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Abstract— In this paper, we analyze the possibilities offered
by Deep Learning State-of-the-Art architectures such as Trans-
formers and Visual Transformers in generating a prediction
of the human’s force in a Human-Robot collaborative object
transportation task at a middle distance. We outperform our
previous predictor by achieving a success rate of 93.8% in
testset and 90.9% in real experiments with 21 volunteers
predicting in both cases the force that the human will exert
during the next 1 s. A modification in the architecture allows
us to obtain a second output from the model with a velocity
prediction, which allows us to improve the capabilities of our
predictor if it is used to estimate the trajectory that the human-
robot pair will follow. An ablation test is also performed to
verify the relative contribution to performance of each input.

Index Terms— Physical Human-Robot Interaction, Object
Transportation, Human-in-the-Loop, Force Prediction

I. INTRODUCTION

The field of robotics has always made use of the latest
advances in fields such as control, psychology and, more
recently, artificial intelligence (AI) to provide robots with
more and better capabilities enabling them first to work
autonomously and then in collaboration with humans in
increasingly less controlled environments.

Thus, during the last decade, different methods have
been developed to improve this collaboration, seeking to
better understand the human’s preferences [1], [2] or their
intentions. This has allowed to made significant advances
in multiple tasks: predicting the next object the human will
choose [3], the path to follow [4]–[6], the next area of interest
in a collaborative search [7], [8] or even which action will
be the next to be performed by the human [9].

In this paper we will focus on a specific task such as
human-robot collaborative transport of objects. Specifically,
this article is a continuation of our previous work [10], [11].
In [10] we explored this task in a classical way: developing
a controller that would combine the robot’s input with that
of the human in a way that would be comfortable and
intuitive for the latter. The experimental data obtained in
that work allowed us to take a different approach from the
usual one in the literature. Instead of developing a controller
that tries to adapt to the human, we took advantage of the
fact that this is a task where the information exchange is
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mainly through forces and we developed a first version of a
force predictor based on a simple Deep Learning architecture
(see Fig. 1) [11]. This first predictor proved to be effective
in predicting the force to be exerted by the human during
the next second but also presented some limitations. In
this paper, we explore more recent architectures based on
Transformers [12] by testing their capabilities in this task.

In the remainder, Section II presents the related work.
Section III presents the architectures of the force predictors
used in this article. Section IV shows the results obtained
regarding the performance of each predictor in dataset and
real experiments. Finally, Section V presents the conclusions.

II. RELATED WORK

The way in the literature to solve tasks involving collab-
orative manipulation or transportation between a human and
a robot is by using controllers. Both admittance [13] and
impedance [14]–[16] control systems have been used for
decades, using both one level of control [17] or several [18]
and generating their reference in multiple ways [14], [19].
Most of these controllers are oriented to make the robot adapt
to the actual human’s actions. However, it is also possible
to find works which include a prediction of future human
behavior such as the trajectory that the human desires for
themselves [20] or for the transported object [21].

The development of different Deep Learning models and
methods has improved these predictions. Thus, [22] uses
Reinforcement Learning (RL) to adapt the damping coef-
ficient in an admittance controller and in [23], [24] they use
Learning from Demonstration (LfD) to learn a model of the
task or to predict the speed profile that the human would like
to follow to complete the task. While these works use Deep
Learning models as input to a controller, it is also possible
to find systems that use the output of a neural network
directly as in [25], [26] where Radial Basis Function Neural
Networks are used to estimate the human’s trajectory.

Although [24], [25] use the force exerted by the human as
an input to their model, to the best of our knowledge only our
previous work [11] seeks to predict the force to be exerted
by the human rather than the trajectory the human wishes to
follow or where they would like to carry the object. This is
because with this force prediction we can both detect rapid
changes in the human’s intention and obtain an estimate of
the human’s desired trajectory as demonstrated in [11].

If in our previous work we were inspired by [27]–[29] to
combine Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) units to process both visual
and sequential information, in this work we will rely on



Fig. 1. Model architecture of original force predictor in [11]. Two streams in parallel. Top one to process occupancy map obtained from LiDAR and
bottom one to process other inputs (previous human’s force, environment force, robot’s velocity and task’s goal position). Both streams concatenated to
finish the processing obtaining prediction of next human’s force.

architectures based on Transformers [12], thought originally
to process sequential information. Two of its evolutions,
the Vision Transformer (ViT) [30] and the Swin Trans-
former [31], are the ones that allow to use the concept
of attention in images by processing them as sequences of
patches. Subsequently, their respective evolutions such as the
Video Vision Transformer (ViViT) [32] and the Video Swin
Transformer [33] allow to apply the same logic to sequences
of images. Thus, in this work we rely on the Transformer
and ViViT architectures to enhance our force predictor.

III. TRANSFORMER-BASED FORCE PREDICTORS FOR
COLLABORATIVE OBJECT TRANSPORTATION

To make the results comparable with [11], we will use as
a use case the same collaborative transport of a light object
between the human and the robot and the same scenario in
which several walls and columns are placed as obstacles.

A. Problem definition

The problem is equivalent to the one presented in [11],
since we will use the same five sources of information.
The main difference is that this improved version of our
force predictor will have two output streams instead of
only one. Thus, the predictor will generate an estimate of
both the force that will be exerted by the human and the
velocity that the human-robot pair will present. As it will be
shown Section IV, this velocity prediction will improve the
capabilities of our predictor when used as an estimator of
the trajectory to be followed by both agents.

Thus, the first source of information used will be an
occupancy map obtained from the robot’s LiDAR/LaserScan
readings. The size of this map is 100x100 pixels representing
each one if the equivalent area of 10x10 cm in the real envi-
ronment is occupied or not. The second source of information
used also represents the environment in which the pair is
working. Based on the Social Force Model (SFM) [34], the
environment is represented as a set of attractive and repulsive
forces. Specifically, each of the O obstacles detected in the
environment generates a repulsive force fC,obs ∈ R2. At the

same time, the robot has a global planner that generates a
series of waypoints to the pre-established position to which
the pair will take the object. Each of these generates an
attractive force fC,goal ∈ R2 and the weighted sum of these
two types of forces gives rise to the force fE,C ∈ R2 which
is the second input to our model. More details about how to
calculate each of these forces in [35].

Third, the force exerted by the human and measured by the
robot using a force sensor on its wrist is considered, FH,C ∈
R2. The weighted sum of fE,C and FH,C , FTask,C , is what
the robot uses to generate its own linear and angular velocity
commands being these velocities the fourth input to our
model. Finally, the fifth source of information is the distance
to the goal in modulus and angle1. These last four inputs
are normalized to the range [−1, 1] considering a maximum
modulus for each force of 12 N , maximum velocities of
0.65 m/s and 1 rad/s respectively and a maximum distance
to the goal of 7 m. Same criteria used in [11].

To predict the next T forces exerted by the human,
Y force
N+1:N+T ∈ R2,T , we will use the last N occupancy

maps, Xmap
1:N , and the last N concatenations of the other four

information sources, Xf
1:N = [xf

1 , x
f
2 , ..., x

f
N ] with xf

i ∈ R8.
These same inputs will be used to obtain the T following
velocities shown by the human-robot pair, Y vel

N+1:N+T ∈
R2,T . The system’s working frequency is 10 Hz so we will
use the information from the last 2 s (N = 20) to predict
the next second (T = 10).

B. Force/Velocity Predictor Models

Fig. 1 shows an scheme of the architecture of our original
force predictor. Based on [28], [29], two parallel streams
are used processing Xmap

1:N and Xf
1:N respectively. The

workhourses used in that case were CNNs and LSTMs, as
well as Fully Connected (FC) layers to reduce dimensionality
and obtain the Y force

N+1:N+T vector. This original model will
be called the CNN+LSTM version.

1Example of how to calculate FTask,C and the performed experiments:
https://youtu.be/Aub8WPKHJi0



Fig. 2. Model architecture for CNN+Transformer force predictor. Two input and two output streams in parallel. CNNs to process occupancy map
obtained from LiDAR and Transformers to process other inputs. Both streams concatenated and processed by two parallel Transformers streams to obtain
a prediction of next human’s force and next human-robot pair’s velocity.

Fig. 3. Model architecture for ViViT+Transformer force predictor. Two input and two output streams in parallel. ViViT to process occupancy map
obtained from LiDAR and Transformers to process other inputs. Both streams concatenated and processed to obtain a prediction of next human’s force
and next human-robot pair’s velocity.

Fig. 2 shows the first modifications made on this model.
All LSTM units are replaced by layers of Transformers. To
process the input Xf

1:N six layers of Transformers are used
each with h = 8 self-attention heads, 64 as the dimension-
ality of the linearly projected queries, keys and values, 512
for the dimensionality of the inner FC layer and 128 for the
dimensionality of the sub-layers’ outputs. Dropout is also
used with a probability p = 0.3. The second difference with
the original model consists in sending the concatenation of
the two input streams not to a single output stream but to two
in parallel in order to obtain both Y force

N+1:N+T and Y vel
N+1:N+T

vectors. In this case, both are made up of nine layers of
Transformers with the same parameters as the previous layers
except h = 10 and p = 0.35 now. This one will be called
the CNN+T version.

Fig. 3 shows the second modificacion made. As with
LSTMs, all the CNN layers are replaced by another archi-
tecture that has proven its efficiency in processing image
sequences such as ViViT. In this case, six ViViT layers
are used, each with h = 8 self-attention heads, 128 as
the projection dimensionality and p = 0.35 as the Dropout

probability. For its part, the input Xmap
1:N is sequenced into

L = 4 consecutive patches of size 25x25 pixels. The rest of
the structure is equivalent to that used in the CNN+T version.
We will call this version ViViT+T.

The version using ViViT with LSTMs has also been
trained. However, and for the sake of brevity, its scheme is
omitted since it is the worst performing version as it will be
shown in Section IV. We will call this version ViViT+LSTM.

C. Dataset Acquisition and Training

The same dataset used in [11] is extended using the
samples obtained in [36] in which our first predictor is
compared with other system also performing a human-robot
collaborative transport in the same scenario. In this way, a
dataset with 14120 sub-sequences is obtained. These sub-
sequences are obtained splitting each recorded experiment in
blocks of N +T samples with an overlapping of (N +T )/2
samples between sub-sequences. The input of each model are
the first N samples with which they try to predict the next T
human’s forces and human-robot pair’s velocities. This sub-
sequences are divided into the classic splits of training (90%:



TABLE I
EVOLUTION OF MEAN ERROR AND PERCENTAGE OF CORRECT PREDICTIONS IN TESTSET. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error Yx [N or m/s]

CNN+LSTM 0.208 0.241 0.248 0.280 – – – –
CNN+T 0.188 0.200 0.204 0.239 0.0037 0.0049 0.0062 0.0073
ViViT+LSTM 0.315 0.349 0.388 0.466 0.0102 0.0110 0.0129 0.0151
ViViT+T 0.234 0.289 0.360 0.440 0.0061 0.0074 0.0085 0.0104

Error Yy [N or rad/s]

CNN+LSTM 0.099 0.123 0.124 0.150 – – – –
CNN+T 0.085 0.094 0.096 0.121 0.0025 0.0033 0.0042 0.0049
ViViT+LSTM 0.167 0.182 0.200 0.239 0.0071 0.0083 0.0101 0.0125
ViViT+T 0.114 0.151 0.193 0.221 0.0042 0.0049 0.0059 0.0072

Error |Y | < 0.1 · Ymax

&
Error ∠Y < 18◦ [%]

CNN+LSTM 94.5 93.7 93.4 92.4 – – – –
CNN+T 95.6 94.9 94.7 93.8 98.9 98.4 97.8 96.9
ViViT+LSTM 90.8 89.0 86.6 83.0 95.6 95.3 93.9 92.7
ViViT+T 94.0 91.8 87.7 84.2 97.9 97.0 96.5 95.4

12708 sub-sequences), validation (5%: 706 sub-sequences)
and testing (5%: 706 sub-sequences) datasets.

Adam with its default parameters is the optimizer used
for training each model. Additionally, learning rate decay
is added with a minimum lr = 3 × 10−5 and a decay
factor of 0.96. The maximum number of epochs is 80,
although using early stopping to avoid overfitting. Models
were not observed to exceed epoch 65 (CNN+LSTM), 70
(CNN+T and ViViT+LSTM) or 75 (ViViT+T) respectively.
An NVIDIA RTX 2080 Ti graphics card was used, training
for 85-130 minutes depending on the model.

IV. RESULTS

First, we test the ability of each trained model to predict
the force that the human will exert as well as the velocity
profile that the human-robot pair will follow. For this we use
the testset split. Having done this, we perform a new round of
experiments with 21 volunteers (age: µ = 27.45, σ = 4.02).
These volunteers perform the same collaborative transport
task in the same scenario used in [11] a total of three
times: once without any predictor in order to obtain more
samples with which to continue expanding our dataset, once
with the original predictor, and once with the predictor that
gives the best results in the testset. With these experiments
we can check the real improvement obtained with different
humans who have not performed the experiment before. All
the experiments reported in this work have been performed
after getting the approval of the ethics committee of the
Universitat Politècnica de Catalunya (UPC)2 in accordance
with all the regulations and relevant guidelines (ID: 2023.05).

To do this, we use the same ROS (Robot Operating
System) node used to encapsulate and format all the inputs
and outputs necessary to operate the original predictor using
in each case the architecture and weights of the model of
interest. Each of the predictors conditions the robot’s planner

2UPC ethics committee: https://comite-etica.upc.edu/en

in a different way. The original CNN+LSTM predictor sends
its prediction of the human’s force to a controller equivalent
to the one used to generate the robot’s speed command
from the FTask,C force, thus generating an estimate of
the human’s desired speed. In turn, the remaining predictors
can directly generate a prediction of the human-robot pair’s
velocity. Both velocity estimates are integrated to obtain an
estimation of the trajectory to follow which is finally used
to condition the robot’s planner. All the real experiments
reported in this section, were performed using an MSI GS66
laptop with an RTX 3060 Mobile (80 W).

A. Force/Velocity Predictor Performance

As in [11], we compute the absolute error in each Carte-
sian axis between the prediction of the next human’s force
and its actual value. Likewise, we also compute the abso-
lute error between the prediction of the linear and angular
velocity and the real value of this variable for the human-
robot pair. Additionally, we also calculate the percentage
of samples that present an error lower than a 10% both in
modulus and angle. This means an error less than 1.2 N for
the force prediction and an error less than 0.065 m/s and
0.1 rad/s for the velocity. The results are shown in Table I.

First, the results provided by the CNN+LSTM model differ
slightly from those shown in [11] as this model has been
retrained for more epochs with a larger dataset. Among the
three models designed in this paper, CNN+T wins in all
the measurements performed both in predicting the human’s
force and the pair’s velocity during the next second. It is
closely followed by the ViViT+T model and ViViT-LSTM is
the one with worst performance. Among them, only CNN+T
manages to outperform CNN+LSTM. This implies that the
use of ViViT is counterproductive contrary to what might
initially appear. This result should not be so surprising since
it is a known issue in the literature that ViT (and therefore
also ViViT) can improve the performance offered by CNNs
in image classification tasks but only if it is trained with



TABLE II
ABLATION STUDY WITH CNN+T REMOVING EACH INPUT. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error |Y | < 0.1 · Ymax

&
Error ∠Y < 18◦ [%]

Without ccupancy map 86.6 84.0 81.3 76.4 94.6 92.1 89.0 85.3
Without env. force 93.5 91.3 89.1 85.6 97.1 96.0 93.9 91.2
Without human’s force 90.5 88.8 86.0 81.3 97.0 95.8 93.7 90.8
Without robot’s velocity 93.4 91.0 88.5 84.6 96.2 95.0 92.8 89.5
Without goal position 94.5 93.4 92.8 91.5 97.9 97.1 96.3 95.0

TABLE III
MEAN ERROR AND PERCENTAGE OF CORRECT PREDICTIONS IN REAL EXPERIMENTS. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error Yx [N or m/s] CNN+LSTM 0.281 0.310 0.316 0.350 – – – –
CNN+T 0.188 0.200 0.204 0.239 0.0063 0.0074 0.0085 0.0112

Error Yy [N or rad/s] CNN+LSTM 0.151 0.163 0.170 0.180 – – – –
CNN+T 0.085 0.094 0.096 0.121 0.0043 0.0050 0.0059 0.0084

Error |Y | < 0.1 · Ymax &
Error ∠Y < 18◦ [%]

CNN+LSTM 92.3 91.4 90.8 89.3 – – – –
CNN+T 93.5 92.9 92.3 90.9 97.6 96.9 96.4 95.2

Fig. 4. Comparison of human-robot pair’s real trajectory and trajectory estimation for 1 s in different situations. Actual trajectory in blue.
Trajectory estimation from CNN+LSTM in red and trajectory estimation from CNN+T in green. A - Normal situation. B - Human’s force against normal
operation, in this case, over-avoiding the obstacle in the right. C - Human exerting an extremely low force.

vey large datasets [30], [37]. This result seems to indicate
that our dataset is not large enough. At the same time, the
substitution of LSTM cells by Transformers does improve
the performance as expected. Since CNN+T is the model
that gives the best results, this will be the only one used
in real experiments together with the original CNN+LSTM
model to check the real improvement obtained.

On the other hand, it is also observed that it is easier to
make predictions for velocity than for force. This is because
the velocity is somewhat proportional to the integral of the
force. This causes the velocity to vary more slowly. First,
because there is a delay between when a substantial change
in force occurs and when it makes a difference in the robot’s
motion. Secondly, because this integration is the equivalent
of a low-pass filter that eliminates the small instantaneous

variations that may occur in the force exerted by the human.
At the same time, this phenomenon underlines the usefulness
of our force predictor since a good prediction of the force
allows to obtain a good estimation of the velocity, while the
opposite case does not necessarily occur.

The same testset can be used to make an ablation study. In
this case, eliminating each input, one at a time, and checking
the performance drop. Table II shows the percentage of
samples considered as correct when each of the inputs are
missing using only the CNN+T model since it is the one with
the best performance and, therefore, the one we compare with
the original CNN-LSTM in the real experiments. The most
relevant input is the occupancy map causing a drop of up to
17.4% in the force prediction and up to 11.6% in the velocity
prediction. The next most relevant inputs are the human’s



TABLE IV
COMPARISON OF MEAN ERROR ESTIMATING HUMAN TRAJECTORY WITH

DIFFERENT MODELS. * MARKS VALUES OBTAINED BY INTERPOLATION

FROM LAPLAZA EL AL. [6].

Model L2 [m]
500 ms 1000 ms

Martinez el al. [4] 0.159* 0.317*
Mao et al. [5] 0.081* 0.161*
Laplaza et al.. [6] 0.072* 0.142*
2nd order polynomial 0.123 0.277
CNN+LSTM [11] 0.093 0.199
CNN+T 0.061 0.138

force when predicting the next force they will exert with a
drop of up to 12.5% and the robot’s speed when predicting
the pair’s speed with up to 7.4%. The environmental force,
fE,C , affects both predictions with drops of up to 8.2%
and 5.7%, respectively. The least influential variable is the
position of the goal with maximum drops of 2.3% and 1.9%.

The first experiment performed by the 21 new volunteers
in which no predictor is used allows us to perform the same
measures as with the testset. Table III shows a reduction in
both predictors of between 2.1% and 3.1% in the percentage
of samples considered as correct for the prediction of the
human’s force and between 1.3% and 1.7% for the velocity
prediction, in this case, only with the CNN+T predictor. This
reduction already occurred in [11] and it is mainly due to
the participation of new volunteers with preferences that may
differ slightly from those present in the dataset. In any case,
the CNN+T model still performs better than CNN+LSTM
as expected and proves to be quite general showing a good
performance both in testset and in real experiments.

B. Force/Velocity Predictor used for Movement Estimation

As commented at the beginning of this Section, both
predictors can be used to obtain an estimate of the desired
trajectory. In the case of CNN+LSTM, by generating an
estimate of the human’s desired velocity from the prediction
of its force (using for this purpose the same controller
used by the robot to generate its velocity commands from
FTask,C) and subsequently integrating this velocity. In the
case of CNN+T, directly integrating the velocity prediction
generated by the model.

It is worth mentioning that the trajectory estimate obtained
from CNN+LSTM refers to the trajectory that the human
would like to follow based on the force exerted. Meanwhile,
the one obtained from CNN+T refers to the one that the
model estimates that the human-robot pair will follow. This
difference will be negligible as long as human and robot
interpret the scenario in the same way and collaborate with
each other in equal proportion. Fig. 4 - A shows an example
of this situation. However, if there is any discrepancy be-
tween the human and robot contribution, this estimate does
show variations between one model and the other. Fig. 4 -
B and Fig. 4 - C show two examples of this situation. The

choice of these two situations is because they were used
in [11] to show the limitations of the CNN+LSTM model.

Fig. 4 - B shows the case where the human wishes to avoid
a particular obstacle at all costs, even if that means bringing
the robot closer to another obstacle. The robot will take into
account the human’s input and move away from the first
obstacle but will also make its own contribution by avoiding
getting too close to the second obstacle. This discrepancy
causes the trajectory estimated with CNN+LSTM to differ
from the trajectory finally followed. The same does not occur
with the estimate obtained from the predicted velocity with
CNN+T, since it takes into account the contribution expected
by both agents and is closer to the real trajectory.

Fig. 4 - C shows the case where the human contribution is
significantly lower than that of the robot exerting a very low
force. The trajectory estimated using the CNN+LSTM output
generates a smaller displacement by considering only the
human contribution. However, the trajectory generated from
the CNN+T velocity prediction does take into account that
the robot will compensate for the low human contribution.

The Table IV shows a comparison between the movement
estimate generated from our predictors and other models.
The values shown in the first three methods are obtained by
interpolation of the values reported by Laplaza et al. in [6].
The comparison with these models is not totally fair since
these are used to predict the movement of only a human in
tasks other than ours, but it allows to have a view of the
typical values obtained in the State of the Art. Comparing
the result obtained using CNN+T with the one previously
generated with CNN+LSTM or with the approximation of a
second-order curve to the previous trajectory, a remarkable
improvement is observed. It is worth mentioning that this is
not so much due to the use of more efficient architectures
such as Transformers but to the modification in the general
architecture to have a dual output system with a prediction
of both the human’s force and the pair’s velocity.

V. CONCLUSIONS

We have explored the usefulness of state-of-the-art Deep
Learning architectures such as Transformers and its image
sequence processing oriented version, ViViT, in the specific
task of collaborative human-robot transport of objects. With
them, we have improved the performance of our force
predictor in all the objective variables analyzed, being this
the main contribution. Thus, in real experiments, predictions
for the next 1 s are achieved with an acceptable error over
90.9% of the time for the force to be exerted by the human
and over 95.2% for the speed of the human-robot pair.

Second, we have corroborated that architectures such
as ViViT need very large datasets to fully displace well-
established architectures such as CNNs. Thirdly, through an
ablation study we have verified the low relevance of the goal
position on the performance of our predictor. This allows
us to consider modifying our predictor so that it is not
dependent on this variable, thus allowing the task to be
developed without a predetermined goal but one that the
human can decide and change at any time.
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