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Abstract— We present a novel loss to increase the class
separation of learned features for 3D object detection from lidar
point clouds. To correctly classify objects, learned object-level
feature distributions of each class need to be distinct. Therefore,
we hypothesize that if we make the feature distributions of the
classes more separated, then the overall performance of the
object detector will improve. To this end, we calculate class
prototypes as the mean and covariance of the feature vectors
extracted from the annotated objects of each class. Then, we
exploit these prototypes with a novel class prototypical loss,
defined as the Mahalanobis distance from the feature vector
of annotated objects to the corresponding class prototype. This
auxiliary loss is then integrated with other object detection
losses to improve the object-level feature separation between
classes and the overall performance of the detector. We show
results applying this loss to the NuScenes dataset where we get
improvements of +3.85% and +1.76% mAP for 1 and 10 frames,
respectively, compared to the baseline Centerpoint detector,
while keeping the same inference computational cost.

I. INTRODUCTION

In autonomous driving, a vehicle requires a reliable un-
derstanding of the environment and the objects in the scene
to be able to drive safely. While there has been a lot of
advancement in camera-based 3D object detection, RGB
cameras do not measure depth directly but instead rely on
stereo, depth priors or learning-based models to obtain the
3D coordinates of the objects. In contrast, lidars capture a
point cloud of 360-degree 3D measurements, which can be
exploited to accurately estimate the object position. However,
a major disadvantage of lidars compared to cameras is that
they tend to have a lower resolution and cannot capture rich
semantic information from colour. Therefore, it is harder to
differentiate similar classes (such as bicycles and motorcy-
cles) in point clouds than in images. In this work, we present
a method to improve the capability of an object detector
for point clouds to discriminate between similar classes. We
achieve that by increasing the feature separation per class
when training a model as seen in Fig. 1.

Recent 3D object detectors [1]–[5] use a neural network
to extract a Birds-Eye-View (BEV) feature map [6] and
then apply a detection head on top of that representation
to determine the location, orientation, and object class. As a
consequence, the performance of the detector relies on the
quality of the features contained in the BEV map. To study
the features extracted by modern 3D object detectors in terms
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Fig. 1: Class prototypical loss. Left: Some feature distri-
butions from an object detector are displayed along with
their mean and covariance per class. Right: Using a class
prototypical loss the covariance is reduced, making classes
more separable, and enhancing the performance of the object
detector.

of class discrimination, we train a Centerpoint [1] baseline on
NuScenes [7] and analyze the distribution of feature vectors
extracted from the BEV feature map for ground truth objects
on the validation set. We show a t-SNE plot where feature
distributions are distinct for each class in Fig. 2a.

To understand how the feature separation originates from
class-level supervision, we also train a class-agnostic model.
We follow the previous procedure but change the head so it
can only detect a single object class, and we also modify the
annotations of the dataset so that all classes are converted
to this general object class. Then, we can train a detector
capable of detecting all objects without class supervision.
Interestingly, the feature vectors for these objects are still
separated by class as seen in Fig. 2b, therefore the feature
separation is not entirely reliant on class-level supervision
and the intrinsic differences in the data generate distinct
feature distributions.

Based on these insights, and motivated by previous works
that show that a classifier can improve its performance
by increasing feature separation [8]–[11], we formulate the
following hypotheses:

Hypothesis 1: In a 3D object detector, an increase in
the separation per class of object-level features can lead to
improved performance.

Hypothesis 2: Using the mean and covariance of object-
level features as class prototypes, we can apply a class
prototypical loss based on a Mahalanobis distance from
annotated objects to the class prototypes, increasing the
feature separation per class.

The hypothesized effect of the class prototypical loss is
conceptually visualized in Fig. 1, where we see how the



(a) Centerpoint

(b) Centerpoint. Trained without class annotations

Fig. 2: Analysis of feature vector distributions for objects
on the validation set. t-SNE plots with the color-coded
points by class. (a) Corresponds to the Centerpoint [1]
baseline, (b) we remove the class from the model and the
annotations. Notice how learned features are separated by
class, even when the model has no class supervision.

distributions of the object-level features can overlap for
similar classes such as trailers, buses, trucks, and construc-
tion vehicles. Then, by using the class prototypical loss we
propose, the covariance of the resulting distribution can be
reduced, making the features for objects of different classes
better separated.

As a consequence, the performance of the object detector
in terms of mean average precision (mAP) in NuScenes [7],
both for the standard case of aggregating ten 360-degree li-
dar frames (+1.76%) and also using just one frame (+3.85%),
is improved. Furthermore, the performance gets especially
better for challenging cases where classes are more similar
to each other (such as bus, construction vehicle, truck and
trailer or the classes motorcycle and bicycle). We also
analyze the relative separation between feature distributions
of different classes when training with and without the class
prototypical loss and see that our proposed loss improves the
relative separation between classes and prevents the collapse
of feature distributions of similar classes. We observe that
increased feature separation correlates with improved mAP
for similar classes.

II. RELATED WORK

A. 3D Object Detection

The goal of 3D object detection is to detect a 3D rotated
bounding box for each object in the input point cloud. In the
case of autonomous driving, the pitch and roll angles can
be ignored as the driving direction is determined by a yaw
angle or heading. Most recent 3D object detectors voxelize
the input point cloud into a 3D [4], [12] or 2D [2], [13]–[16]
grid, then apply 3D or 2D convolutions to encode it –usually
into a bird’s-eye view feature map [1]–[3], [15]–[18]– and
finally use an anchor- [2], [3], [17], [18] or center-based [1],
[19] head to regress the bounding box. Li et al. [13] used
a 2D fully convolutional network to detect 3D objects on
range images (the point cloud projected to an image where
the pixel values are the depth of the points). Vote3Deep [12]
used 3D convolutions to encode the point cloud, leveraging a
voting scheme on non-zero features to make it more efficient
on sparse data, and regularization to encourage sparsity in
the intermediate feature maps. 3D sparse convolutions were
refined for semantic segmentation [20] and then applied to
object detection in Voxelnet [4], where they employed a
Pointnet [21] to encode each voxel. Moreover, [3] improved
the efficiency of 3D sparse convolutions and proposed a new
loss for angle regression and new data augmentation strate-
gies. To avoid 3D convolutions, Pixor [16] maps the point
cloud to a 2D bird’s-eye-view representation and then applies
faster 2D convolutions to get object predictions at each pixel.
Voxels can also be represented as pillars [2], compressing the
information along the height of the 3D grid to create a 2D
BEV feature map. These pillars can be enhanced by adding
the features from the perspective [14] or cylindrical [15]
views. PV-RCNN [18] and PV-RCNN++ [22] combine point-
and voxel-level features. As an alternative to anchor-based
heads, Votenet [19] groups and aggregates votes for object
centres to detect the centres of the bounding boxes and then
regress the other attributes. Another alternative to detect
the centres of the objects directly is to predict a 2D heat
map of object centres in BEV as in Centerpoint [1], they
then regress the other attributes and use additional point
information on a second stage to refine the predictions.
Voxelnext [23] removes the need for anchor-based or centre-
based heads and instead uses a fully 3D sparse convolutional
network. FocalFormer3D [5] uses a multi-stage approach
and detects the false negatives at each stage to focus on
them in the next one. MDRNet [24] improves the 3D-
to-2D compression of the BEV map by focusing on the
valuable points of the objects. LargeKernel3D [25] proposes
to use larger kernels for the 3D sparse convolutions copying
parameters in neighbouring areas, and LinK [26] modifies
them to adapt the position of the parameters to input data. IA-
SSD [27] proposes a downsampling strategy that keeps more
foreground points belonging to objects of interest. Following
their success in other areas, transformers have started to
be applied to the task of 3D object detection [28]–[31].
Finally, some works have adopted a multimodal approach
to overcome the limitations of lidars [32]–[34]



B. Feature separation

Recent work [35]–[37] has shown that under some con-
ditions the features on the last layer of a neural network
classifier converge to a state of neural collapse with the
following properties:

• Intra-class distance: As training progresses, the within-
class variation of the features becomes smaller as they
collapse to their class means.

• Inter-class distance: After centering by the global mean,
the class means converge to having equal length and
equal angles between any pair. Therefore, they create a
simplex equiangular tight frame.

• Convergence to self-duality: The class means are
aligned with the last-layer linear classifiers.

• Simplification to nearest class centre: The classification
decision is equivalent to selecting the class with the
closest mean in standard Euclidean distance.

This phenomenon is present for sufficiently large neural
networks trained with a cross-entropy loss [35], a mean
squared error loss [36], label smoothing or focal loss [37].
Prior to the discovery of this phenomenon, some works [8]–
[11] already showed that using a loss that explicitly aims to
reduce the intra-class feature distance and increase the inter-
class one leads to improved classification performance. In
addition to that, this idea has also been explored for open-
set recognition [38] and few-shot object detection [39].

Class prototypes can also be exploited to improve the
feature separation by setting the prototypes a priori to be
maximally separated on the surface of a hypersphere [40].
They can be also estimated from data, usually as the mean
of features for each class, and then guided with a loss to
be maximally separated [41]. Class prototypes are also used
in the context of open-world object detection [42], [43] and
domain adaptation [44], [45]. Most of these works focus on
image data, but some include promising experiments on point
cloud data as well [11], [45].

We propose a novel definition of class prototypes that
includes the covariance of the features. We exploit them with
novel auxiliary losses, based on the Mahalanobis distance, to
increase the feature separation and performance in 3D object
detection. Previously the Mahalanobis distance has been used
mainly for metric learning [46], [47], anomaly detection [48],
[49], face recognition [50], and uncertainty estimation [51].

III. METHOD

A. Centerpoint

We use a two-stage Centerpoint [1] as our baseline model.
First, the model voxelizes the input point cloud and then
applies Voxelnet [4] to encode the features using 3D con-
volutions, obtaining a M ∈ RW×L×F BEV feature map,
where W , L and F represents width, length and number
of channels, respectively. M is used by the centre heatmap
head to generate C heatmaps Yc ∈ RW×L, one for each of
the C classes. This head is trained with a focal loss Lhm to
produce spikes at the centres of objects.

Additionally, a sub-voxel location refinement o ∈ R2,
height-above-ground hg ∈ R, 3D size s ∈ R3, yaw rotation
angle (sin(α), cos(α)) ∈ [−1, 1]× [−1, 1], and velocity v ∈
R2 are regressed densely, at the ground truth object’s centre
location, with individual heads trained with Lo, Lhg , Ls, Lα

and Lv losses, respectively. These losses are computed as the
Mean Absolute Error (MAE), and they are aggregated in the
regression loss Lreg = woLo +whgLhg +wsLs +wαLα +
wvLv with configurable weight coefficients wo, whg , ws,
wα, wv ∈ [0, 1]. Finally, Lreg is weighted by the coefficient
wreg ∈ [0, 1] and combined with the heatmap loss Lhm,
obtaining the baseline loss of the first stage LB1 as:

LB1 = Lhm + wregLreg. (1)

After that, the model extracts from the BEV feature map
M one point-feature from the 3D centre of each face of
the predicted bounding box. The five point-features are con-
catenated to create the feature vector fpred ∈ R330 for each
prediction. These feature vectors are then passed through
a multilayer perceptron. In this stage the model predicts a
class-agnostic confidence score Î and box refinement for
each detection. The class-agnostic confidence score Î is
trained with a binary cross-entropy loss Lscore such that:

Lscore = −I log(Î)− (1− I) log(1− Î), (2)

targeting a score I = min(1,max(0, 2IoU − 0.5)) guided
by the box’s 3D Intersection over Union (IoU ) with the
corresponding ground truth bounding box IoU .

For box refinement, the model is trained with a regression
loss L ˆreg composed of MAE losses Lô, Lĥg , Lŝ, Lα̂ and
Lv̂ using the same weight coefficients as in the first stage.

The second stage loss is then:

LB2 = Lscore + L ˆreg, (3)

the final confidence score Q̂t of object t is the geometric
average of the scores of the first stage Ŷt and second one Ît as
Q̂t =

√
Ŷt · Ît, where Ŷt = max0≤c≤CYc,t is the maximum

value at the center of object t of the heatmaps.

B. Class prototypical loss for 3D Object Detection
Following [1] we use a training strategy with two stages, as

shown in Fig. 3. In the first one, we train the Centerpoint [1]
model with the same object detection losses, with the addi-
tion of a 1D batch normalization layer after the extraction
of feature vectors fgt ∈ R330 for the ground truth objects, to
generate a normalized feature vector f̂gt ∈ R330.

Once the first stage is trained, we extract the feature
vectors f̂gt ∈ R330 for all the objects of the ground truth
in the training set. We only consider objects that have a
minimum number of points (60 in our experiments) so that
they will be representative of the class. Then we compute
the class prototypes Pc as the mean f̄c and the covariance
Sc of the feature vectors for each class c and store them.

In the second training stage, in addition to the loss
exploited in [1] we consider a class prototypical loss as:

LCP =
1

N

∑
x

√
(f̂x − f̄c)TS

−1
c (f̂x − f̄c), (4)



Fig. 3: Training stages with the class protypical loss. 1) On a first stage we train a 3D backbone and head to generate
3D bounding boxes with the detection losses from the baseline. 2) We calculate the mean and covariance of the feature
vectors for each class taking annotated objects from the training set with a minimum of 60 points. 3) On a second stage, we
use an MLP to get bounding box refinements following Centerpoint, and add the class prototypical loss as the Mahalanobis
distance of the feature vectors extracted for all annotated objects to the class prototypes of the corresponding classes.

that is defined as the average of the Mahalanobis distance
from the feature vectors f̂x of the N ground truth objects x
of class c to its class prototype Pc = {f̄c,Sc}.

The final loss L is expressed as a combination of LB2 and
the class prototypical loss as:

L = LB2 + wcpLCP , (5)

where wcp is a weight coefficient.
We hypothesize that this loss will make the model generate

BEV feature maps with better class separation. Moreover, if
the class prototypes are fixed after the first training stage,
the class prototypical loss acts as a regularization mecha-
nism keeping the feature distributions stable and preventing
overfitting.

C. Updating class prototypes after every epoch

Since the backbone is not frozen during the training of
the second stage, the feature distribution of each class shifts
during training. We discussed the potential benefits of having
fixed prototypes, but updating the prototypes after each epoch
could lead to an even more distinct feature distribution that
could boost the performance of the object detector even
further. There are two challenges that we need to consider
when updating the prototypes after each epoch, collapse of
covariances and collapse of means.

Since our proposed loss moves the feature distribution of
each class closer to the mean of that class, this reduces the
covariance. If we update the covariance after each epoch, it
will be smaller every time. This will then lead to a higher
value of the class prototypical loss since it is scaled by
the inverse of the covariance matrix. A higher LCP then
leads to a further reduction in the covariance and after some
iterations, the covariance could collapse to a very small

value making the LCP loss dominate too much over the
other losses. To prevent the covariances from collapsing we
propose to use a normalized inverse of the covariance matrix
Ŝc, that is normalized by the mean of the absolute value of
its elements. With this normalization, we keep the useful
information on the shape of the distribution while keeping
the scale under control, preventing collapse.

As for the evolution of the means of the feature dis-
tributions, since the LCP loss pulls features close to the
mean, a trivial setting that would lead to a low LCP loss
is all the means being very close with small covariances.
To prevent the evolution of prototypes leading to a collapse
of the means, we propose to add an inter-class prototypical
loss LICP , that pushes the features of each class away from
the prototypes of the other classes. We define this loss as
the average, over the N ground truth objects x and the
C − 1 classes different from its class c, of the inverse of
the Mahalanobis distance from the feature vectors fx̂ to the
C − 1 class prototypes Pci = {f̄ci ,Sci}:

LICP =

∑
x

∑
ci ̸=c

(√
(f̂x − f̄ci)

TS−1
ci (f̂x − f̄ci)

)−1

N(C − 1)
(6)

The weight of the inter-class LICP loss in relation to the
intra-class LCP loss is defined by a parameter wicp ∈ [0, 1].
Finally, the final loss LU can be expressed as:

LU = LB2 + wcp(wicpLCP + (1− wicp)LICP ). (7)

In our experiments, we analyze the effect of our proposed
losses and the contribution of each component.



1 lidar frame NDS ↑ mAP ↑ car truck bus trailer const. pede. moto. bicy. cone barrier
Baseline [1] 48.67 42.71 75.14 36.27 54.49 29.75 5.93 67.31 33.78 15.25 49.80 59.39
Baseline + LCP wcp = 0.01 51.30 46.56 77.24 37.73 55.21 32.34 13.33 70.95 44.63 21.26 53.04 59.88
Baseline + LCP wcp = 0.10 50.66 46.45 76.37 37.56 58.18 30.92 12.20 70.48 44.62 20.37 53.57 60.21
Baseline + LCP /LICP , wcp = 0.01, UP 50.01 45.75 75.59 38.34 55.72 30.23 11.43 71.06 40.83 22.47 51.18 60.59
Baseline + LCP /LICP , wcp = 0.01, UP 49.67 45.48 76.34 36.79 54.93 31.19 11.39 68.94 42.63 20.04 51.49 61.11

10 lidar frames NDS ↑ mAP ↑ car truck bus trailer const. pede. moto. bicy. cone barrier
Baseline [1] 70.73 67.04 87.77 63.64 71.81 39.79 23.87 89.79 75.15 64.68 80.34 73.58
Baseline + LCP , wcp = 0.01 71.13 67.50 86.91 63.25 73.44 41.14 27.07 89.47 77.12 66.97 79.66 70.01
Baseline + LCP , wcp = 0.10 71.36 67.95 86.99 64.19 72.65 41.98 26.81 89.22 77.93 67.79 79.87 72.02
Baseline + LCP /LICP , wcp = 0.01, UP 71.46 67.94 87.38 63.68 73.55 43.37 25.76 89.46 76.59 68.41 80.37 70.81
Baseline + LCP /LICP , wcp = 0.1, UP 72.04 68.80 87.33 64.39 74.14 43.28 27.33 89.57 79.60 70.99 79.97 71.41

TABLE I: Validation metrics on NuScenes [7]. The table reports NDS, average mAP and mAP per class for different
configurations and methods. UP refers to updating prototypes.

IV. EXPERIMENTS

A. Experimental Setup

We perform most of our experiments on NuScenes [7],
which contains 700, 150, and 150 driving scenes for training,
validation, and testing, respectively. Each sequence has an
approximate duration of 20 seconds, and the lidar operates
at a frequency of 20 frames per second. The dataset provides
calibrated vehicle pose information for each lidar frame, with
box annotations available every ten frames (0.5 seconds),
because of this way of annotating many works provide results
aggregating ten frames. The lidar sensor has 32 beams, gen-
erating approximately 30,000 points per frame. Annotations
cover 10 classes: car, truck, bus, trailer, construction vehicle,
pedestrian, motorcycle, bicycle, cone and barrier. We test our
method under different conditions by considering one and
ten frames. For the 10-frame case, we use Centerpoint [1]
with Voxelnet [4] as the backbone, two stages and virtual
points [32]. Following the same configuration, we use a range
of [−54, 54]m in X and Y axis, and a range of [−5.0, 3.0]m
in the Z axis to voxelize the point cloud. The resolution is set
to 0.075m for the X and Y axis, and 0.2m for the Z one. For
the 1-frame case, we use the same model without additional
virtual points and with the voxelization strategy used in
ST3D [52], [53] and other domain adaptation works. A range
of [−75.2, 75.2]m in X and Y axis, and a [−2.0, 4.0]m in the
Z after moving the ground plane to 0, in NuScenes [7] that
corresponds to adding 1.8 to the Z component of every point.
The resolution is 0.1m for the X and Y axis, and 0.15m for
the Z one. Following [1], the weight coefficients for the first
stage are set to wreg = 0.25, wo = whg = ws = wv = 1,
wα = 0.2 in all our experiments on Nuscenes [7]. We use the
3D detection metrics defined in [7]: a mean average precision
(mAP) and the NuScenes detection score (NDS).

To test the distribution of feature vectors across different
datasets, we also use the Waymo Open Dataset [54], which
contains 798 training sequences and 202 validation ones for
classes vehicle, pedestrian and bicycle. The point clouds are
captured with a 64-beam lidar, which produce about 180k li-
dar points every 0.1 seconds, a significantly higher resolution
than in NuScenes [7]. We report 3D object detection results
only on the NuScenes dataset since our method focuses on
increasing the discrimination of similar classes and the three
Waymo classes are very distinct.

B. 3D Object Detection with the class prototypical loss

We first evaluate our method for 3D object detection on
NuScenes [7] with 1 and 10 lidar frames, fixing wcp =
{0.01, 0.10}, wicp = 0.5, and comparing our solution with
Centerpoint [1]. We show results in terms of NDS, average
mAP, and mAP per class in Table I. As it can be observed,
using the class prototypical losses consistently increases both
NDS and average mAP in all cases.

When 1 frame is used, the point clouds are quite sparse
because NuScenes [7] was recorded with a low-resolution
lidar. In this case, it is hard for the model to learn useful fea-
ture representations for objects with a low number of points,
and the additional supervisory signal from the LCP /LICP

losses leads to an improvement in mAP across all classes,
especially for the classes with lower mAP. For the case
with 10 frames, the point clouds are denser and therefore,
using the LCP /LICP losses increases the mAP of the classes
that have other similar classes within the dataset, i.e., large
vehicles (truck, bus, trailer and construction vehicle) and
2-wheeled vehicles (bicycle and motorcycle). These classes
have close feature representations when the model is trained
without the LCP /LICP losses, and those losses help to make
them more distinct, as we will analyze later.

We analyze the confidence of the detections, both true
positives and false ones, for our method (68.80 mAP) and the
baseline (67.04 mAP) by plotting histograms for each class
in Fig. 4. In the figure, we can see that our method produces
fewer false positives, and they have a lower confidence score
compared to the baseline, especially for the classes with
other similar classes in the dataset. The lower number of
false positives can also be seen in the detections displayed
in Fig. 5.

C. Analysis of feature distribution

We hypothesize that there is an underlying structure in the
feature distributions of the objects based on their class, and
that we can exploit this structure to boost the performance
of the object detector by adding a loss to make the BEV
feature map more consistent with this structure. To test our
initial hypothesis, we use a Centerpoint [1] model trained on
NuScenes [7] without our proposed loss, to extract feature
vectors fx ∈ R330 from the BEV feature map corresponding
to annotated objects x on the validation set. After the



feature extraction, we add a 1D batch normalization layer
that outputs normalized features f̂x ∈ R330 to facilitate the
visualization with t-SNE [55]. The t-SNE plot of the features
f̂x, shown in Fig. 2a, revealed a structure with objects from
the same class closer than objects from different classes.

Additionally, we modified the data loader so that all the
objects would be considered from the same class during
training and then did the t-SNE projection using the actual
class to colour the points, as seen in Fig. 2b. We can see
that the different classes are still separated, although similar
classes are more mixed than in the case of the detector trained
with class information. This means that the BEV feature map
represents different classes distinctively even when trained
without class information. This could be used to discover
different object classes from a class-agnostic general object
detector based on a clustering of the feature vectors.

To see how consistent these representations are across
datasets, we train a model on the Waymo [54] dataset
and extract feature vectors from the predicted objects when
applying the model to both Waymo [54] and NuScenes [7]
datasets. By using the t-SNE projection we can see in Fig. 6
that there is still a structure even when the underlying point
clouds have a different number of beams and resolution.
Based on these findings, we hypothesize that we could also
use the proposed loss for unsupervised domain adaptation in
3D object detection, but this study is left for future work.

D. Feature separation with the class prototypical loss

To analyze the effect of our proposed loss on the feature
separation, for each class ck we get the feature vectors
{f̂ck,i | i ∈ [1, N ]} of N=2000 ground truth objects in the
validation set and calculate the distance dck,cl between two
classes ck and cl as the mean of the pair-wise Euclidean
distance between all the pairs of feature vectors from these
classes as:

dck,cl =

N∑
i=1

N∑
j=1

N−2∥f̂ck,i − f̂cl,j∥2. (8)

We can then calculate normalized distances d̂ck,cl dividing
dck,cl by the average of the distance between the objects of
the same class {dck,ck, dcl,cl}:

d̂ck,cl =
2 · dck,cl

dck,ck + dcl,cl
. (9)

Note that the normalized distance between a class and
itself is 1, i.e., d̂ck,ck = 1,∀k.

We can now construct a matrix M of relative feature
distances between classes by assigning d̂ck,cl to the element
in the k-th row and l-th column. This creates a symmetric
matrix with diagonal values equal to 1. Higher values on
the matrix represent a higher inter-class separation of the
features, relative to the intra-class separation of the features.

Figure 7 shows this matrix as a heat map, for a model
trained with and without our proposed class prototypical
losses, where we can see that the feature separation increases
when the loss we propose is used.

(a) Distinct classes

(b) Similar classes

Fig. 4: Confidence histograms for true and false positives.
Compared to the baseline [1], our method reduces the
number of false positives, and lowers their confidence scores,
especially for similar classes.

In Table II, we show the average feature distance for
all classes, for the similar classes and for the distinct ones
on NuScenes [7], where we see that the feature separation
increases when using our loss in all configurations. This
effect is especially seen in similar classes since they have
an average distance of 1.1, very close to the distance to
the same class which is 1. Using our proposed loss, this



Fig. 5: Detected bicycles and motorcycles. The point cloud
is represented by blue squares, with lighter values indicating
points higher above the ground. The annotations in green, the
baseline [1] predictions in red, and ours in blue. We detect
the bicycle while avoiding some false positives.

Fig. 6: t-SNE plot of feature vectors across datasets.
Waymo [54] (x) and Nuscenes [7] (·) feature vectors for a
model trained on Waymo [54], color-coded by class. Notice
how there is some consistent structure between datasets.

distance increases to at least 1.25. Therefore, the feature
representations for similar classes are more distinct.

E. Ablation study

We have trained the model with different configurations
to assess the contribution of each module, and the results
are reported in Table II. There, we can see that the best
object detection performance comes from activating all the
modules and that the feature separation improves when using
the class prototypical loss in all configurations with respect
to the baseline without our proposed loss. Interestingly,
the best feature separation is achieved when the covariance
normalization and inter-class prototypical loss are not used.

V. CONCLUSION

We analyzed the feature vectors extracted per object from
the BEV feature map of a 3D object detector and showed a
structure with the feature distribution of each class separated.
Moreover, we showed that feature distributions are distinct
even when the object detector has not been provided with
class-level supervision.

This motivated us to propose a novel class prototypical
loss for 3D object detection based on the Mahalanobis

Fig. 7: Relative feature distance between classes. Left:
Baseline [1]. Right: Baseline with LCP /LICP loss. Notice
how using our class prototypical loss significantly improves
the feature separation across all classes.

Method Detection metrics ↑ Feature separation ↑
LCP CN LICP UP NDS mAP All Sim. Dist.

70.73 67.04 1.311 1.100 1.391
✓ 71.36 67.95 2.336 1.315 2.700
✓ ✓ 71.85 68.82 2.134 1.261 2.444
✓ ✓ 71.79 68.23 2.145 1.244 2.461
✓ ✓ 71.66 68.31 2.898 1.387 3.426
✓ ✓ ✓ 71.99 68.45 2.001 1.255 2.270
✓ ✓ ✓ 71.32 67.90 2.504 1.321 2.920
✓ ✓ ✓ 71.45 68.03 2.784 1.372 3.278
✓ ✓ ✓ ✓ 72.04 68.80 1.993 1.252 2.260

TABLE II: Ablation study. Object detection results and
feature separation for all, similar (Sim.) and distinct (Dist.)
classes. The components studied are the class prototypical
loss (LCP ), the normalization of the covariance matrix
(CN), the inter-class prototypical loss (LICP ) and the update
of the prototypes after each epoch (UP). The best object
detection results are obtained with our method when all the
components are considered.

distance of the feature vectors to the class prototype of their
corresponding annotated class, and we showed how it can
be used as an auxiliary loss to improve the performance
of the object detector as well as to increase the feature
separation between classes. The simplicity of our approach
makes it easy to apply to most 3D object detectors, as the
only requirement is that a BEV feature map can be extracted.
Furthermore, we analyzed the feature distribution of objects
from NuScenes and Waymo datasets, observing some con-
sistent structure of the distributions per class across datasets.
In future work, it would be interesting to see whether the
class prototypical loss could be used as an auxiliary loss
for domain adaptation, by using the loss to shift the feature
distribution for each class on the target dataset closer to
the feature distribution on the source dataset. Moreover, the
class prototypical loss proposed could be extended to other
modalities such as images, with minor modifications.
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