the effect of the pose refinement when perturbing one
joint over all of the joints of every person in the scene.
This also includes the person whose joint has been
perturbed. Each column represents the joint being
perturbed and each row represents the affected joints.
The perturbation applied to the joints is a displace-
ment in the positive directions of x, y and z in the
3D space by 10 cm. The magnitude in each element
in the matrix represents the maximum absolute value
of the change in any of the 3D space coordinate di-
rection in meters. With this setup, we can study how
one person’s joint affects other person’s joints as well
as its own. Here, we notice some key observations.
(1) for the cases in which we enforce to learn inter-
actions (people and scene), the effect of one person’s
joint over other person’s joints (effect of interaction)
is higher for the image on the top (high interaction)
than for the one in the bottom (lower interaction). (2)
in the case of people interaction, it can be clearly
seen that one person’s joint affects in greater degree
the pose of its own body in contrast to other peo-
ple’s body. This is expected, as the model here has
the notion of which joints correspond to which per-
son. This does not happen in the scene interaction
case. Also, (3) we can confirm that in the case of
no-interaction, one person’s pose has no effect over
others. The reader is referred to the supplemental ma-
terial for additional examples.

4.4 Effects of the refinement over initial
estimations

We show the effect of our model in refining the initial
estimations. Our method can improve both absolute
and root-relative poses while more effectively dealing
with inter-person occlusions and truncations. This is
achieved because our interaction embedding enables
the model to reason directly in the 3D space, whereas
other methods can only reason from 2D image cues.
Furthermore, our loss encourages the model to learn a
refinement for both the absolute and the root-relative
poses. See Fig. 4. The three middle columns depict
the initial estimation, the refined poses and the ground
truth from a slightly rotated camera view along with
a bird-view, respectively. From these views, we can
appreciate the interaction between person 1 (P1) and



Method MPJPE [mm] MPJPE-PA [mm]

Cory Glen Oscar Tomas Mean ↓ Cory Glen Oscar Tomas Mean ↓
RootNet (Moon et al., 2019) 154.3 167.7 159.3 136.2 154.1 115.8 137.5 122.4 103.9 119.7
Pi-Net† (Guo et al., 2021) (w/ RootNet (Moon et al., 2019)) 136.6 155.3 140.2 119.8 137.8 109.7 129.2 111.5 96.2 111.5
Ours (w/ RootNet (Moon et al., 2019)) 130.0 142.0 134.7 121.7 131.9 99.6 111.5 104.4 95.8 102.7

Table 3: Evaluation on the NBA2K (Zhu et al., 2020) dataset. We use the MPJPE metric. † This method has been fine-tuned
with the same dataset and uses the same initial method (RootNet (Moon et al., 2019)) for fair comparison.

Input image People interaction Scene interaction No interaction

Figure 3: Interaction analysis. We show the effect of one joint over all other joints in the scene. Joints are grouped by person.
We present 17 joints for each person. Each person’s number in the matrices corresponds to the number shown in the bounding
box in the images. The magnitude of each matrix element represents the maximum displacement in 3D space measured in
meters of the joints in each row caused by the corresponding joint in each column.

Dataset Metric MPJPE [mm] MPJPE-PA [mm]

MuPoTS-3D

Initial (RootNet) 134.9 93.3
Baseline – no interaction 136.4 95.1
Baseline – scene interaction 134.5 96.1
Ours – people interaction 104.8 79.7

CMU Panoptic

Initial (RootNet) 63.9 54.6
Baseline – no interaction 57.0 47.4
Baseline – scene interaction 58.2 45.1
Ours – people interaction 49.8 40.5

Table 4: Importance of different levels of interaction in
our model.

Input image Initial Estimation Refined Poses Ground Truth Overlay Poses for P1

Bird-view Bird-view Bird-view

Side-view Side-view Side-view

Figure 4: Effects of the pose refinement. From left to
right: Input image, initial 3D pose estimations, refined
poses, ground truth, and detail of the update on person P1’s
joints. For each estimation we include a bird-view so that
absolute translation is better appreciated. The last column
shows the root-relative pose improvement.

person 3 (P3). The initial estimation does not take into
account this interaction and, therefore, makes the mis-
take of overlapping the two bodies. Our model yields
to more realistic estimations by exploiting these inter-
actions. The rightmost picture shows the initial, re-
fined and ground truth root-relative poses for P1. See
how our estimations correct the initial joint positions
taking them closer to the ground truth (highlighted in

red arrows). For example, the hands and ankle joints
are closer to the ground truth than the initial estima-
tions. The same happens with the hip joints. Ad-
ditionally, Fig. 1 shows the input image, the ground
truth and the refined poses overlapped with the initial
estimations (in transparency) both in a tilted camera
view and a bird-view. Here, we can also appreciate
an interaction between the people that are about to
hug (P2 and P3). Better seen in the bird-view, our
refinement locates both persons in a more coherent
way, whereas, the initial estimation places them fur-
ther apart.

4.5 Qualitative Results

Qualitative results on the MuPoTS-3D, Panoptic,
NBA2K ana COCO datasets are shown in Fig. 5.
Row 1 fist column shows a case where people are
closely interacting with each other (holding hands).
Our model corrects the persons poses so their hands
are closer together. Row 1 second column shows how
our method corrects cases of severe truncation. Row 2
shows results on the NBA2K (Zhu et al., 2020) dataset
and the last row shows as well results on images-
in-the-wild from COCO (Lin et al., 2014) dataset.
NBA2K (Zhu et al., 2020) presents several interac-
tions in each scene. We show how our method im-
proves over the SOTA (Moon et al., 2019), especially
in cases were people need to be grouped closely to-



Input image RootNet Ours RootNetInput image Ours

Input image Ours Input image Ours Input image Ours

Figure 5: Qualitative results. We show results on the
MuPoTS-3D (Mehta et al., 2018), Panoptic (Joo et al.,
2015), NBA2K (Zhu et al., 2020) and COCO (Lin et al.,
2014) datasets. Here he show cases of close interactions
(first two rows), severe truncation (first row, second col-
umn), and our model on images in-the-wild (last row).

gether. Our method captures the interactions between
the players and can determine which players should
be grouped together. In each case, with dotted red
circles, we show either a correctly located group of
players (refined poses) or incorrectly placed players
(initial poses).

4.6 Limitations

While we show consistent improvements over differ-
ent initialization methods, our model is limited to
these initialization. For example, our model is not
able to recover the pose of an individual if this was
not previously detected by the initial method as we
based the refinements in spatial information and not
image cues. The same happens when the initial esti-
mates are severely corrupted. Handling sever occlu-
sions is a very challenging tasks that can be attacked
by using additional information such as temporal se-
quences, however, this requires a different approach
and design and constitues future work.

5 Conclusions

In this paper, we have proposed a novel algorithm
to tackle the problem of multi-person 3D pose esti-
mation from one single image. Building on the Set
Transformer paradigm, we have introduced a holis-
tic encoding of the entire scene, given an initial set
of potentially noisy input 3D body poses. This en-
coding captures multi-person relationships, does not
depend on the input order, and can represent an arbi-
trarily large number of inputs. We use it to refine the
initial poses in a residual manner. A thorough evalua-
tion shows that our approach provides state-of-the-art
results on several benchmarks. Additionally, the pro-

posed module is computationally efficient and can be
used as a post-processing step for any 3D pose detec-
tor in multi-people scenes to improve its accuracy and
make it more robust to truncation and occlusions.
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